Source code
Revision control
Copy as Markdown
Other Tools
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
/*
* This file implements PKCS 11 on top of our existing security modules
*
* For more information about PKCS 11 See PKCS 11 Token Inteface Standard.
* This implementation has two slots:
* slot 1 is our generic crypto support. It does not require login.
* It supports Public Key ops, and all they bulk ciphers and hashes.
* It can also support Private Key ops for imported Private keys. It does
* not have any token storage.
* slot 2 is our private key support. It requires a login before use. It
* can store Private Keys and Certs as token objects. Currently only private
* keys and their associated Certificates are saved on the token.
*
* In this implementation, session objects are only visible to the session
* that created or generated them.
*/
#include "seccomon.h"
#include "secitem.h"
#include "secport.h"
#include "blapi.h"
#include "pkcs11.h"
#include "pkcs11i.h"
#include "pkcs1sig.h"
#include "lowkeyi.h"
#include "secder.h"
#include "secdig.h"
#include "lowpbe.h" /* We do PBE below */
#include "pkcs11t.h"
#include "secoid.h"
#include "alghmac.h"
#include "softoken.h"
#include "secasn1.h"
#include "secerr.h"
#include "prprf.h"
#include "prenv.h"
/*
* A common prfContext to handle both hmac and aes xcbc
* hash contexts have non-null hashObj and hmac, aes
* contexts have non-null aes */
typedef struct prfContextStr {
HASH_HashType hashType;
const SECHashObject *hashObj;
HMACContext *hmac;
AESContext *aes;
unsigned int nextChar;
unsigned char padBuf[AES_BLOCK_SIZE];
unsigned char macBuf[AES_BLOCK_SIZE];
unsigned char k1[AES_BLOCK_SIZE];
unsigned char k2[AES_BLOCK_SIZE];
unsigned char k3[AES_BLOCK_SIZE];
} prfContext;
/* iv full of zeros used in several places in aes xcbc */
static const unsigned char iv_zero[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*
* Generate AES XCBC keys from the AES MAC key.
* k1 is used in the actual mac.
* k2 and k3 are used in the final pad step.
*/
static CK_RV
sftk_aes_xcbc_get_keys(const unsigned char *keyValue, unsigned int keyLen,
unsigned char *k1, unsigned char *k2, unsigned char *k3)
{
SECStatus rv;
CK_RV crv;
unsigned int tmpLen;
AESContext *aes_context = NULL;
unsigned char newKey[AES_BLOCK_SIZE];
/* AES XCBC keys. k1, k2, and k3 are derived by encrypting
* k1data, k2data, and k3data with the mac key.
*/
static const unsigned char k1data[] = {
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01
};
static const unsigned char k2data[] = {
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02
};
static const unsigned char k3data[] = {
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
};
/* k1_0 = aes_ecb(0, k1data) */
static const unsigned char k1_0[] = {
0xe1, 0x4d, 0x5d, 0x0e, 0xe2, 0x77, 0x15, 0xdf,
0x08, 0xb4, 0x15, 0x2b, 0xa2, 0x3d, 0xa8, 0xe0
};
/* k2_0 = aes_ecb(0, k2data) */
static const unsigned char k2_0[] = {
0x5e, 0xba, 0x73, 0xf8, 0x91, 0x42, 0xc5, 0x48,
0x80, 0xf6, 0x85, 0x94, 0x37, 0x3c, 0x5c, 0x37
};
/* k3_0 = aes_ecb(0, k3data) */
static const unsigned char k3_0[] = {
0x8d, 0x34, 0xef, 0xcb, 0x3b, 0xd5, 0x45, 0xca,
0x06, 0x2a, 0xec, 0xdf, 0xef, 0x7c, 0x0b, 0xfa
};
/* first make sure out input key is the correct length
* rfc 4434. If key is shorter, pad with zeros to the
* the right. If key is longer newKey = aes_xcbc(0, key, keyLen).
*/
if (keyLen < AES_BLOCK_SIZE) {
PORT_Memcpy(newKey, keyValue, keyLen);
PORT_Memset(&newKey[keyLen], 0, AES_BLOCK_SIZE - keyLen);
keyValue = newKey;
} else if (keyLen > AES_BLOCK_SIZE) {
/* calculate our new key = aes_xcbc(0, key, keyLen). Because the
* key above is fixed (0), we can precalculate k1, k2, and k3.
* if this code ever needs to be more generic (support any xcbc
* function rather than just aes, we would probably want to just
* recurse here using our prf functions. This would be safe because
* the recurse case would have keyLen == blocksize and thus skip
* this conditional.
*/
aes_context = AES_CreateContext(k1_0, iv_zero, NSS_AES_CBC,
PR_TRUE, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
/* we know the following loop will execute at least once */
while (keyLen > AES_BLOCK_SIZE) {
rv = AES_Encrypt(aes_context, newKey, &tmpLen, AES_BLOCK_SIZE,
keyValue, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
goto fail;
}
keyValue += AES_BLOCK_SIZE;
keyLen -= AES_BLOCK_SIZE;
}
PORT_Memcpy(newKey, keyValue, keyLen);
sftk_xcbc_mac_pad(newKey, keyLen, AES_BLOCK_SIZE, k2_0, k3_0);
rv = AES_Encrypt(aes_context, newKey, &tmpLen, AES_BLOCK_SIZE,
newKey, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
goto fail;
}
keyValue = newKey;
AES_DestroyContext(aes_context, PR_TRUE);
}
/* the length of the key in keyValue is known to be AES_BLOCK_SIZE,
* either because it was on input, or it was shorter and extended, or
* because it was mac'd down using aes_xcbc_prf.
