Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2024, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <arm_neon.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/arm/aom_neon_sve_bridge.h"
#include "aom_dsp/arm/aom_neon_sve2_bridge.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_ports/mem.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/filter.h"
#include "av1/common/arm/highbd_compound_convolve_neon.h"
#include "av1/common/arm/highbd_convolve_neon.h"
#include "av1/common/arm/highbd_convolve_sve2.h"
DECLARE_ALIGNED(16, static const uint16_t, kDotProdTbl[32]) = {
0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6,
4, 5, 6, 7, 5, 6, 7, 0, 6, 7, 0, 1, 7, 0, 1, 2,
};
static inline uint16x8_t highbd_12_convolve8_8_x(int16x8_t s0[8],
int16x8_t filter,
int64x2_t offset) {
int64x2_t sum[8];
sum[0] = aom_sdotq_s16(offset, s0[0], filter);
sum[1] = aom_sdotq_s16(offset, s0[1], filter);
sum[2] = aom_sdotq_s16(offset, s0[2], filter);
sum[3] = aom_sdotq_s16(offset, s0[3], filter);
sum[4] = aom_sdotq_s16(offset, s0[4], filter);
sum[5] = aom_sdotq_s16(offset, s0[5], filter);
sum[6] = aom_sdotq_s16(offset, s0[6], filter);
sum[7] = aom_sdotq_s16(offset, s0[7], filter);
sum[0] = vpaddq_s64(sum[0], sum[1]);
sum[2] = vpaddq_s64(sum[2], sum[3]);
sum[4] = vpaddq_s64(sum[4], sum[5]);
sum[6] = vpaddq_s64(sum[6], sum[7]);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2]));
int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum[4]), vmovn_s64(sum[6]));
return vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS + 2),
vqrshrun_n_s32(sum4567, ROUND0_BITS + 2));
}
static inline void highbd_12_dist_wtd_convolve_x_8tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *x_filter_ptr) {
const int64x1_t offset_vec =
vcreate_s64((1 << (12 + FILTER_BITS)) + (1 << (12 + FILTER_BITS - 1)));
const int64x2_t offset_lo = vcombine_s64(offset_vec, vdup_n_s64(0));
const int16x8_t filter = vld1q_s16(x_filter_ptr);
do {
const int16_t *s = (const int16_t *)src;
uint16_t *d = dst;
int w = width;
do {
int16x8_t s0[8], s1[8], s2[8], s3[8];
load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
&s0[4], &s0[5], &s0[6], &s0[7]);
load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
&s1[4], &s1[5], &s1[6], &s1[7]);
load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
&s2[4], &s2[5], &s2[6], &s2[7]);
load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
&s3[4], &s3[5], &s3[6], &s3[7]);
uint16x8_t d0 = highbd_12_convolve8_8_x(s0, filter, offset_lo);
uint16x8_t d1 = highbd_12_convolve8_8_x(s1, filter, offset_lo);
uint16x8_t d2 = highbd_12_convolve8_8_x(s2, filter, offset_lo);
uint16x8_t d3 = highbd_12_convolve8_8_x(s3, filter, offset_lo);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
}
static inline uint16x8_t highbd_convolve8_8_x(int16x8_t s0[8], int16x8_t filter,
int64x2_t offset) {
int64x2_t sum[8];
sum[0] = aom_sdotq_s16(offset, s0[0], filter);
sum[1] = aom_sdotq_s16(offset, s0[1], filter);
sum[2] = aom_sdotq_s16(offset, s0[2], filter);
sum[3] = aom_sdotq_s16(offset, s0[3], filter);
sum[4] = aom_sdotq_s16(offset, s0[4], filter);
sum[5] = aom_sdotq_s16(offset, s0[5], filter);
sum[6] = aom_sdotq_s16(offset, s0[6], filter);
sum[7] = aom_sdotq_s16(offset, s0[7], filter);
sum[0] = vpaddq_s64(sum[0], sum[1]);
sum[2] = vpaddq_s64(sum[2], sum[3]);
sum[4] = vpaddq_s64(sum[4], sum[5]);
sum[6] = vpaddq_s64(sum[6], sum[7]);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2]));
int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum[4]), vmovn_s64(sum[6]));
return vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS),
vqrshrun_n_s32(sum4567, ROUND0_BITS));
}
static inline void highbd_dist_wtd_convolve_x_8tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *x_filter_ptr, const int bd) {
const int64x1_t offset_vec =
vcreate_s64((1 << (bd + FILTER_BITS)) + (1 << (bd + FILTER_BITS - 1)));
const int64x2_t offset_lo = vcombine_s64(offset_vec, vdup_n_s64(0));
const int16x8_t filter = vld1q_s16(x_filter_ptr);
do {
const int16_t *s = (const int16_t *)src;
uint16_t *d = dst;
int w = width;
do {
int16x8_t s0[8], s1[8], s2[8], s3[8];
load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
&s0[4], &s0[5], &s0[6], &s0[7]);
load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
&s1[4], &s1[5], &s1[6], &s1[7]);
load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
&s2[4], &s2[5], &s2[6], &s2[7]);
load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
&s3[4], &s3[5], &s3[6], &s3[7]);
uint16x8_t d0 = highbd_convolve8_8_x(s0, filter, offset_lo);
uint16x8_t d1 = highbd_convolve8_8_x(s1, filter, offset_lo);
uint16x8_t d2 = highbd_convolve8_8_x(s2, filter, offset_lo);
uint16x8_t d3 = highbd_convolve8_8_x(s3, filter, offset_lo);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
}
// clang-format off
DECLARE_ALIGNED(16, static const uint16_t, kDeinterleaveTbl[8]) = {
0, 2, 4, 6, 1, 3, 5, 7,
};
// clang-format on
static inline uint16x4_t highbd_12_convolve4_4_x(int16x8_t s0, int16x8_t filter,
int64x2_t offset,
uint16x8x2_t permute_tbl) {
int16x8_t permuted_samples0 = aom_tbl_s16(s0, permute_tbl.val[0]);
int16x8_t permuted_samples1 = aom_tbl_s16(s0, permute_tbl.val[1]);
