Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "plarena.h"
#include "seccomon.h"
#include "secitem.h"
#include "secport.h"
#include "hasht.h"
#include "pkcs11t.h"
#include "blapi.h"
#include "hasht.h"
#include "secasn1.h"
#include "secder.h"
#include "lowpbe.h"
#include "secoid.h"
#include "alghmac.h"
#include "softoken.h"
#include "secerr.h"
#include "pkcs11i.h"
SEC_ASN1_MKSUB(SECOID_AlgorithmIDTemplate)
/* how much a crypto encrypt/decryption may expand a buffer */
#define MAX_CRYPTO_EXPANSION 64
/* template for PKCS 5 PBE Parameter. This template has been expanded
* based upon the additions in PKCS 12. This should eventually be moved
* if RSA updates PKCS 5.
*/
static const SEC_ASN1Template NSSPKCS5PBEParameterTemplate[] = {
{ SEC_ASN1_SEQUENCE,
0, NULL, sizeof(NSSPKCS5PBEParameter) },
{ SEC_ASN1_OCTET_STRING,
offsetof(NSSPKCS5PBEParameter, salt) },
{ SEC_ASN1_INTEGER,
offsetof(NSSPKCS5PBEParameter, iteration) },
{ 0 }
};
static const SEC_ASN1Template NSSPKCS5PKCS12V2PBEParameterTemplate[] = {
{ SEC_ASN1_SEQUENCE, 0, NULL, sizeof(NSSPKCS5PBEParameter) },
{ SEC_ASN1_OCTET_STRING, offsetof(NSSPKCS5PBEParameter, salt) },
{ SEC_ASN1_INTEGER, offsetof(NSSPKCS5PBEParameter, iteration) },
{ 0 }
};
/* PKCS5 v2 */
struct nsspkcs5V2PBEParameterStr {
SECAlgorithmID keyParams; /* parameters of the key generation */
SECAlgorithmID algParams; /* parameters for the encryption or mac op */
};
typedef struct nsspkcs5V2PBEParameterStr nsspkcs5V2PBEParameter;
static const SEC_ASN1Template NSSPKCS5V2PBES2ParameterTemplate[] = {
{ SEC_ASN1_SEQUENCE, 0, NULL, sizeof(nsspkcs5V2PBEParameter) },
{ SEC_ASN1_INLINE | SEC_ASN1_XTRN,
offsetof(nsspkcs5V2PBEParameter, keyParams),
SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) },
{ SEC_ASN1_INLINE | SEC_ASN1_XTRN,
offsetof(nsspkcs5V2PBEParameter, algParams),
SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) },
{ 0 }
};
static const SEC_ASN1Template NSSPKCS5V2PBEParameterTemplate[] = {
{ SEC_ASN1_SEQUENCE, 0, NULL, sizeof(NSSPKCS5PBEParameter) },
/* this is really a choice, but since we don't understand any other
* choice, just inline it. */
{ SEC_ASN1_OCTET_STRING, offsetof(NSSPKCS5PBEParameter, salt) },
{ SEC_ASN1_INTEGER, offsetof(NSSPKCS5PBEParameter, iteration) },
{ SEC_ASN1_INTEGER, offsetof(NSSPKCS5PBEParameter, keyLength) },
{ SEC_ASN1_INLINE | SEC_ASN1_XTRN,
offsetof(NSSPKCS5PBEParameter, prfAlg),
SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) },
{ 0 }
};
SECStatus
nsspkcs5_HashBuf(const SECHashObject *hashObj, unsigned char *dest,
unsigned char *src, int len)
{
void *ctx;
unsigned int retLen;
ctx = hashObj->create();
if (ctx == NULL) {
return SECFailure;
}
hashObj->begin(ctx);
hashObj->update(ctx, src, len);
hashObj->end(ctx, dest, &retLen, hashObj->length);
hashObj->destroy(ctx, PR_TRUE);
return SECSuccess;
}
/* generate bits using any hash
*/
static SECItem *
nsspkcs5_PBKDF1(const SECHashObject *hashObj, SECItem *salt, SECItem *pwd,
int iter, PRBool faulty3DES)
{
SECItem *hash = NULL, *pre_hash = NULL;
SECStatus rv = SECFailure;
if ((salt == NULL) || (pwd == NULL) || (iter < 0)) {
return NULL;
}
hash = (SECItem *)PORT_ZAlloc(sizeof(SECItem));
pre_hash = (SECItem *)PORT_ZAlloc(sizeof(SECItem));
if ((hash != NULL) && (pre_hash != NULL)) {
int i, ph_len;
ph_len = hashObj->length;
if ((salt->len + pwd->len) > hashObj->length) {
ph_len = salt->len + pwd->len;
}
rv = SECFailure;
/* allocate buffers */
hash->len = hashObj->length;
hash->data = (unsigned char *)PORT_ZAlloc(hash->len);
pre_hash->data = (unsigned char *)PORT_ZAlloc(ph_len);
/* in pbeSHA1TripleDESCBC there was an allocation error that made
* it into the caller. We do not want to propagate those errors
* further, so we are doing it correctly, but reading the old method.