*/
aes_context = AES_CreateContext(keyValue, iv_zero,
NSS_AES, PR_TRUE, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
if (aes_context == NULL) {
goto fail;
}
rv = AES_Encrypt(aes_context, k1, &tmpLen, AES_BLOCK_SIZE,
k1data, sizeof(k1data));
if (rv != SECSuccess) {
goto fail;
}
rv = AES_Encrypt(aes_context, k2, &tmpLen, AES_BLOCK_SIZE,
k2data, sizeof(k2data));
if (rv != SECSuccess) {
goto fail;
}
rv = AES_Encrypt(aes_context, k3, &tmpLen, AES_BLOCK_SIZE,
k3data, sizeof(k3data));
if (rv != SECSuccess) {
goto fail;
}
AES_DestroyContext(aes_context, PR_TRUE);
PORT_Memset(newKey, 0, AES_BLOCK_SIZE);
return CKR_OK;
fail:
crv = sftk_MapCryptError(PORT_GetError());
if (aes_context) {
AES_DestroyContext(aes_context, PR_TRUE);
}
PORT_Memset(k1, 0, AES_BLOCK_SIZE);
PORT_Memset(k2, 0, AES_BLOCK_SIZE);
PORT_Memset(k3, 0, AES_BLOCK_SIZE);
PORT_Memset(newKey, 0, AES_BLOCK_SIZE);
return crv;
}
/* encode the final pad block of aes xcbc, padBuf is modified */
CK_RV
sftk_xcbc_mac_pad(unsigned char *padBuf, unsigned int bufLen,
unsigned int blockSize, const unsigned char *k2,
const unsigned char *k3)
{
unsigned int i;
if (bufLen == blockSize) {
for (i = 0; i < blockSize; i++) {
padBuf[i] ^= k2[i];
}
} else {
padBuf[bufLen++] = 0x80;
for (i = bufLen; i < blockSize; i++) {
padBuf[i] = 0x00;
}
for (i = 0; i < blockSize; i++) {
padBuf[i] ^= k3[i];
}
}
return CKR_OK;
}
/* Map the mechanism to the underlying hash. If the type is not a hash
* or HMAC, return HASH_AlgNULL. This can happen legitimately if
* we are doing AES XCBC */
static HASH_HashType
sftk_map_hmac_to_hash(CK_MECHANISM_TYPE type)
{
switch (type) {
case CKM_SHA_1_HMAC:
case CKM_SHA_1:
return HASH_AlgSHA1;
case CKM_MD5_HMAC:
case CKM_MD5:
return HASH_AlgMD5;
case CKM_MD2_HMAC:
case CKM_MD2:
return HASH_AlgMD2;
case CKM_SHA224_HMAC:
case CKM_SHA224:
return HASH_AlgSHA224;
case CKM_SHA256_HMAC:
case CKM_SHA256:
return HASH_AlgSHA256;
case CKM_SHA384_HMAC:
case CKM_SHA384:
return HASH_AlgSHA384;
case CKM_SHA512_HMAC:
case CKM_SHA512:
return HASH_AlgSHA512;
}
return HASH_AlgNULL;
}
/*
* Generally setup the context based on the mechanism.
* If the mech is HMAC, context->hashObj should be set
* Otherwise it is assumed to be AES XCBC. prf_setup
* checks these assumptions and will return an error
* if they are not met. NOTE: this function does not allocate
* anything, so there is no requirement to free context after
* prf_setup like there is if you call prf_init.
*/
static CK_RV
prf_setup(prfContext *context, CK_MECHANISM_TYPE mech)
{
context->hashType = sftk_map_hmac_to_hash(mech);
context->hashObj = NULL;
context->hmac = NULL;
context->aes = NULL;
if (context->hashType != HASH_AlgNULL) {
context->hashObj = HASH_GetRawHashObject(context->hashType);
if (context->hashObj == NULL) {
return CKR_GENERAL_ERROR;
}
return CKR_OK;
} else if (mech == CKM_AES_XCBC_MAC) {
return CKR_OK;
}
return CKR_MECHANISM_PARAM_INVALID;
}
/* return the underlying prf length for this context. This will
* function once the context is setup */
static CK_RV
prf_length(prfContext *context)
{
if (context->hashObj) {
return context->hashObj->length;
}
return AES_BLOCK_SIZE; /* AES */
}
/* set up the key for the prf. prf_update or prf_final should not be called if
* prf_init has not been called first. Once prf_init returns hmac and
* aes contexts should set and valid.
*/
static CK_RV
prf_init(prfContext *context, const unsigned char *keyValue,
unsigned int keyLen)
{
CK_RV crv;
context->hmac = NULL;
if (context->hashObj) {
context->hmac = HMAC_Create(context->hashObj,
keyValue, keyLen, PR_FALSE);
if (context->hmac == NULL) {
return sftk_MapCryptError(PORT_GetError());
}
HMAC_Begin(context->hmac);
} else {
crv = sftk_aes_xcbc_get_keys(keyValue, keyLen, context->k1,
context->k2, context->k3);
if (crv != CKR_OK)
return crv;
context->nextChar = 0;
context->aes = AES_CreateContext(context->k1, iv_zero, NSS_AES_CBC,
PR_TRUE, sizeof(context->k1), AES_BLOCK_SIZE);
if (context->aes == NULL) {
crv = sftk_MapCryptError(PORT_GetError());
PORT_Memset(context->k1, 0, sizeof(context->k1));
PORT_Memset(context->k2, 0, sizeof(context->k2));
PORT_Memset(context->k3, 0, sizeof(context->k2));
return crv;
}
}
return CKR_OK;
}
/*
* process input to the prf
*/
static CK_RV
prf_update(prfContext *context, const unsigned char *buf, unsigned int len)
{
unsigned int tmpLen;
SECStatus rv;
if (context->hmac) {
HMAC_Update(context->hmac, buf, len);
} else {
/* AES MAC XCBC*/
/* We must keep the last block back so that it can be processed in
* final. This is why we only check that nextChar + len > blocksize,
* rather than checking that nextChar + len >= blocksize */
while (context->nextChar + len > AES_BLOCK_SIZE) {
if (context->nextChar != 0) {
/* first handle fill in any partial blocks in the buffer */
unsigned int left = AES_BLOCK_SIZE - context->nextChar;
/* note: left can be zero */
PORT_Memcpy(context->padBuf + context->nextChar, buf, left);
/* NOTE: AES MAC XCBC xors the data with the previous block
* We don't do that step here because our AES_Encrypt mode
* is CBC, which does the xor automatically */
rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen,
sizeof(context->macBuf), context->padBuf,
sizeof(context->padBuf));
if (rv != SECSuccess) {
return sftk_MapCryptError(PORT_GetError());
}
context->nextChar = 0;
len -= left;
buf += left;
} else {
/* optimization. if we have complete blocks to write out
* (and will still have leftover blocks for padbuf in the end).