int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples0, filter, 0);
int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples1, filter, 0);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
return vqrshrun_n_s32(sum0123, ROUND0_BITS + 2);
}
static inline uint16x8_t highbd_12_convolve4_8_x(int16x8_t s0[4],
int16x8_t filter,
int64x2_t offset,
uint16x8_t tbl) {
int64x2_t sum04 = aom_svdot_lane_s16(offset, s0[0], filter, 0);
int64x2_t sum15 = aom_svdot_lane_s16(offset, s0[1], filter, 0);
int64x2_t sum26 = aom_svdot_lane_s16(offset, s0[2], filter, 0);
int64x2_t sum37 = aom_svdot_lane_s16(offset, s0[3], filter, 0);
int32x4_t sum0415 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15));
int32x4_t sum2637 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37));
uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0415, ROUND0_BITS + 2),
vqrshrun_n_s32(sum2637, ROUND0_BITS + 2));
return aom_tbl_u16(res, tbl);
}
static inline void highbd_12_dist_wtd_convolve_x_4tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *x_filter_ptr) {
const int64x2_t offset =
vdupq_n_s64((1 << (12 + FILTER_BITS)) + (1 << (12 + FILTER_BITS - 1)));
const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
if (width == 4) {
uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
const int16_t *s = (const int16_t *)(src);
do {
int16x8_t s0, s1, s2, s3;
load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 = highbd_12_convolve4_4_x(s0, filter, offset, permute_tbl);
uint16x4_t d1 = highbd_12_convolve4_4_x(s1, filter, offset, permute_tbl);
uint16x4_t d2 = highbd_12_convolve4_4_x(s2, filter, offset, permute_tbl);
uint16x4_t d3 = highbd_12_convolve4_4_x(s3, filter, offset, permute_tbl);
store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
s += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
} else {
uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
do {
const int16_t *s = (const int16_t *)(src);
uint16_t *d = dst;
int w = width;
do {
int16x8_t s0[4], s1[4], s2[4], s3[4];
load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
uint16x8_t d0 = highbd_12_convolve4_8_x(s0, filter, offset, idx);
uint16x8_t d1 = highbd_12_convolve4_8_x(s1, filter, offset, idx);
uint16x8_t d2 = highbd_12_convolve4_8_x(s2, filter, offset, idx);
uint16x8_t d3 = highbd_12_convolve4_8_x(s3, filter, offset, idx);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
}
}
static inline uint16x4_t highbd_convolve4_4_x(int16x8_t s0, int16x8_t filter,
int64x2_t offset,
uint16x8x2_t permute_tbl) {
int16x8_t permuted_samples0 = aom_tbl_s16(s0, permute_tbl.val[0]);
int16x8_t permuted_samples1 = aom_tbl_s16(s0, permute_tbl.val[1]);
int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples0, filter, 0);
int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples1, filter, 0);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
return vqrshrun_n_s32(sum0123, ROUND0_BITS);
}
static inline uint16x8_t highbd_convolve4_8_x(int16x8_t s0[4], int16x8_t filter,
int64x2_t offset,
uint16x8_t tbl) {
int64x2_t sum04 = aom_svdot_lane_s16(offset, s0[0], filter, 0);
int64x2_t sum15 = aom_svdot_lane_s16(offset, s0[1], filter, 0);
int64x2_t sum26 = aom_svdot_lane_s16(offset, s0[2], filter, 0);
int64x2_t sum37 = aom_svdot_lane_s16(offset, s0[3], filter, 0);
int32x4_t sum0415 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15));
int32x4_t sum2637 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37));
uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0415, ROUND0_BITS),
vqrshrun_n_s32(sum2637, ROUND0_BITS));
return aom_tbl_u16(res, tbl);
}
static inline void highbd_dist_wtd_convolve_x_4tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *x_filter_ptr, const int bd) {
const int64x2_t offset =
vdupq_n_s64((1 << (bd + FILTER_BITS)) + (1 << (bd + FILTER_BITS - 1)));
const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
if (width == 4) {
uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
const int16_t *s = (const int16_t *)(src);
do {
int16x8_t s0, s1, s2, s3;
load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 = highbd_convolve4_4_x(s0, filter, offset, permute_tbl);
uint16x4_t d1 = highbd_convolve4_4_x(s1, filter, offset, permute_tbl);
uint16x4_t d2 = highbd_convolve4_4_x(s2, filter, offset, permute_tbl);
uint16x4_t d3 = highbd_convolve4_4_x(s3, filter, offset, permute_tbl);
store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
s += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
} else {
uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
do {
const int16_t *s = (const int16_t *)(src);
uint16_t *d = dst;
int w = width;
do {
int16x8_t s0[4], s1[4], s2[4], s3[4];
load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
uint16x8_t d0 = highbd_convolve4_8_x(s0, filter, offset, idx);
uint16x8_t d1 = highbd_convolve4_8_x(s1, filter, offset, idx);
uint16x8_t d2 = highbd_convolve4_8_x(s2, filter, offset, idx);
uint16x8_t d3 = highbd_convolve4_8_x(s3, filter, offset, idx);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
}
}
void av1_highbd_dist_wtd_convolve_x_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params, int bd) {
DECLARE_ALIGNED(16, uint16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