*/
if (faulty3DES) {
pre_hash->len = ph_len;
} else {
pre_hash->len = salt->len + pwd->len;
}
/* preform hash */
if ((hash->data != NULL) && (pre_hash->data != NULL)) {
rv = SECSuccess;
/* check for 0 length password */
if (pwd->len > 0) {
PORT_Memcpy(pre_hash->data, pwd->data, pwd->len);
}
if (salt->len > 0) {
PORT_Memcpy((pre_hash->data + pwd->len), salt->data, salt->len);
}
for (i = 0; ((i < iter) && (rv == SECSuccess)); i++) {
rv = nsspkcs5_HashBuf(hashObj, hash->data,
pre_hash->data, pre_hash->len);
if (rv != SECFailure) {
pre_hash->len = hashObj->length;
PORT_Memcpy(pre_hash->data, hash->data, hashObj->length);
}
}
}
}
if (pre_hash != NULL) {
SECITEM_ZfreeItem(pre_hash, PR_TRUE);
}
if ((rv != SECSuccess) && (hash != NULL)) {
SECITEM_ZfreeItem(hash, PR_TRUE);
hash = NULL;
}
return hash;
}
/* this bit generation routine is described in PKCS 12 and the proposed
* extensions to PKCS 5. an initial hash is generated following the
* instructions laid out in PKCS 5. If the number of bits generated is
* insufficient, then the method discussed in the proposed extensions to
* PKCS 5 in PKCS 12 are used. This extension makes use of the HMAC
* function. And the P_Hash function from the TLS standard.
*/
static SECItem *
nsspkcs5_PFXPBE(const SECHashObject *hashObj, NSSPKCS5PBEParameter *pbe_param,
SECItem *init_hash, unsigned int bytes_needed)
{
SECItem *ret_bits = NULL;
int hash_size = 0;
unsigned int i;
unsigned int hash_iter;
unsigned int dig_len;
SECStatus rv = SECFailure;
unsigned char *state = NULL;
unsigned int state_len;
HMACContext *cx = NULL;
hash_size = hashObj->length;
hash_iter = (bytes_needed + (unsigned int)hash_size - 1) / hash_size;
/* allocate return buffer */
ret_bits = (SECItem *)PORT_ZAlloc(sizeof(SECItem));
if (ret_bits == NULL)
return NULL;
ret_bits->data = (unsigned char *)PORT_ZAlloc((hash_iter * hash_size) + 1);
ret_bits->len = (hash_iter * hash_size);
if (ret_bits->data == NULL) {
PORT_Free(ret_bits);
return NULL;
}
/* allocate intermediate hash buffer. 8 is for the 8 bytes of
* data which are added based on iteration number
*/
if ((unsigned int)hash_size > pbe_param->salt.len) {
state_len = hash_size;
} else {
state_len = pbe_param->salt.len;
}
state = (unsigned char *)PORT_ZAlloc(state_len);
if (state == NULL) {
rv = SECFailure;
goto loser;
}
if (pbe_param->salt.len > 0) {
PORT_Memcpy(state, pbe_param->salt.data, pbe_param->salt.len);
}
cx = HMAC_Create(hashObj, init_hash->data, init_hash->len, PR_TRUE);
if (cx == NULL) {
rv = SECFailure;
goto loser;
}
for (i = 0; i < hash_iter; i++) {
/* generate output bits */
HMAC_Begin(cx);
HMAC_Update(cx, state, state_len);
HMAC_Update(cx, pbe_param->salt.data, pbe_param->salt.len);
rv = HMAC_Finish(cx, ret_bits->data + (i * hash_size),
&dig_len, hash_size);
if (rv != SECSuccess)
goto loser;
PORT_Assert((unsigned int)hash_size == dig_len);
/* generate new state */
HMAC_Begin(cx);
HMAC_Update(cx, state, state_len);