* we can mac directly out of our buffer without first copying
* them to padBuf */
rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen,
sizeof(context->macBuf), buf, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
return sftk_MapCryptError(PORT_GetError());
}
len -= AES_BLOCK_SIZE;
buf += AES_BLOCK_SIZE;
}
}
PORT_Memcpy(context->padBuf + context->nextChar, buf, len);
context->nextChar += len;
}
return CKR_OK;
}
/*
* free the data associated with the prf. Clear any possible CSPs
* This can safely be called on any context after prf_setup. It can
* also be called an an already freed context.
* A free context can be reused by calling prf_init again without
* the need to call prf_setup.
*/
static void
prf_free(prfContext *context)
{
if (context->hmac) {
HMAC_Destroy(context->hmac, PR_TRUE);
context->hmac = NULL;
}
if (context->aes) {
PORT_Memset(context->k1, 0, sizeof(context->k1));
PORT_Memset(context->k2, 0, sizeof(context->k2));
PORT_Memset(context->k3, 0, sizeof(context->k2));
PORT_Memset(context->padBuf, 0, sizeof(context->padBuf));
PORT_Memset(context->macBuf, 0, sizeof(context->macBuf));
AES_DestroyContext(context->aes, PR_TRUE);
context->aes = NULL;
}
}
/*
* extract the final prf value. On success, this has the side effect of
* also freeing the context data and clearing the keys
*/
static CK_RV
prf_final(prfContext *context, unsigned char *buf, unsigned int len)
{
unsigned int tmpLen;
SECStatus rv;
if (context->hmac) {
unsigned int outLen;
HMAC_Finish(context->hmac, buf, &outLen, len);
if (outLen != len) {
return CKR_GENERAL_ERROR;
}
} else {
/* prf_update had guarrenteed that the last full block is still in
* the padBuf if the input data is a multiple of the blocksize. This
* allows sftk_xcbc_mac_pad to process that pad buf accordingly */
CK_RV crv = sftk_xcbc_mac_pad(context->padBuf, context->nextChar,
AES_BLOCK_SIZE, context->k2, context->k3);
if (crv != CKR_OK) {
return crv;
}
rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen,
sizeof(context->macBuf), context->padBuf, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
return sftk_MapCryptError(PORT_GetError());
}
PORT_Memcpy(buf, context->macBuf, len);
}
prf_free(context);
return CKR_OK;
}
/*
* There are four flavors of ike prf functions here.
* ike_prf is used in both ikeV1 and ikeV2 to generate
* an initial key that all the other keys are generated with.
*
* These functions are called from NSC_DeriveKey with the inKey value
* already looked up, and it expects the CKA_VALUE for outKey to be set.
*
* Depending on usage it returns either:
* 1. prf(Ni|Nr, inKey); (bDataAsKey=TRUE, bRekey=FALSE)
* 2. prf(inKey, Ni|Nr); (bDataAsKkey=FALSE, bRekey=FALSE)
* 3. prf(inKey, newKey | Ni | Nr); (bDataAsKey=FALSE, bRekey=TRUE)
* The resulting output key is always the length of the underlying prf
* (as returned by prf_length()).
* The combination of bDataAsKey=TRUE and bRekey=TRUE is not allowed
*
* Case 1 is used in
* a. ikev2 (rfc5996) inKey is called g^ir, the output is called SKEYSEED
* b. ikev1 (rfc2409) inKey is called g^ir, the output is called SKEYID
* Case 2 is used in ikev1 (rfc2409) inkey is called pre-shared-key, output
* is called SKEYID
* Case 3 is used in ikev2 (rfc5996) rekey case, inKey is SK_d, newKey is
* g^ir (new), the output is called SKEYSEED
*/
CK_RV
sftk_ike_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey,
const CK_NSS_IKE_PRF_DERIVE_PARAMS *params, SFTKObject *outKey)
{
SFTKAttribute *newKeyValue = NULL;
SFTKObject *newKeyObj = NULL;
unsigned char outKeyData[HASH_LENGTH_MAX];
unsigned char *newInKey = NULL;
unsigned int newInKeySize = 0;
unsigned int macSize;
CK_RV crv = CKR_OK;
prfContext context;
crv = prf_setup(&context, params->prfMechanism);
if (crv != CKR_OK) {
return crv;
}
macSize = prf_length(&context);
if ((params->bDataAsKey) && (params->bRekey)) {
return CKR_ARGUMENTS_BAD;
}
if (params->bRekey) {
/* lookup the value of new key from the session and key handle */
SFTKSession *session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
return CKR_SESSION_HANDLE_INVALID;
}
newKeyObj = sftk_ObjectFromHandle(params->hNewKey, session);
sftk_FreeSession(session);
if (newKeyObj == NULL) {
return CKR_KEY_HANDLE_INVALID;
}
newKeyValue = sftk_FindAttribute(newKeyObj, CKA_VALUE);
if (newKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
}
if (params->bDataAsKey) {
/* The key is Ni || Np, so we need to concatenate them together first */
newInKeySize = params->ulNiLen + params->ulNrLen;
newInKey = PORT_Alloc(newInKeySize);
if (newInKey == NULL) {
crv = CKR_HOST_MEMORY;
goto fail;
}
PORT_Memcpy(newInKey, params->pNi, params->ulNiLen);
PORT_Memcpy(newInKey + params->ulNiLen, params->pNr, params->ulNrLen);
crv = prf_init(&context, newInKey, newInKeySize);
if (crv != CKR_OK) {
goto fail;
}
/* key as the data */
crv = prf_update(&context, inKey->attrib.pValue,
inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
} else {
crv = prf_init(&context, inKey->attrib.pValue,
inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
if (newKeyValue) {
crv = prf_update(&context, newKeyValue->attrib.pValue,
newKeyValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
}
crv = prf_update(&context, params->pNi, params->ulNiLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, params->pNr, params->ulNrLen);
if (crv != CKR_OK) {
goto fail;
}
}
crv = prf_final(&context, outKeyData, macSize);
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, macSize);
fail:
if (newInKey) {
PORT_ZFree(newInKey, newInKeySize);
}
if (newKeyValue) {
sftk_FreeAttribute(newKeyValue);
}
if (newKeyObj) {
sftk_FreeObject(newKeyObj);
}
PORT_Memset(outKeyData, 0, macSize);
prf_free(&context);
return crv;
}
/*
* The second flavor of ike prf is ike1_prf.