if (x_filter_taps == 6) {
av1_highbd_dist_wtd_convolve_x_neon(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn,
conv_params, bd);
return;
}
int dst16_stride = conv_params->dst_stride;
const int im_stride = MAX_SB_SIZE;
const int horiz_offset = filter_params_x->taps / 2 - 1;
assert(FILTER_BITS == COMPOUND_ROUND1_BITS);
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
src -= horiz_offset;
if (bd == 12) {
if (conv_params->do_average) {
if (x_filter_taps <= 4) {
highbd_12_dist_wtd_convolve_x_4tap_sve2(src + 2, src_stride, im_block,
im_stride, w, h, x_filter_ptr);
} else {
highbd_12_dist_wtd_convolve_x_8tap_sve2(src, src_stride, im_block,
im_stride, w, h, x_filter_ptr);
}
if (conv_params->use_dist_wtd_comp_avg) {
highbd_12_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride,
w, h, conv_params);
} else {
highbd_12_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params);
}
} else {
if (x_filter_taps <= 4) {
highbd_12_dist_wtd_convolve_x_4tap_sve2(
src + 2, src_stride, dst16, dst16_stride, w, h, x_filter_ptr);
} else {
highbd_12_dist_wtd_convolve_x_8tap_sve2(
src, src_stride, dst16, dst16_stride, w, h, x_filter_ptr);
}
}
} else {
if (conv_params->do_average) {
if (x_filter_taps <= 4) {
highbd_dist_wtd_convolve_x_4tap_sve2(src + 2, src_stride, im_block,
im_stride, w, h, x_filter_ptr, bd);
} else {
highbd_dist_wtd_convolve_x_8tap_sve2(src, src_stride, im_block,
im_stride, w, h, x_filter_ptr, bd);
}
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w,
h, conv_params, bd);
} else {
highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params, bd);
}
} else {
if (x_filter_taps <= 4) {
highbd_dist_wtd_convolve_x_4tap_sve2(
src + 2, src_stride, dst16, dst16_stride, w, h, x_filter_ptr, bd);
} else {
highbd_dist_wtd_convolve_x_8tap_sve2(
src, src_stride, dst16, dst16_stride, w, h, x_filter_ptr, bd);
}
}
}
}
static inline uint16x4_t highbd_12_convolve8_4_y(int16x8_t samples_lo[2],
int16x8_t samples_hi[2],
int16x8_t filter,
int64x2_t offset) {
int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
return vqrshrun_n_s32(sum0123, ROUND0_BITS + 2);
}
static inline uint16x8_t highbd_12_convolve8_8_y(int16x8_t samples_lo[4],
int16x8_t samples_hi[4],
int16x8_t filter,
int64x2_t offset) {
int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
int64x2_t sum45 = aom_svdot_lane_s16(offset, samples_lo[2], filter, 0);
sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1);
int64x2_t sum67 = aom_svdot_lane_s16(offset, samples_lo[3], filter, 0);
sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
return vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS + 2),
vqrshrun_n_s32(sum4567, ROUND0_BITS + 2));
}
static inline void highbd_12_dist_wtd_convolve_y_8tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *y_filter_ptr) {
const int64x2_t offset =
vdupq_n_s64((1 << (12 + FILTER_BITS)) + (1 << (12 + FILTER_BITS - 1)));
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
// Scale indices by size of the true vector length to avoid reading from an
// 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
uint16x8_t correction0 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
uint16x8_t correction1 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
uint16x8_t correction2 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
if (width == 4) {
int16_t *s = (int16_t *)src;
int16x4_t s0, s1, s2, s3, s4, s5, s6;
load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
transpose_concat_4x4(s0, s1, s2, s3, s0123);
transpose_concat_4x4(s1, s2, s3, s4, s1234);
transpose_concat_4x4(s2, s3, s4, s5, s2345);
transpose_concat_4x4(s3, s4, s5, s6, s3456);
do {
int16x4_t s7, s8, s9, s10;
load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
int16x8_t s4567[2], s5678[2], s6789[2], s789A[2];
// Transpose and shuffle the 4 lines that were loaded.
transpose_concat_4x4(s7, s8, s9, s10, s789A);
// Merge new data into block from previous iteration.
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
uint16x4_t d0 = highbd_12_convolve8_4_y(s0123, s4567, y_filter, offset);
uint16x4_t d1 = highbd_12_convolve8_4_y(s1234, s5678, y_filter, offset);
uint16x4_t d2 = highbd_12_convolve8_4_y(s2345, s6789, y_filter, offset);
uint16x4_t d3 = highbd_12_convolve8_4_y(s3456, s789A, y_filter, offset);
store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123[0] = s4567[0];
s0123[1] = s4567[1];
s1234[0] = s5678[0];
s1234[1] = s5678[1];
s2345[0] = s6789[0];
s2345[1] = s6789[1];
s3456[0] = s789A[0];
s3456[1] = s789A[1];
s += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
} else {
do {
int h = height;
int16_t *s = (int16_t *)src;
uint16_t *d = dst;
int16x8_t s0, s1, s2, s3, s4, s5, s6;
load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
transpose_concat_8x4(s0, s1, s2, s3, s0123);
transpose_concat_8x4(s1, s2, s3, s4, s1234);
transpose_concat_8x4(s2, s3, s4, s5, s2345);
transpose_concat_8x4(s3, s4, s5, s6, s3456);
do {
int16x8_t s7, s8, s9, s10;
load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
int16x8_t s4567[4], s5678[4], s6789[4], s789A[4];
// Transpose and shuffle the 4 lines that were loaded.
transpose_concat_8x4(s7, s8, s9, s10, s789A);
// Merge new data into block from previous iteration.