rv = HMAC_Finish(cx, state, &state_len, state_len);
if (rv != SECSuccess)
goto loser;
PORT_Assert(state_len == dig_len);
}
loser:
if (state != NULL)
PORT_ZFree(state, state_len);
HMAC_Destroy(cx, PR_TRUE);
if (rv != SECSuccess) {
SECITEM_ZfreeItem(ret_bits, PR_TRUE);
ret_bits = NULL;
}
return ret_bits;
}
/* generate bits for the key and iv determination. if enough bits
* are not generated using PKCS 5, then we need to generate more bits
* based on the extension proposed in PKCS 12
*/
static SECItem *
nsspkcs5_PBKDF1Extended(const SECHashObject *hashObj,
NSSPKCS5PBEParameter *pbe_param, SECItem *pwitem, PRBool faulty3DES)
{
SECItem *hash = NULL;
SECItem *newHash = NULL;
int bytes_needed;
int bytes_available;
bytes_needed = pbe_param->ivLen + pbe_param->keyLen;
bytes_available = hashObj->length;
hash = nsspkcs5_PBKDF1(hashObj, &pbe_param->salt, pwitem,
pbe_param->iter, faulty3DES);
if (hash == NULL) {
return NULL;
}
if (bytes_needed <= bytes_available) {
return hash;
}
newHash = nsspkcs5_PFXPBE(hashObj, pbe_param, hash, bytes_needed);
if (hash != newHash)
SECITEM_ZfreeItem(hash, PR_TRUE);
return newHash;
}
/*
* PBDKDF2 is PKCS #5 v2.0 it's currently not used by NSS
*/
static void
do_xor(unsigned char *dest, unsigned char *src, int len)
{
/* use byt xor, not all platforms are happy about inaligned
* integer fetches */
while (len--) {
*dest = *dest ^ *src;
dest++;
src++;
}
}
static SECStatus
nsspkcs5_PBKDF2_F(const SECHashObject *hashobj, SECItem *pwitem, SECItem *salt,
int iterations, unsigned int i, unsigned char *T)
{
int j;
HMACContext *cx = NULL;
unsigned int hLen = hashobj->length;
SECStatus rv = SECFailure;
unsigned char *last = NULL;
unsigned int lastLength = salt->len + 4;
unsigned int lastBufLength;
cx = HMAC_Create(hashobj, pwitem->data, pwitem->len, PR_FALSE);
if (cx == NULL) {
goto loser;
}
PORT_Memset(T, 0, hLen);
lastBufLength = PR_MAX(lastLength, hLen);
last = PORT_Alloc(lastBufLength);
if (last == NULL) {
goto loser;
}
PORT_Memcpy(last, salt->data, salt->len);
last[salt->len] = (i >> 24) & 0xff;
last[salt->len + 1] = (i >> 16) & 0xff;
last[salt->len + 2] = (i >> 8) & 0xff;
last[salt->len + 3] = i & 0xff;
/* NOTE: we need at least one iteration to return success! */
for (j = 0; j < iterations; j++) {
HMAC_Begin(cx);
HMAC_Update(cx, last, lastLength);
rv = HMAC_Finish(cx, last, &lastLength, hLen);
if (rv != SECSuccess) {
break;
}
do_xor(T, last, hLen);
}
loser:
if (cx) {
HMAC_Destroy(cx, PR_TRUE);
}
if (last) {
PORT_ZFree(last, lastBufLength);
}
return rv;
}
static SECItem *
nsspkcs5_PBKDF2(const SECHashObject *hashobj, NSSPKCS5PBEParameter *pbe_param,
SECItem *pwitem)
{
int iterations = pbe_param->iter;
int bytesNeeded = pbe_param->keyLen;
unsigned int dkLen = bytesNeeded;
unsigned int hLen = hashobj->length;
unsigned int nblocks = (dkLen + hLen - 1) / hLen;
unsigned int i;
unsigned char *rp;
unsigned char *T = NULL;
SECItem *result = NULL;