*
* It is used by ikeV1 to generate the various session keys used in the
* connection. It uses the initial key, an optional previous key, and a one byte
* key number to generate a unique key for each of the various session
* functions (encryption, decryption, mac). These keys expect a key size
* (as they may vary in length based on usage). If no length is provided,
* it will default to the length of the prf.
*
* This function returns either:
* prf(inKey, gxyKey || CKYi || CKYr || key_number)
* or
* prf(inKey, prevkey || gxyKey || CKYi || CKYr || key_number)
* depending on the stats of bHasPrevKey
*
* This is defined in rfc2409. For each of the following keys.
* inKey is SKEYID, gxyKey is g^xy
* for outKey = SKEYID_d, bHasPrevKey = false, key_number = 0
* for outKey = SKEYID_a, prevKey= SKEYID_d, key_number = 1
* for outKey = SKEYID_e, prevKey= SKEYID_a, key_number = 2
*/
CK_RV
sftk_ike1_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey,
const CK_NSS_IKE1_PRF_DERIVE_PARAMS *params, SFTKObject *outKey,
unsigned int keySize)
{
SFTKAttribute *gxyKeyValue = NULL;
SFTKObject *gxyKeyObj = NULL;
SFTKAttribute *prevKeyValue = NULL;
SFTKObject *prevKeyObj = NULL;
SFTKSession *session;
unsigned char outKeyData[HASH_LENGTH_MAX];
unsigned int macSize;
CK_RV crv;
prfContext context;
crv = prf_setup(&context, params->prfMechanism);
if (crv != CKR_OK) {
return crv;
}
macSize = prf_length(&context);
if (keySize > macSize) {
return CKR_KEY_SIZE_RANGE;
}
if (keySize == 0) {
keySize = macSize;
}
/* lookup the two keys from their passed in handles */
session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
return CKR_SESSION_HANDLE_INVALID;
}
gxyKeyObj = sftk_ObjectFromHandle(params->hKeygxy, session);
if (params->bHasPrevKey) {
prevKeyObj = sftk_ObjectFromHandle(params->hPrevKey, session);
}
sftk_FreeSession(session);
if ((gxyKeyObj == NULL) || ((params->bHasPrevKey) &&
(prevKeyObj == NULL))) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
gxyKeyValue = sftk_FindAttribute(gxyKeyObj, CKA_VALUE);
if (gxyKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
if (prevKeyObj) {
prevKeyValue = sftk_FindAttribute(prevKeyObj, CKA_VALUE);
if (prevKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
}
/* outKey = prf(inKey, [prevKey|] gxyKey | CKYi | CKYr | keyNumber) */
crv = prf_init(&context, inKey->attrib.pValue, inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
if (prevKeyValue) {
crv = prf_update(&context, prevKeyValue->attrib.pValue,
prevKeyValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
}
crv = prf_update(&context, gxyKeyValue->attrib.pValue,
gxyKeyValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, params->pCKYi, params->ulCKYiLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, params->pCKYr, params->ulCKYrLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, ¶ms->keyNumber, 1);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, outKeyData, macSize);
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize);
fail:
if (gxyKeyValue) {
sftk_FreeAttribute(gxyKeyValue);
}
if (prevKeyValue) {
sftk_FreeAttribute(prevKeyValue);
}
if (gxyKeyObj) {
sftk_FreeObject(gxyKeyObj);
}
if (prevKeyObj) {
sftk_FreeObject(prevKeyObj);
}
PORT_Memset(outKeyData, 0, macSize);
prf_free(&context);
return crv;
}
/*
* The third flavor of ike prf is ike1_appendix_b.
*
* It is used by ikeV1 to generate longer key material from skeyid_e.
* Unlike ike1_prf, if no length is provided, this function
* will generate a KEY_RANGE_ERROR.
*
* This function returns (from rfc2409 appendix b):
* Ka = K1 | K2 | K3 | K4 |... Kn
* where:
* K1 = prf(K, [gxyKey]|[extraData]) or prf(K, 0) if gxyKey and extraData
* ar not present.
* K2 = prf(K, K1|[gxyKey]|[extraData])
* K3 = prf(K, K2|[gxyKey]|[extraData])
* K4 = prf(K, K3|[gxyKey]|[extraData])
* .
* Kn = prf(K, K(n-1)|[gxyKey]|[extraData])
* K = inKey
*/
CK_RV
sftk_ike1_appendix_b_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey,
const CK_NSS_IKE1_APP_B_PRF_DERIVE_PARAMS *params,
SFTKObject *outKey, unsigned int keySize)
{
SFTKAttribute *gxyKeyValue = NULL;
SFTKObject *gxyKeyObj = NULL;
unsigned char *outKeyData = NULL;
unsigned char *thisKey = NULL;
unsigned char *lastKey = NULL;
unsigned int macSize;
unsigned int outKeySize;
unsigned int genKeySize;
PRBool quickMode = PR_FALSE;
CK_RV crv;
prfContext context;
if ((params->ulExtraDataLen != 0) && (params->pExtraData == NULL)) {
return CKR_ARGUMENTS_BAD;
}
crv = prf_setup(&context, params->prfMechanism);
if (crv != CKR_OK) {
return crv;
}
if (params->bHasKeygxy) {
SFTKSession *session;
session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
return CKR_SESSION_HANDLE_INVALID;
}
gxyKeyObj = sftk_ObjectFromHandle(params->hKeygxy, session);
sftk_FreeSession(session);
if (gxyKeyObj == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
gxyKeyValue = sftk_FindAttribute(gxyKeyObj, CKA_VALUE);
if (gxyKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
quickMode = PR_TRUE;
}
if (params->ulExtraDataLen != 0) {
quickMode = PR_TRUE;
}
macSize = prf_length(&context);
if (keySize == 0) {
keySize = macSize;
}
/* In appendix B, we are just expanding or contracting a single key.