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
uint16x8_t d0 = highbd_12_convolve8_8_y(s0123, s4567, y_filter, offset);
uint16x8_t d1 = highbd_12_convolve8_8_y(s1234, s5678, y_filter, offset);
uint16x8_t d2 = highbd_12_convolve8_8_y(s2345, s6789, y_filter, offset);
uint16x8_t d3 = highbd_12_convolve8_8_y(s3456, s789A, y_filter, offset);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123[0] = s4567[0];
s0123[1] = s4567[1];
s0123[2] = s4567[2];
s0123[3] = s4567[3];
s1234[0] = s5678[0];
s1234[1] = s5678[1];
s1234[2] = s5678[2];
s1234[3] = s5678[3];
s2345[0] = s6789[0];
s2345[1] = s6789[1];
s2345[2] = s6789[2];
s2345[3] = s6789[3];
s3456[0] = s789A[0];
s3456[1] = s789A[1];
s3456[2] = s789A[2];
s3456[3] = s789A[3];
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h != 0);
src += 8;
dst += 8;
width -= 8;
} while (width != 0);
}
}
static inline uint16x4_t highbd_convolve8_4_y(int16x8_t samples_lo[2],
int16x8_t samples_hi[2],
int16x8_t filter,
int64x2_t offset) {
int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
return vqrshrun_n_s32(sum0123, ROUND0_BITS);
}
static inline uint16x8_t highbd_convolve8_8_y(int16x8_t samples_lo[4],
int16x8_t samples_hi[4],
int16x8_t filter,
int64x2_t offset) {
int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
int64x2_t sum45 = aom_svdot_lane_s16(offset, samples_lo[2], filter, 0);
sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1);
int64x2_t sum67 = aom_svdot_lane_s16(offset, samples_lo[3], filter, 0);
sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
return vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS),
vqrshrun_n_s32(sum4567, ROUND0_BITS));
}
static inline void highbd_dist_wtd_convolve_y_8tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *y_filter_ptr, const int bd) {
const int64x2_t offset =
vdupq_n_s64((1 << (bd + FILTER_BITS)) + (1 << (bd + FILTER_BITS - 1)));
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
// Scale indices by size of the true vector length to avoid reading from an
// 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
uint16x8_t correction0 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
uint16x8_t correction1 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
uint16x8_t correction2 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
if (width == 4) {
int16_t *s = (int16_t *)src;
int16x4_t s0, s1, s2, s3, s4, s5, s6;
load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
transpose_concat_4x4(s0, s1, s2, s3, s0123);
transpose_concat_4x4(s1, s2, s3, s4, s1234);
transpose_concat_4x4(s2, s3, s4, s5, s2345);
transpose_concat_4x4(s3, s4, s5, s6, s3456);
do {
int16x4_t s7, s8, s9, s10;
load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
int16x8_t s4567[2], s5678[2], s6789[2], s789A[2];
// Transpose and shuffle the 4 lines that were loaded.
transpose_concat_4x4(s7, s8, s9, s10, s789A);
// Merge new data into block from previous iteration.
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
uint16x4_t d0 = highbd_convolve8_4_y(s0123, s4567, y_filter, offset);
uint16x4_t d1 = highbd_convolve8_4_y(s1234, s5678, y_filter, offset);
uint16x4_t d2 = highbd_convolve8_4_y(s2345, s6789, y_filter, offset);
uint16x4_t d3 = highbd_convolve8_4_y(s3456, s789A, y_filter, offset);
store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123[0] = s4567[0];
s0123[1] = s4567[1];
s1234[0] = s5678[0];
s1234[1] = s5678[1];
s2345[0] = s6789[0];
s2345[1] = s6789[1];
s3456[0] = s789A[0];
s3456[1] = s789A[1];
s += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
} else {
do {
int h = height;
int16_t *s = (int16_t *)src;
uint16_t *d = dst;
int16x8_t s0, s1, s2, s3, s4, s5, s6;
load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
transpose_concat_8x4(s0, s1, s2, s3, s0123);
transpose_concat_8x4(s1, s2, s3, s4, s1234);
transpose_concat_8x4(s2, s3, s4, s5, s2345);
transpose_concat_8x4(s3, s4, s5, s6, s3456);
do {
int16x8_t s7, s8, s9, s10;
load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
int16x8_t s4567[4], s5678[4], s6789[4], s789A[4];
// Transpose and shuffle the 4 lines that were loaded.
transpose_concat_8x4(s7, s8, s9, s10, s789A);
// Merge new data into block from previous iteration.