SECItem *salt = &pbe_param->salt;
SECStatus rv = SECFailure;
result = SECITEM_AllocItem(NULL, NULL, nblocks * hLen);
if (result == NULL) {
return NULL;
}
T = PORT_Alloc(hLen);
if (T == NULL) {
goto loser;
}
for (i = 1, rp = result->data; i <= nblocks; i++, rp += hLen) {
rv = nsspkcs5_PBKDF2_F(hashobj, pwitem, salt, iterations, i, T);
if (rv != SECSuccess) {
break;
}
PORT_Memcpy(rp, T, hLen);
}
loser:
if (T) {
PORT_ZFree(T, hLen);
}
if (rv != SECSuccess) {
SECITEM_ZfreeItem(result, PR_TRUE);
result = NULL;
} else {
result->len = dkLen;
}
return result;
}
#define NSSPBE_ROUNDUP(x, y) ((((x) + ((y)-1)) / (y)) * (y))
#define NSSPBE_MIN(x, y) ((x) < (y) ? (x) : (y))
/*
* This is the extended PBE function defined by the final PKCS #12 spec.
*/
static SECItem *
nsspkcs5_PKCS12PBE(const SECHashObject *hashObject,
NSSPKCS5PBEParameter *pbe_param, SECItem *pwitem,
PBEBitGenID bitGenPurpose, unsigned int bytesNeeded)
{
PLArenaPool *arena = NULL;
unsigned int SLen, PLen;
unsigned int hashLength = hashObject->length;
unsigned char *S, *P;
SECItem *A = NULL, B, D, I;
SECItem *salt = &pbe_param->salt;
unsigned int c, i = 0;
unsigned int hashLen;
int iter;
unsigned char *iterBuf;
void *hash = NULL;
unsigned int bufferLength;
arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
if (!arena) {
return NULL;
}
/* how many hash object lengths are needed */
c = (bytesNeeded + (hashLength - 1)) / hashLength;
/* 64 if 0 < hashLength <= 32, 128 if 32 < hashLength <= 64 */
bufferLength = NSSPBE_ROUNDUP(hashLength * 2, 64);
/* initialize our buffers */
D.len = bufferLength;
/* B and D are the same length, use one alloc go get both */
D.data = (unsigned char *)PORT_ArenaZAlloc(arena, D.len * 2);
B.len = D.len;
B.data = D.data + D.len;
/* if all goes well, A will be returned, so don't use our temp arena */
A = SECITEM_AllocItem(NULL, NULL, c * hashLength);
if (A == NULL) {
goto loser;
}
SLen = NSSPBE_ROUNDUP(salt->len, bufferLength);
PLen = NSSPBE_ROUNDUP(pwitem->len, bufferLength);
I.len = SLen + PLen;
I.data = (unsigned char *)PORT_ArenaZAlloc(arena, I.len);
if (I.data == NULL) {
goto loser;
}
/* S & P are only used to initialize I */
S = I.data;
P = S + SLen;
PORT_Memset(D.data, (char)bitGenPurpose, D.len);
if (SLen) {
for (i = 0; i < SLen; i += salt->len) {
PORT_Memcpy(S + i, salt->data, NSSPBE_MIN(SLen - i, salt->len));
}
}
if (PLen) {
for (i = 0; i < PLen; i += pwitem->len) {
PORT_Memcpy(P + i, pwitem->data, NSSPBE_MIN(PLen - i, pwitem->len));
}
}
iterBuf = (unsigned char *)PORT_ArenaZAlloc(arena, hashLength);
if (iterBuf == NULL) {
goto loser;
}
hash = hashObject->create();
if (!hash) {
goto loser;
}
/* calculate the PBE now */
for (i = 0; i < c; i++) {
int Bidx; /* must be signed or the for loop won't terminate */
unsigned int k, j;
unsigned char *Ai = A->data + i * hashLength;
for (iter = 0; iter < pbe_param->iter; iter++) {
hashObject->begin(hash);
if (iter) {