* If the input key is less than or equal to the the key size we want,
* just subset the original key. In quick mode we are actually getting
* new keys (salted with our seed data and our gxy key), so we want to
* run through our algorithm */
if ((!quickMode) && (keySize <= inKey->attrib.ulValueLen)) {
return sftk_forceAttribute(outKey, CKA_VALUE,
inKey->attrib.pValue, keySize);
}
outKeySize = PR_ROUNDUP(keySize, macSize);
outKeyData = PORT_Alloc(outKeySize);
if (outKeyData == NULL) {
crv = CKR_HOST_MEMORY;
goto fail;
}
/*
* this loop generates on block of the prf, basically
* kn = prf(key, Kn-1 | [Keygxy] | [ExtraData])
* Kn is thisKey, Kn-1 is lastKey
* key is inKey
*/
thisKey = outKeyData;
for (genKeySize = 0; genKeySize < keySize; genKeySize += macSize) {
PRBool hashedData = PR_FALSE;
crv = prf_init(&context, inKey->attrib.pValue, inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
if (lastKey != NULL) {
crv = prf_update(&context, lastKey, macSize);
if (crv != CKR_OK) {
goto fail;
}
hashedData = PR_TRUE;
}
if (gxyKeyValue != NULL) {
crv = prf_update(&context, gxyKeyValue->attrib.pValue,
gxyKeyValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
hashedData = PR_TRUE;
}
if (params->ulExtraDataLen != 0) {
crv = prf_update(&context, params->pExtraData, params->ulExtraDataLen);
if (crv != CKR_OK) {
goto fail;
}
hashedData = PR_TRUE;
}
/* if we haven't hashed anything yet, hash a zero */
if (hashedData == PR_FALSE) {
const unsigned char zero = 0;
crv = prf_update(&context, &zero, 1);
if (crv != CKR_OK) {
goto fail;
}
}
crv = prf_final(&context, thisKey, macSize);
if (crv != CKR_OK) {
goto fail;
}
lastKey = thisKey;
thisKey += macSize;
}
crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize);
fail:
if (gxyKeyValue) {
sftk_FreeAttribute(gxyKeyValue);
}
if (gxyKeyObj) {
sftk_FreeObject(gxyKeyObj);
}
if (outKeyData) {
PORT_ZFree(outKeyData, outKeySize);
}
prf_free(&context);
return crv;
}
/*
* The final flavor of ike prf is ike_prf_plus
*
* It is used by ikeV2 to generate the various session keys used in the
* connection. It uses the initial key and a feedback version of the prf
* to generate sufficient bytes to cover all the session keys. The application
* will then use CK_EXTRACT_KEY_FROM_KEY to pull out the various subkeys.
* This function expects a key size to be set by the application to cover
* all the keys. Unlike ike1_prf, if no length is provided, this function
* will generate a KEY_RANGE_ERROR
*
* This function returns (from rfc5996):
* prfplus = T1 | T2 | T3 | T4 |... Tn
* where:
* T1 = prf(K, S | 0x01)
* T2 = prf(K, T1 | S | 0x02)
* T3 = prf(K, T3 | S | 0x03)
* T4 = prf(K, T4 | S | 0x04)
* .
* Tn = prf(K, T(n-1) | n)
* K = inKey, S = seedKey | seedData
*/
static CK_RV
sftk_ike_prf_plus_raw(CK_SESSION_HANDLE hSession,
const unsigned char *inKeyData, CK_ULONG inKeyLen,
const CK_NSS_IKE_PRF_PLUS_DERIVE_PARAMS *params,
unsigned char **outKeyDataPtr, unsigned int *outKeySizePtr,
unsigned int keySize)
{
SFTKAttribute *seedValue = NULL;
SFTKObject *seedKeyObj = NULL;
unsigned char *outKeyData = NULL;
unsigned int outKeySize;
unsigned char *thisKey;
unsigned char *lastKey = NULL;
unsigned char currentByte = 0;
unsigned int getKeySize;
unsigned int macSize;
CK_RV crv;
prfContext context;
if (keySize == 0) {
return CKR_KEY_SIZE_RANGE;
}
crv = prf_setup(&context, params->prfMechanism);
if (crv != CKR_OK) {
return crv;
}
/* pull in optional seedKey */
if (params->bHasSeedKey) {
SFTKSession *session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
return CKR_SESSION_HANDLE_INVALID;
}
seedKeyObj = sftk_ObjectFromHandle(params->hSeedKey, session);
sftk_FreeSession(session);
if (seedKeyObj == NULL) {
return CKR_KEY_HANDLE_INVALID;
}
seedValue = sftk_FindAttribute(seedKeyObj, CKA_VALUE);
if (seedValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
} else if (params->ulSeedDataLen == 0) {
crv = CKR_ARGUMENTS_BAD;
goto fail;
}
macSize = prf_length(&context);
outKeySize = PR_ROUNDUP(keySize, macSize);
outKeyData = PORT_Alloc(outKeySize);
if (outKeyData == NULL) {
crv = CKR_HOST_MEMORY;
goto fail;
}
/*
* this loop generates on block of the prf, basically
* Tn = prf(key, Tn-1 | S | n)
* Tn is thisKey, Tn-2 is lastKey, S is seedKey || seedData,
* key is inKey. currentByte = n-1 on entry.
*/
thisKey = outKeyData;
for (getKeySize = 0; getKeySize < keySize; getKeySize += macSize) {
/* if currentByte is 255, we'll overflow when we increment it below.