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
uint16x8_t d0 = highbd_convolve8_8_y(s0123, s4567, y_filter, offset);
uint16x8_t d1 = highbd_convolve8_8_y(s1234, s5678, y_filter, offset);
uint16x8_t d2 = highbd_convolve8_8_y(s2345, s6789, y_filter, offset);
uint16x8_t d3 = highbd_convolve8_8_y(s3456, s789A, y_filter, offset);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123[0] = s4567[0];
s0123[1] = s4567[1];
s0123[2] = s4567[2];
s0123[3] = s4567[3];
s1234[0] = s5678[0];
s1234[1] = s5678[1];
s1234[2] = s5678[2];
s1234[3] = s5678[3];
s2345[0] = s6789[0];
s2345[1] = s6789[1];
s2345[2] = s6789[2];
s2345[3] = s6789[3];
s3456[0] = s789A[0];
s3456[1] = s789A[1];
s3456[2] = s789A[2];
s3456[3] = s789A[3];
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h != 0);
src += 8;
dst += 8;
width -= 8;
} while (width != 0);
}
}
void av1_highbd_dist_wtd_convolve_y_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn,
ConvolveParams *conv_params, int bd) {
DECLARE_ALIGNED(16, uint16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
if (y_filter_taps != 8) {
av1_highbd_dist_wtd_convolve_y_neon(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn,
conv_params, bd);
return;
}
int dst16_stride = conv_params->dst_stride;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = filter_params_y->taps / 2 - 1;
assert(FILTER_BITS == COMPOUND_ROUND1_BITS);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
src -= vert_offset * src_stride;
if (bd == 12) {
if (conv_params->do_average) {
highbd_12_dist_wtd_convolve_y_8tap_sve2(src, src_stride, im_block,
im_stride, w, h, y_filter_ptr);
if (conv_params->use_dist_wtd_comp_avg) {
highbd_12_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride,
w, h, conv_params);
} else {
highbd_12_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params);
}
} else {
highbd_12_dist_wtd_convolve_y_8tap_sve2(src, src_stride, dst16,
dst16_stride, w, h, y_filter_ptr);
}
} else {
if (conv_params->do_average) {
highbd_dist_wtd_convolve_y_8tap_sve2(src, src_stride, im_block, im_stride,
w, h, y_filter_ptr, bd);
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w,
h, conv_params, bd);
} else {
highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params, bd);
}
} else {
highbd_dist_wtd_convolve_y_8tap_sve2(src, src_stride, dst16, dst16_stride,
w, h, y_filter_ptr, bd);
}
}
}
static inline void highbd_12_dist_wtd_convolve_2d_horiz_8tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *x_filter_ptr) {
const int64x2_t offset = vdupq_n_s64(1 << (12 + FILTER_BITS - 2));
const int16x8_t filter = vld1q_s16(x_filter_ptr);
// We are only doing 8-tap and 4-tap vertical convolutions, therefore we know
// that im_h % 4 = 3, so we can do the loop across the whole block 4 rows at
// a time and then process the last 3 rows separately.
do {
const int16_t *s = (const int16_t *)src;
uint16_t *d = dst;
int w = width;
do {
int16x8_t s0[8], s1[8], s2[8], s3[8];
load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
&s0[4], &s0[5], &s0[6], &s0[7]);
load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
&s1[4], &s1[5], &s1[6], &s1[7]);
load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
&s2[4], &s2[5], &s2[6], &s2[7]);
load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
&s3[4], &s3[5], &s3[6], &s3[7]);
uint16x8_t d0 = highbd_12_convolve8_8_x(s0, filter, offset);
uint16x8_t d1 = highbd_12_convolve8_8_x(s1, filter, offset);
uint16x8_t d2 = highbd_12_convolve8_8_x(s2, filter, offset);
uint16x8_t d3 = highbd_12_convolve8_8_x(s3, filter, offset);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 4);
// Process final 3 rows.
const int16_t *s = (const int16_t *)src;
do {
int16x8_t s0[8], s1[8], s2[8];
load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3], &s0[4],
&s0[5], &s0[6], &s0[7]);
load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3], &s1[4],
&s1[5], &s1[6], &s1[7]);
load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3], &s2[4],
&s2[5], &s2[6], &s2[7]);
uint16x8_t d0 = highbd_12_convolve8_8_x(s0, filter, offset);
uint16x8_t d1 = highbd_12_convolve8_8_x(s1, filter, offset);
uint16x8_t d2 = highbd_12_convolve8_8_x(s2, filter, offset);
store_u16_8x3(dst, dst_stride, d0, d1, d2);
s += 8;
dst += 8;
width -= 8;
} while (width != 0);
}
static inline void highbd_dist_wtd_convolve_2d_horiz_8tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *x_filter_ptr, const int bd) {
const int64x2_t offset = vdupq_n_s64(1 << (bd + FILTER_BITS - 2));
const int16x8_t filter = vld1q_s16(x_filter_ptr);
// We are only doing 8-tap and 4-tap vertical convolutions, therefore we know
// that im_h % 4 = 3, so we can do the loop across the whole block 4 rows at
// a time and then process the last 3 rows separately.
do {
const int16_t *s = (const int16_t *)src;
uint16_t *d = dst;
int w = width;
do {
int16x8_t s0[8], s1[8], s2[8], s3[8];
load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
&s0[4], &s0[5], &s0[6], &s0[7]);
load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
&s1[4], &s1[5], &s1[6], &s1[7]);
load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
&s2[4], &s2[5], &s2[6], &s2[7]);
load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
&s3[4], &s3[5], &s3[6], &s3[7]);
uint16x8_t d0 = highbd_convolve8_8_x(s0, filter, offset);
uint16x8_t d1 = highbd_convolve8_8_x(s1, filter, offset);
uint16x8_t d2 = highbd_convolve8_8_x(s2, filter, offset);
uint16x8_t d3 = highbd_convolve8_8_x(s3, filter, offset);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 4);
// Process final 3 rows.