hashObject->update(hash, iterBuf, hashLen);
} else {
hashObject->update(hash, D.data, D.len);
hashObject->update(hash, I.data, I.len);
}
hashObject->end(hash, iterBuf, &hashLen, hashObject->length);
if (hashLen != hashObject->length) {
break;
}
}
PORT_Memcpy(Ai, iterBuf, hashLength);
for (Bidx = 0; Bidx < (int)B.len; Bidx += hashLength) {
PORT_Memcpy(B.data + Bidx, iterBuf, NSSPBE_MIN(B.len - Bidx, hashLength));
}
k = I.len / B.len;
for (j = 0; j < k; j++) {
unsigned int q, carryBit;
unsigned char *Ij = I.data + j * B.len;
/* (Ij = Ij+B+1) */
for (Bidx = (B.len - 1), q = 1, carryBit = 0; Bidx >= 0; Bidx--, q = 0) {
q += (unsigned int)Ij[Bidx];
q += (unsigned int)B.data[Bidx];
q += carryBit;
carryBit = (q > 0xff);
Ij[Bidx] = (unsigned char)(q & 0xff);
}
}
}
loser:
if (hash) {
hashObject->destroy(hash, PR_TRUE);
}
if (arena) {
PORT_FreeArena(arena, PR_TRUE);
}
if (A) {
/* if i != c, then we didn't complete the loop above and must of failed
* somwhere along the way */
if (i != c) {
SECITEM_ZfreeItem(A, PR_TRUE);
A = NULL;
} else {
A->len = bytesNeeded;
}
}
return A;
}
struct KDFCacheItemStr {
SECItem *hash;
SECItem *salt;
SECItem *pwItem;
HASH_HashType hashType;
int iterations;
int keyLen;
};
typedef struct KDFCacheItemStr KDFCacheItem;
/* Bug 1606992 - Cache the hash result for the common case that we're
* asked to repeatedly compute the key for the same password item,
* hash, iterations and salt. */
#define KDF2_CACHE_COUNT 150
static struct {
PZLock *lock;
struct {
KDFCacheItem common;
int ivLen;
PRBool faulty3DES;
} cacheKDF1;
struct {
KDFCacheItem common[KDF2_CACHE_COUNT];
int next;
} cacheKDF2;
} PBECache;
void
sftk_PBELockInit(void)
{
if (!PBECache.lock) {
PBECache.lock = PZ_NewLock(nssIPBECacheLock);
}
}
static void
sftk_clearPBECommonCacheItemsLocked(KDFCacheItem *item)
{
if (item->hash) {
SECITEM_ZfreeItem(item->hash, PR_TRUE);
item->hash = NULL;
}
if (item->salt) {
SECITEM_ZfreeItem(item->salt, PR_TRUE);
item->salt = NULL;
}
if (item->pwItem) {
SECITEM_ZfreeItem(item->pwItem, PR_TRUE);
item->pwItem = NULL;
}
}
static void
sftk_setPBECommonCacheItemsKDFLocked(KDFCacheItem *cacheItem,
const SECItem *hash,
const NSSPKCS5PBEParameter *pbe_param,
const SECItem *pwItem)
{
cacheItem->hash = SECITEM_DupItem(hash);
cacheItem->hashType = pbe_param->hashType;
cacheItem->iterations = pbe_param->iter;
cacheItem->keyLen = pbe_param->keyLen;
cacheItem->salt = SECITEM_DupItem(&pbe_param->salt);
cacheItem->pwItem = SECITEM_DupItem(pwItem);
}
static void
sftk_setPBECacheKDF2(const SECItem *hash,
const NSSPKCS5PBEParameter *pbe_param,
const SECItem *pwItem)
{
PZ_Lock(PBECache.lock);
KDFCacheItem *next = &PBECache.cacheKDF2.common[PBECache.cacheKDF2.next];
sftk_clearPBECommonCacheItemsLocked(next);
sftk_setPBECommonCacheItemsKDFLocked(next, hash, pbe_param, pwItem);
PBECache.cacheKDF2.next++;
if (PBECache.cacheKDF2.next >= KDF2_CACHE_COUNT) {
PBECache.cacheKDF2.next = 0;
}