* This can only happen if keysize > 255*macSize. In that case
* the application has asked for too much key material, so return
* an error */
if (currentByte == 255) {
crv = CKR_KEY_SIZE_RANGE;
goto fail;
}
crv = prf_init(&context, inKeyData, inKeyLen);
if (crv != CKR_OK) {
goto fail;
}
if (lastKey) {
crv = prf_update(&context, lastKey, macSize);
if (crv != CKR_OK) {
goto fail;
}
}
/* prf the key first */
if (seedValue) {
crv = prf_update(&context, seedValue->attrib.pValue,
seedValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
}
/* then prf the data */
if (params->ulSeedDataLen != 0) {
crv = prf_update(&context, params->pSeedData,
params->ulSeedDataLen);
if (crv != CKR_OK) {
goto fail;
}
}
currentByte++;
crv = prf_update(&context, ¤tByte, 1);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, thisKey, macSize);
if (crv != CKR_OK) {
goto fail;
}
lastKey = thisKey;
thisKey += macSize;
}
*outKeyDataPtr = outKeyData;
*outKeySizePtr = outKeySize;
outKeyData = NULL; /* don't free it here, our caller will free it */
fail:
if (outKeyData) {
PORT_ZFree(outKeyData, outKeySize);
}
if (seedValue) {
sftk_FreeAttribute(seedValue);
}
if (seedKeyObj) {
sftk_FreeObject(seedKeyObj);
}
prf_free(&context);
return crv;
}
/*
* ike prf + with code to deliever results tosoftoken objects.
*/
CK_RV
sftk_ike_prf_plus(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey,
const CK_NSS_IKE_PRF_PLUS_DERIVE_PARAMS *params, SFTKObject *outKey,
unsigned int keySize)
{
unsigned char *outKeyData = NULL;
unsigned int outKeySize;
CK_RV crv;
crv = sftk_ike_prf_plus_raw(hSession, inKey->attrib.pValue,
inKey->attrib.ulValueLen, params,
&outKeyData, &outKeySize, keySize);
if (crv != CKR_OK) {
return crv;
}
crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize);
PORT_ZFree(outKeyData, outKeySize);
return crv;
}
/* sftk_aes_xcbc_new_keys:
*
* aes xcbc creates 3 new keys from the input key. The first key will be the
* base key of the underlying cbc. The sign code hooks directly into encrypt
* so we'll have to create a full PKCS #11 key with handle for that key. The
* caller needs to delete the key when it's through setting up the context.
*
* The other two keys will be stored in the sign context until we need them
* at the end.
*/
CK_RV
sftk_aes_xcbc_new_keys(CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hKey, CK_OBJECT_HANDLE_PTR phKey,
unsigned char *k2, unsigned char *k3)
{
SFTKObject *key = NULL;
SFTKSession *session = NULL;
SFTKObject *inKeyObj = NULL;
SFTKAttribute *inKeyValue = NULL;
CK_KEY_TYPE key_type = CKK_AES;
CK_OBJECT_CLASS objclass = CKO_SECRET_KEY;
CK_BBOOL ck_true = CK_TRUE;
CK_RV crv = CKR_OK;
SFTKSlot *slot = sftk_SlotFromSessionHandle(hSession);
unsigned char buf[AES_BLOCK_SIZE];
if (!slot) {
return CKR_SESSION_HANDLE_INVALID;
}
/* get the session */
session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
crv = CKR_SESSION_HANDLE_INVALID;
goto fail;
}
inKeyObj = sftk_ObjectFromHandle(hKey, session);
if (inKeyObj == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
inKeyValue = sftk_FindAttribute(inKeyObj, CKA_VALUE);
if (inKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
crv = sftk_aes_xcbc_get_keys(inKeyValue->attrib.pValue,
inKeyValue->attrib.ulValueLen, buf, k2, k3);
if (crv != CKR_OK) {
goto fail;
}
/*
* now lets create an object to hang the attributes off of
*/
key = sftk_NewObject(slot); /* fill in the handle later */
if (key == NULL) {
crv = CKR_HOST_MEMORY;
goto fail;
}
/* make sure we don't have any class, key_type, or value fields */
sftk_DeleteAttributeType(key, CKA_CLASS);
sftk_DeleteAttributeType(key, CKA_KEY_TYPE);
sftk_DeleteAttributeType(key, CKA_VALUE);
sftk_DeleteAttributeType(key, CKA_SIGN);
/* Add the class, key_type, and value */
crv = sftk_AddAttributeType(key, CKA_CLASS, &objclass, sizeof(CK_OBJECT_CLASS));
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_AddAttributeType(key, CKA_KEY_TYPE, &key_type, sizeof(CK_KEY_TYPE));
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_AddAttributeType(key, CKA_SIGN, &ck_true, sizeof(CK_BBOOL));
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_AddAttributeType(key, CKA_VALUE, buf, AES_BLOCK_SIZE);
if (crv != CKR_OK) {
goto fail;
}
/*
* finish filling in the key and link it with our global system.