const int16_t *s = (const int16_t *)src;
do {
int16x8_t s0[8], s1[8], s2[8];
load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3], &s0[4],
&s0[5], &s0[6], &s0[7]);
load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3], &s1[4],
&s1[5], &s1[6], &s1[7]);
load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3], &s2[4],
&s2[5], &s2[6], &s2[7]);
uint16x8_t d0 = highbd_convolve8_8_x(s0, filter, offset);
uint16x8_t d1 = highbd_convolve8_8_x(s1, filter, offset);
uint16x8_t d2 = highbd_convolve8_8_x(s2, filter, offset);
store_u16_8x3(dst, dst_stride, d0, d1, d2);
s += 8;
dst += 8;
width -= 8;
} while (width != 0);
}
static inline void highbd_12_dist_wtd_convolve_2d_horiz_4tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *x_filter_ptr) {
const int64x2_t offset = vdupq_n_s64(1 << (12 + FILTER_BITS - 1));
const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
// We are only doing 8-tap and 4-tap vertical convolutions, therefore we know
// that im_h % 4 = 3, so we can do the loop across the whole block 4 rows at
// a time and then process the last 3 rows separately.
if (width == 4) {
uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
const int16_t *s = (const int16_t *)(src);
do {
int16x8_t s0, s1, s2, s3;
load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 = highbd_12_convolve4_4_x(s0, filter, offset, permute_tbl);
uint16x4_t d1 = highbd_12_convolve4_4_x(s1, filter, offset, permute_tbl);
uint16x4_t d2 = highbd_12_convolve4_4_x(s2, filter, offset, permute_tbl);
uint16x4_t d3 = highbd_12_convolve4_4_x(s3, filter, offset, permute_tbl);
store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
s += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 4);
// Process final 3 rows.
int16x8_t s0, s1, s2;
load_s16_8x3(s, src_stride, &s0, &s1, &s2);
uint16x4_t d0 = highbd_12_convolve4_4_x(s0, filter, offset, permute_tbl);
uint16x4_t d1 = highbd_12_convolve4_4_x(s1, filter, offset, permute_tbl);
uint16x4_t d2 = highbd_12_convolve4_4_x(s2, filter, offset, permute_tbl);
store_u16_4x3(dst, dst_stride, d0, d1, d2);
} else {
uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
do {
const int16_t *s = (const int16_t *)(src);
uint16_t *d = dst;
int w = width;
do {
int16x8_t s0[4], s1[4], s2[4], s3[4];
load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
uint16x8_t d0 = highbd_12_convolve4_8_x(s0, filter, offset, idx);
uint16x8_t d1 = highbd_12_convolve4_8_x(s1, filter, offset, idx);
uint16x8_t d2 = highbd_12_convolve4_8_x(s2, filter, offset, idx);
uint16x8_t d3 = highbd_12_convolve4_8_x(s3, filter, offset, idx);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 4);
// Process final 3 rows.
const int16_t *s = (const int16_t *)(src);
do {
int16x8_t s0[4], s1[4], s2[4];
load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
uint16x8_t d0 = highbd_12_convolve4_8_x(s0, filter, offset, idx);
uint16x8_t d1 = highbd_12_convolve4_8_x(s1, filter, offset, idx);
uint16x8_t d2 = highbd_12_convolve4_8_x(s2, filter, offset, idx);
store_u16_8x3(dst, dst_stride, d0, d1, d2);
s += 8;
dst += 8;
width -= 8;
} while (width != 0);
}
}
static inline void highbd_dist_wtd_convolve_2d_horiz_4tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *x_filter_ptr, const int bd) {
const int64x2_t offset = vdupq_n_s64(1 << (bd + FILTER_BITS - 1));
const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
// We are only doing 8-tap and 4-tap vertical convolutions, therefore we know
// that im_h % 4 = 3, so we can do the loop across the whole block 4 rows at
// a time and then process the last 3 rows separately.
if (width == 4) {
uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
const int16_t *s = (const int16_t *)(src);
do {
int16x8_t s0, s1, s2, s3;
load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 = highbd_convolve4_4_x(s0, filter, offset, permute_tbl);
uint16x4_t d1 = highbd_convolve4_4_x(s1, filter, offset, permute_tbl);
uint16x4_t d2 = highbd_convolve4_4_x(s2, filter, offset, permute_tbl);
uint16x4_t d3 = highbd_convolve4_4_x(s3, filter, offset, permute_tbl);
store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
s += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 4);
// Process final 3 rows.
int16x8_t s0, s1, s2;
load_s16_8x3(s, src_stride, &s0, &s1, &s2);
uint16x4_t d0 = highbd_convolve4_4_x(s0, filter, offset, permute_tbl);
uint16x4_t d1 = highbd_convolve4_4_x(s1, filter, offset, permute_tbl);
uint16x4_t d2 = highbd_convolve4_4_x(s2, filter, offset, permute_tbl);
store_u16_4x3(dst, dst_stride, d0, d1, d2);
} else {
uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
do {
const int16_t *s = (const int16_t *)(src);
uint16_t *d = dst;
int w = width;
do {
int16x8_t s0[4], s1[4], s2[4], s3[4];
load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
uint16x8_t d0 = highbd_convolve4_8_x(s0, filter, offset, idx);
uint16x8_t d1 = highbd_convolve4_8_x(s1, filter, offset, idx);
uint16x8_t d2 = highbd_convolve4_8_x(s2, filter, offset, idx);
uint16x8_t d3 = highbd_convolve4_8_x(s3, filter, offset, idx);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 4);
// Process final 3 rows.