PZ_Unlock(PBECache.lock);
}
static void
sftk_setPBECacheKDF1(const SECItem *hash,
const NSSPKCS5PBEParameter *pbe_param,
const SECItem *pwItem,
PRBool faulty3DES)
{
PZ_Lock(PBECache.lock);
sftk_clearPBECommonCacheItemsLocked(&PBECache.cacheKDF1.common);
sftk_setPBECommonCacheItemsKDFLocked(&PBECache.cacheKDF1.common,
hash, pbe_param, pwItem);
PBECache.cacheKDF1.faulty3DES = faulty3DES;
PBECache.cacheKDF1.ivLen = pbe_param->ivLen;
PZ_Unlock(PBECache.lock);
}
static PRBool
sftk_comparePBECommonCacheItemLocked(const KDFCacheItem *cacheItem,
const NSSPKCS5PBEParameter *pbe_param,
const SECItem *pwItem)
{
return (cacheItem->hash &&
cacheItem->salt &&
cacheItem->pwItem &&
pbe_param->hashType == cacheItem->hashType &&
pbe_param->iter == cacheItem->iterations &&
pbe_param->keyLen == cacheItem->keyLen &&
SECITEM_ItemsAreEqual(&pbe_param->salt, cacheItem->salt) &&
SECITEM_ItemsAreEqual(pwItem, cacheItem->pwItem));
}
static SECItem *
sftk_getPBECacheKDF2(const NSSPKCS5PBEParameter *pbe_param,
const SECItem *pwItem)
{
SECItem *result = NULL;
int i;
PZ_Lock(PBECache.lock);
for (i = 0; i < KDF2_CACHE_COUNT; i++) {
const KDFCacheItem *cacheItem = &PBECache.cacheKDF2.common[i];
if (sftk_comparePBECommonCacheItemLocked(cacheItem,
pbe_param, pwItem)) {
result = SECITEM_DupItem(cacheItem->hash);
break;
}
}
PZ_Unlock(PBECache.lock);
return result;
}
static SECItem *
sftk_getPBECacheKDF1(const NSSPKCS5PBEParameter *pbe_param,
const SECItem *pwItem,
PRBool faulty3DES)
{
SECItem *result = NULL;
const KDFCacheItem *cacheItem = &PBECache.cacheKDF1.common;
PZ_Lock(PBECache.lock);
if (sftk_comparePBECommonCacheItemLocked(cacheItem, pbe_param, pwItem) &&
PBECache.cacheKDF1.faulty3DES == faulty3DES &&
PBECache.cacheKDF1.ivLen == pbe_param->ivLen) {
result = SECITEM_DupItem(cacheItem->hash);
}
PZ_Unlock(PBECache.lock);
return result;
}
void
sftk_PBELockShutdown(void)
{
int i;
if (PBECache.lock) {
PZ_DestroyLock(PBECache.lock);
PBECache.lock = 0;
}
sftk_clearPBECommonCacheItemsLocked(&PBECache.cacheKDF1.common);
for (i = 0; i < KDF2_CACHE_COUNT; i++) {
sftk_clearPBECommonCacheItemsLocked(&PBECache.cacheKDF2.common[i]);
}
PBECache.cacheKDF2.next = 0;
}
/*
* generate key as per PKCS 5
*/
SECItem *
nsspkcs5_ComputeKeyAndIV(NSSPKCS5PBEParameter *pbe_param, SECItem *pwitem,
SECItem *iv, PRBool faulty3DES)
{
SECItem *hash = NULL, *key = NULL;
const SECHashObject *hashObj;
PRBool getIV = PR_FALSE;
if ((pbe_param == NULL) || (pwitem == NULL)) {
return NULL;
}
key = SECITEM_AllocItem(NULL, NULL, pbe_param->keyLen);
if (key == NULL) {
return NULL;
}
if (iv && (pbe_param->ivLen) && (iv->data == NULL)) {
getIV = PR_TRUE;
iv->data = (unsigned char *)PORT_Alloc(pbe_param->ivLen);
if (iv->data == NULL) {
goto loser;
}
iv->len = pbe_param->ivLen;
}
hashObj = HASH_GetRawHashObject(pbe_param->hashType);
switch (pbe_param->pbeType) {
case NSSPKCS5_PBKDF1:
hash = sftk_getPBECacheKDF1(pbe_param, pwitem, faulty3DES);