*/
crv = sftk_handleObject(key, session);
if (crv != CKR_OK) {
goto fail;
}
*phKey = key->handle;
fail:
if (session) {
sftk_FreeSession(session);
}
if (inKeyValue) {
sftk_FreeAttribute(inKeyValue);
}
if (inKeyObj) {
sftk_FreeObject(inKeyObj);
}
if (key) {
sftk_FreeObject(key);
}
/* clear our CSPs */
PORT_Memset(buf, 0, sizeof(buf));
if (crv != CKR_OK) {
PORT_Memset(k2, 0, AES_BLOCK_SIZE);
PORT_Memset(k3, 0, AES_BLOCK_SIZE);
}
return crv;
}
/*
* Helper function that tests a single prf test vector
*/
static SECStatus
prf_test(CK_MECHANISM_TYPE mech,
const unsigned char *inKey, unsigned int inKeyLen,
const unsigned char *plainText, unsigned int plainTextLen,
const unsigned char *expectedResult, unsigned int expectedResultLen)
{
PRUint8 ike_computed_mac[HASH_LENGTH_MAX];
prfContext context;
unsigned int macSize;
CK_RV crv;
crv = prf_setup(&context, mech);
if (crv != CKR_OK) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
macSize = prf_length(&context);
crv = prf_init(&context, inKey, inKeyLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, plainText, plainTextLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, ike_computed_mac, macSize);
if (crv != CKR_OK) {
goto fail;
}
if (macSize != expectedResultLen) {
goto fail;
}
if (PORT_Memcmp(expectedResult, ike_computed_mac, macSize) != 0) {
goto fail;
}
/* only do the alignment if the plaintext is long enough */
if (plainTextLen <= macSize) {
return SECSuccess;
}
prf_free(&context);
/* do it again, but this time tweak with the alignment */
crv = prf_init(&context, inKey, inKeyLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, plainText, 1);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, &plainText[1], macSize);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, &plainText[1 + macSize], plainTextLen - (macSize + 1));
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, ike_computed_mac, macSize);
if (crv != CKR_OK) {
goto fail;
}
if (PORT_Memcmp(expectedResult, ike_computed_mac, macSize) != 0) {
goto fail;
}
prf_free(&context);
return SECSuccess;
fail:
prf_free(&context);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
/*
* FIPS Power up Self Tests for IKE. This is in this function so it
* can access the private prf_ functions here. It's called out of fipstest.c
*/
SECStatus
sftk_fips_IKE_PowerUpSelfTests(void)
{
/* PRF known test vectors */
static const PRUint8 ike_xcbc_known_key[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
static const PRUint8 ike_xcbc_known_plain_text[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
static const PRUint8 ike_xcbc_known_mac[] = {
0xd2, 0xa2, 0x46, 0xfa, 0x34, 0x9b, 0x68, 0xa7,
0x99, 0x98, 0xa4, 0x39, 0x4f, 0xf7, 0xa2, 0x63
};
/* test 2 uses the same key as test 1 */
static const PRUint8 ike_xcbc_known_plain_text_2[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13
};
static const PRUint8 ike_xcbc_known_mac_2[] = {
0x47, 0xf5, 0x1b, 0x45, 0x64, 0x96, 0x62, 0x15,
0xb8, 0x98, 0x5c, 0x63, 0x05, 0x5e, 0xd3, 0x08
};
static const PRUint8 ike_xcbc_known_key_3[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09
};
/* test 3 uses the same plaintest as test 2 */
static const PRUint8 ike_xcbc_known_mac_3[] = {
0x0f, 0xa0, 0x87, 0xaf, 0x7d, 0x86, 0x6e, 0x76,
0x53, 0x43, 0x4e, 0x60, 0x2f, 0xdd, 0xe8, 0x35
};
static const PRUint8 ike_xcbc_known_key_4[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0xed, 0xcb
};
/* test 4 uses the same plaintest as test 2 */
static const PRUint8 ike_xcbc_known_mac_4[] = {
0x8c, 0xd3, 0xc9, 0x3a, 0xe5, 0x98, 0xa9, 0x80,
0x30, 0x06, 0xff, 0xb6, 0x7c, 0x40, 0xe9, 0xe4
};
static const PRUint8 ike_sha1_known_key[] = {
0x59, 0x98, 0x2b, 0x5b, 0xa5, 0x7e, 0x62, 0xc0,
0x46, 0x0d, 0xef, 0xc7, 0x1e, 0x18, 0x64, 0x63
};
static const PRUint8 ike_sha1_known_plain_text[] = {
0x1c, 0x07, 0x32, 0x1a, 0x9a, 0x7e, 0x41, 0xcd,
0x88, 0x0c, 0xa3, 0x7a, 0xdb, 0x10, 0xc7, 0x3b,
0xf0, 0x0e, 0x7a, 0xe3, 0xcf, 0xc6, 0xfd, 0x8b,
0x51, 0xbc, 0xe2, 0xb9, 0x90, 0xe6, 0xf2, 0x01
};
static const PRUint8 ike_sha1_known_mac[] = {
0x0c, 0x2a, 0xf3, 0x42, 0x97, 0x15, 0x62, 0x1d,
0x2a, 0xad, 0xc9, 0x94, 0x5a, 0x90, 0x26, 0xfa,
0xc7, 0x91, 0xe2, 0x4b
};
static const PRUint8 ike_sha256_known_key[] = {
0x9d, 0xa2, 0xd5, 0x8f, 0x57, 0xf0, 0x39, 0xf9,
0x20, 0x4e, 0x0d, 0xd0, 0xef, 0x04, 0xf3, 0x72
};
static const PRUint8 ike_sha256_known_plain_text[] = {
0x33, 0xf1, 0x7a, 0xfc, 0xb6, 0x13, 0x4c, 0xbf,
0x1c, 0xab, 0x59, 0x87, 0x7d, 0x42, 0xdb, 0x35,
0x82, 0x22, 0x6e, 0xff, 0x74, 0xdd, 0x37, 0xeb,
0x8b, 0x75, 0xe6, 0x75, 0x64, 0x5f, 0xc1, 0x69
};
static const PRUint8 ike_sha256_known_mac[] = {
0x80, 0x4b, 0x4a, 0x1e, 0x0e, 0xc5, 0x93, 0xcf,
0xb6, 0xe4, 0x54, 0x52, 0x41, 0x49, 0x39, 0x6d,