const int16_t *s = (const int16_t *)(src);
do {
int16x8_t s0[4], s1[4], s2[4];
load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
uint16x8_t d0 = highbd_convolve4_8_x(s0, filter, offset, idx);
uint16x8_t d1 = highbd_convolve4_8_x(s1, filter, offset, idx);
uint16x8_t d2 = highbd_convolve4_8_x(s2, filter, offset, idx);
store_u16_8x3(dst, dst_stride, d0, d1, d2);
s += 8;
dst += 8;
width -= 8;
} while (width != 0);
}
}
static inline uint16x4_t highbd_convolve8_4_2d_v(int16x8_t samples_lo[2],
int16x8_t samples_hi[2],
int16x8_t filter,
int64x2_t offset) {
int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
return vqrshrun_n_s32(sum0123, COMPOUND_ROUND1_BITS);
}
static inline uint16x8_t highbd_convolve8_8_2d_v(int16x8_t samples_lo[4],
int16x8_t samples_hi[4],
int16x8_t filter,
int64x2_t offset) {
int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
int64x2_t sum45 = aom_svdot_lane_s16(offset, samples_lo[2], filter, 0);
sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1);
int64x2_t sum67 = aom_svdot_lane_s16(offset, samples_lo[3], filter, 0);
sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1);
int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
return vcombine_u16(vqrshrun_n_s32(sum0123, COMPOUND_ROUND1_BITS),
vqrshrun_n_s32(sum4567, COMPOUND_ROUND1_BITS));
}
static inline void highbd_dist_wtd_convolve_2d_vert_8tap_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
int width, int height, const int16_t *y_filter_ptr, int offset) {
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
const int64x2_t offset_s64 = vdupq_n_s64(offset);
uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
// Scale indices by size of the true vector length to avoid reading from an
// 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
uint16x8_t correction0 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
uint16x8_t correction1 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
uint16x8_t correction2 =
vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
if (width == 4) {
int16_t *s = (int16_t *)src;
int16x4_t s0, s1, s2, s3, s4, s5, s6;
load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
transpose_concat_4x4(s0, s1, s2, s3, s0123);
transpose_concat_4x4(s1, s2, s3, s4, s1234);
transpose_concat_4x4(s2, s3, s4, s5, s2345);
transpose_concat_4x4(s3, s4, s5, s6, s3456);
do {
int16x4_t s7, s8, s9, s10;
load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
int16x8_t s4567[2], s5678[2], s6789[2], s789A[2];
// Transpose and shuffle the 4 lines that were loaded.
transpose_concat_4x4(s7, s8, s9, s10, s789A);
// Merge new data into block from previous iteration.
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
uint16x4_t d0 =
highbd_convolve8_4_2d_v(s0123, s4567, y_filter, offset_s64);
uint16x4_t d1 =
highbd_convolve8_4_2d_v(s1234, s5678, y_filter, offset_s64);
uint16x4_t d2 =
highbd_convolve8_4_2d_v(s2345, s6789, y_filter, offset_s64);
uint16x4_t d3 =
highbd_convolve8_4_2d_v(s3456, s789A, y_filter, offset_s64);
store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123[0] = s4567[0];
s0123[1] = s4567[1];
s1234[0] = s5678[0];
s1234[1] = s5678[1];
s2345[0] = s6789[0];
s2345[1] = s6789[1];
s3456[0] = s789A[0];
s3456[1] = s789A[1];
s += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
} else {
do {
int h = height;
int16_t *s = (int16_t *)src;
uint16_t *d = dst;
int16x8_t s0, s1, s2, s3, s4, s5, s6;
load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
transpose_concat_8x4(s0, s1, s2, s3, s0123);
transpose_concat_8x4(s1, s2, s3, s4, s1234);
transpose_concat_8x4(s2, s3, s4, s5, s2345);
transpose_concat_8x4(s3, s4, s5, s6, s3456);
do {
int16x8_t s7, s8, s9, s10;
load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
int16x8_t s4567[4], s5678[4], s6789[4], s789A[4];
// Transpose and shuffle the 4 lines that were loaded.
transpose_concat_8x4(s7, s8, s9, s10, s789A);
// Merge new data into block from previous iteration.
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
uint16x8_t d0 =
highbd_convolve8_8_2d_v(s0123, s4567, y_filter, offset_s64);
uint16x8_t d1 =
highbd_convolve8_8_2d_v(s1234, s5678, y_filter, offset_s64);
uint16x8_t d2 =
highbd_convolve8_8_2d_v(s2345, s6789, y_filter, offset_s64);
uint16x8_t d3 =
highbd_convolve8_8_2d_v(s3456, s789A, y_filter, offset_s64);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123[0] = s4567[0];
s0123[1] = s4567[1];
s0123[2] = s4567[2];
s0123[3] = s4567[3];
s1234[0] = s5678[0];
s1234[1] = s5678[1];
s1234[2] = s5678[2];
s1234[3] = s5678[3];
s2345[0] = s6789[0];
s2345[1] = s6789[1];
s2345[2] = s6789[2];
s2345[3] = s6789[3];
s3456[0] = s789A[0];
s3456[1] = s789A[1];
s3456[2] = s789A[2];
s3456[3] = s789A[3];
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h != 0);
src += 8;
dst += 8;
width -= 8;
} while (width != 0);
}
}
static inline uint16x4_t highbd_convolve4_4_2d_v(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t filter, const int32x4_t offset) {
int32x4_t sum = vmlal_lane_s16(offset, s0, filter, 0);
sum = vmlal_lane_s16(sum, s1, filter, 1);
sum = vmlal_lane_s16(sum, s2, filter, 2);
sum = vmlal_lane_s16(sum, s3, filter, 3);
return vqrshrun_n_s32(sum, COMPOUND_ROUND1_BITS);
}
static inline uint16x8_t highbd_convolve4_8_2d_v(
const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x4_t filter, const int32x4_t offset) {
int32x4_t sum0 = vmlal_lane_s16(offset, vget_low_s16(s0), filter, 0);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), filter, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), filter, 2);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filter, 3);
int32x4_t sum1 = vmlal_lane_s16(offset, vget_high_s16(s0), filter, 0);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), filter, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), filter, 2);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filter, 3);
return vcombine_u16(vqrshrun_n_s32(sum0, COMPOUND_ROUND1_BITS),
vqrshrun_n_s32(sum1, COMPOUND_ROUND1_BITS));
}
static inline void highbd_dist_wtd_convolve_2d_vert_4tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, const int offset) {
const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2);
const int32x4_t offset_vec = vdupq_n_s32(offset);
if (w == 4) {
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
int16x4_t s0, s1, s2;
load_s16_4x3(s, src_stride, &s0, &s1, &s2);
s += 3 * src_stride;
do {
int16x4_t s3, s4, s5, s6;
load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6);
uint16x4_t d0 =
highbd_convolve4_4_2d_v(s0, s1, s2, s3, y_filter, offset_vec);
uint16x4_t d1 =
highbd_convolve4_4_2d_v(s1, s2, s3, s4, y_filter, offset_vec);
uint16x4_t d2 =
highbd_convolve4_4_2d_v(s2, s3, s4, s5, y_filter, offset_vec);
uint16x4_t d3 =
highbd_convolve4_4_2d_v(s3, s4, s5, s6, y_filter, offset_vec);
store_u16_4x4(d, dst_stride, d0, d1, d2, d3);
s0 = s4;
s1 = s5;
s2 = s6;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
int16x8_t s0, s1, s2;
load_s16_8x3(s, src_stride, &s0, &s1, &s2);
s += 3 * src_stride;
do {
int16x8_t s3, s4, s5, s6;
load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6);
uint16x8_t d0 =
highbd_convolve4_8_2d_v(s0, s1, s2, s3, y_filter, offset_vec);
uint16x8_t d1 =
highbd_convolve4_8_2d_v(s1, s2, s3, s4, y_filter, offset_vec);
uint16x8_t d2 =
highbd_convolve4_8_2d_v(s2, s3, s4, s5, y_filter, offset_vec);
uint16x8_t d3 =
highbd_convolve4_8_2d_v(s3, s4, s5, s6, y_filter, offset_vec);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s0 = s4;
s1 = s5;
s2 = s6;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w != 0);
}
}
void av1_highbd_dist_wtd_convolve_2d_sve2(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
DECLARE_ALIGNED(16, uint16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
DECLARE_ALIGNED(16, uint16_t,
im_block2[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
const int clamped_x_taps = x_filter_taps < 4 ? 4 : x_filter_taps;
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps;
if (x_filter_taps == 6 || y_filter_taps == 6) {
av1_highbd_dist_wtd_convolve_2d_neon(
src, src_stride, dst, dst_stride, w, h, filter_params_x,
filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd);
return;
}
const int im_h = h + clamped_y_taps - 1;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = clamped_y_taps / 2 - 1;
const int horiz_offset = clamped_x_taps / 2 - 1;
const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset_conv_y = (1 << y_offset_bits);
const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
if (bd == 12) {
if (x_filter_taps <= 4) {
highbd_12_dist_wtd_convolve_2d_horiz_4tap_sve2(
src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr);
} else {
highbd_12_dist_wtd_convolve_2d_horiz_8tap_sve2(
src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr);
}
} else {
if (x_filter_taps <= 4) {
highbd_dist_wtd_convolve_2d_horiz_4tap_sve2(
src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr, bd);
} else {
highbd_dist_wtd_convolve_2d_horiz_8tap_sve2(
src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr, bd);
}
}
if (conv_params->do_average) {
if (y_filter_taps <= 4) {
highbd_dist_wtd_convolve_2d_vert_4tap_neon(im_block, im_stride, im_block2,
im_stride, w, h, y_filter_ptr,
round_offset_conv_y);
} else {
highbd_dist_wtd_convolve_2d_vert_8tap_sve2(im_block, im_stride, im_block2,
im_stride, w, h, y_filter_ptr,
round_offset_conv_y);
}
if (conv_params->use_dist_wtd_comp_avg) {
if (bd == 12) {
highbd_12_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride,
w, h, conv_params);
} else {
highbd_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w,
h, conv_params, bd);
}
} else {
if (bd == 12) {
highbd_12_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
conv_params);
} else {
highbd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
conv_params, bd);
}
}
} else {
if (y_filter_taps <= 4) {
highbd_dist_wtd_convolve_2d_vert_4tap_neon(
im_block, im_stride, dst16, dst16_stride, w, h, y_filter_ptr,
round_offset_conv_y);
} else {
highbd_dist_wtd_convolve_2d_vert_8tap_sve2(
im_block, im_stride, dst16, dst16_stride, w, h, y_filter_ptr,
round_offset_conv_y);
}
}
}