0xe2, 0x34, 0xd0, 0xda, 0xe2, 0x9f, 0x34, 0xa8,
0xfd, 0xb5, 0xf9, 0xaf, 0xe7, 0x6e, 0xa6, 0x52
};
static const PRUint8 ike_sha384_known_key[] = {
0xce, 0xc8, 0x9d, 0x84, 0x5a, 0xdd, 0x83, 0xef,
0xce, 0xbd, 0x43, 0xab, 0x71, 0xd1, 0x7d, 0xb9
};
static const PRUint8 ike_sha384_known_plain_text[] = {
0x17, 0x24, 0xdb, 0xd8, 0x93, 0x52, 0x37, 0x64,
0xbf, 0xef, 0x8c, 0x6f, 0xa9, 0x27, 0x85, 0x6f,
0xcc, 0xfb, 0x77, 0xae, 0x25, 0x43, 0x58, 0xcc,
0xe2, 0x9c, 0x27, 0x69, 0xa3, 0x29, 0x15, 0xc1
};
static const PRUint8 ike_sha384_known_mac[] = {
0x6e, 0x45, 0x14, 0x61, 0x0b, 0xf8, 0x2d, 0x0a,
0xb7, 0xbf, 0x02, 0x60, 0x09, 0x6f, 0x61, 0x46,
0xa1, 0x53, 0xc7, 0x12, 0x07, 0x1a, 0xbb, 0x63,
0x3c, 0xed, 0x81, 0x3c, 0x57, 0x21, 0x56, 0xc7,
0x83, 0xe3, 0x68, 0x74, 0xa6, 0x5a, 0x64, 0x69,
0x0c, 0xa7, 0x01, 0xd4, 0x0d, 0x56, 0xea, 0x18
};
static const PRUint8 ike_sha512_known_key[] = {
0xac, 0xad, 0xc6, 0x31, 0x4a, 0x69, 0xcf, 0xcd,
0x4e, 0x4a, 0xd1, 0x77, 0x18, 0xfe, 0xa7, 0xce
};
static const PRUint8 ike_sha512_known_plain_text[] = {
0xb1, 0x5a, 0x9c, 0xfc, 0xe8, 0xc8, 0xd7, 0xea,
0xb8, 0x79, 0xd6, 0x24, 0x30, 0x29, 0xd4, 0x01,
0x88, 0xd3, 0xb7, 0x40, 0x87, 0x5a, 0x6a, 0xc6,
0x2f, 0x56, 0xca, 0xc4, 0x37, 0x7e, 0x2e, 0xdd
};
static const PRUint8 ike_sha512_known_mac[] = {
0xf0, 0x5a, 0xa0, 0x36, 0xdf, 0xce, 0x45, 0xa5,
0x58, 0xd4, 0x04, 0x18, 0xde, 0xa9, 0x80, 0x96,
0xe5, 0x19, 0xbc, 0x78, 0x41, 0xe3, 0xdb, 0x3d,
0xd9, 0x36, 0x58, 0xd1, 0x18, 0xc3, 0xe8, 0x3b,
0x50, 0x2f, 0x39, 0x8e, 0xcb, 0x13, 0x61, 0xec,
0x77, 0xd3, 0x8a, 0x88, 0x55, 0xef, 0xff, 0x40,
0x7f, 0x6f, 0x77, 0x2e, 0x5d, 0x65, 0xb5, 0x8e,
0xb1, 0x13, 0x40, 0x96, 0xe8, 0x47, 0x8d, 0x2b
};
static const PRUint8 ike_known_sha256_prf_plus[] = {
0xe6, 0xf1, 0x9b, 0x4a, 0x02, 0xe9, 0x73, 0x72,
0x93, 0x9f, 0xdb, 0x46, 0x1d, 0xb1, 0x49, 0xcb,
0x53, 0x08, 0x98, 0x3d, 0x41, 0x36, 0xfa, 0x8b,
0x47, 0x04, 0x49, 0x11, 0x0d, 0x6e, 0x96, 0x1d,
0xab, 0xbe, 0x94, 0x28, 0xa0, 0xb7, 0x9c, 0xa3,
0x29, 0xe1, 0x40, 0xf8, 0xf8, 0x88, 0xb9, 0xb5,
0x40, 0xd4, 0x54, 0x4d, 0x25, 0xab, 0x94, 0xd4,
0x98, 0xd8, 0x00, 0xbf, 0x6f, 0xef, 0xe8, 0x39
};
SECStatus rv;
CK_RV crv;
unsigned char *outKeyData = NULL;
unsigned int outKeySize;
CK_NSS_IKE_PRF_PLUS_DERIVE_PARAMS ike_params;
rv = prf_test(CKM_AES_XCBC_MAC,
ike_xcbc_known_key, sizeof(ike_xcbc_known_key),
ike_xcbc_known_plain_text, sizeof(ike_xcbc_known_plain_text),
ike_xcbc_known_mac, sizeof(ike_xcbc_known_mac));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_AES_XCBC_MAC,
ike_xcbc_known_key, sizeof(ike_xcbc_known_key),
ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2),
ike_xcbc_known_mac_2, sizeof(ike_xcbc_known_mac_2));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_AES_XCBC_MAC,
ike_xcbc_known_key_3, sizeof(ike_xcbc_known_key_3),
ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2),
ike_xcbc_known_mac_3, sizeof(ike_xcbc_known_mac_3));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_AES_XCBC_MAC,
ike_xcbc_known_key_4, sizeof(ike_xcbc_known_key_4),
ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2),
ike_xcbc_known_mac_4, sizeof(ike_xcbc_known_mac_4));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_SHA_1_HMAC,
ike_sha1_known_key, sizeof(ike_sha1_known_key),
ike_sha1_known_plain_text, sizeof(ike_sha1_known_plain_text),
ike_sha1_known_mac, sizeof(ike_sha1_known_mac));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_SHA256_HMAC,
ike_sha256_known_key, sizeof(ike_sha256_known_key),
ike_sha256_known_plain_text,
sizeof(ike_sha256_known_plain_text),
ike_sha256_known_mac, sizeof(ike_sha256_known_mac));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_SHA384_HMAC,
ike_sha384_known_key, sizeof(ike_sha384_known_key),
ike_sha384_known_plain_text,
sizeof(ike_sha384_known_plain_text),
ike_sha384_known_mac, sizeof(ike_sha384_known_mac));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_SHA512_HMAC,
ike_sha512_known_key, sizeof(ike_sha512_known_key),
ike_sha512_known_plain_text,
sizeof(ike_sha512_known_plain_text),
ike_sha512_known_mac, sizeof(ike_sha512_known_mac));
ike_params.prfMechanism = CKM_SHA256_HMAC;
ike_params.bHasSeedKey = PR_FALSE;
ike_params.hSeedKey = CK_INVALID_HANDLE;
ike_params.pSeedData = (CK_BYTE_PTR)ike_sha256_known_plain_text;
ike_params.ulSeedDataLen = sizeof(ike_sha256_known_plain_text);
crv = sftk_ike_prf_plus_raw(CK_INVALID_HANDLE, ike_sha256_known_key,
sizeof(ike_sha256_known_key), &ike_params,
&outKeyData, &outKeySize, 64);
if ((crv != CKR_OK) ||
(outKeySize != sizeof(ike_known_sha256_prf_plus)) ||
(PORT_Memcmp(outKeyData, ike_known_sha256_prf_plus,
sizeof(ike_known_sha256_prf_plus)) != 0)) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
PORT_ZFree(outKeyData, outKeySize);
return rv;
}