if (!hash) {
hash = nsspkcs5_PBKDF1Extended(hashObj, pbe_param, pwitem, faulty3DES);
sftk_setPBECacheKDF1(hash, pbe_param, pwitem, faulty3DES);
}
if (hash == NULL) {
goto loser;
}
PORT_Assert(hash->len >= key->len + (getIV ? iv->len : 0));
if (getIV) {
PORT_Memcpy(iv->data, hash->data + (hash->len - iv->len), iv->len);
}
break;
case NSSPKCS5_PBKDF2:
hash = sftk_getPBECacheKDF2(pbe_param, pwitem);
if (!hash) {
hash = nsspkcs5_PBKDF2(hashObj, pbe_param, pwitem);
sftk_setPBECacheKDF2(hash, pbe_param, pwitem);
}
if (getIV) {
PORT_Memcpy(iv->data, pbe_param->ivData, iv->len);
}
break;
case NSSPKCS5_PKCS12_V2:
if (getIV) {
hash = nsspkcs5_PKCS12PBE(hashObj, pbe_param, pwitem,
pbeBitGenCipherIV, iv->len);
if (hash == NULL) {
goto loser;
}
PORT_Memcpy(iv->data, hash->data, iv->len);
SECITEM_ZfreeItem(hash, PR_TRUE);
hash = NULL;
}
hash = nsspkcs5_PKCS12PBE(hashObj, pbe_param, pwitem,
pbe_param->keyID, key->len);
default:
break;
}
if (hash == NULL) {
goto loser;
}
PORT_Memcpy(key->data, hash->data, key->len);
SECITEM_ZfreeItem(hash, PR_TRUE);
return key;
loser:
if (getIV && iv->data) {
PORT_ZFree(iv->data, iv->len);
iv->data = NULL;
}
SECITEM_ZfreeItem(key, PR_TRUE);
return NULL;
}
#define MAX_IV_LENGTH 64
/* get a random IV into the parameters */
static SECStatus
nsspkcs5_SetIVParam(NSSPKCS5PBEParameter *pbe_param, int ivLen)
{
SECStatus rv;
SECItem derIV;
SECItem iv;
SECItem *dummy = NULL;
unsigned char ivData[MAX_IV_LENGTH];
PORT_Assert(ivLen <= MAX_IV_LENGTH);
/* Because of a bug in the decode section, the IV's not are expected
* to be der encoded, but still need to parse as if they were der data.
* because we want to be compatible with existing versions of nss that
* have that bug, create an IV that looks like der data. That still
* leaves 14 bytes of entropy in the IV */
rv = RNG_GenerateGlobalRandomBytes(ivData, ivLen - 2);
if (rv != SECSuccess) {
return SECFailure;
}
derIV.data = NULL;
derIV.len = 0;
iv.data = ivData;
iv.len = ivLen - 2;
dummy = SEC_ASN1EncodeItem(pbe_param->poolp, &derIV, &iv,
SEC_ASN1_GET(SEC_OctetStringTemplate));
if (dummy == NULL) {
return SECFailure;
}
pbe_param->ivData = derIV.data;
pbe_param->ivLen = derIV.len;
PORT_Assert(pbe_param->ivLen == ivLen);
return SECSuccess;
}
static SECStatus
nsspkcs5_FillInParam(SECOidTag algorithm, HASH_HashType hashType,
NSSPKCS5PBEParameter *pbe_param)
{
PRBool skipType = PR_FALSE;
SECStatus rv;
pbe_param->keyLen = 5;
pbe_param->ivLen = 8;
pbe_param->hashType = hashType;
pbe_param->pbeType = NSSPKCS5_PBKDF1;
pbe_param->encAlg = SEC_OID_RC2_CBC;
pbe_param->is2KeyDES = PR_FALSE;
switch (algorithm) {
/* DES3 Algorithms */
case SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_2KEY_TRIPLE_DES_CBC:
pbe_param->is2KeyDES = PR_TRUE;
pbe_param->pbeType = NSSPKCS5_PKCS12_V2;
pbe_param->keyLen = 16;
pbe_param->encAlg = SEC_OID_DES_EDE3_CBC;
break;
case SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_3KEY_TRIPLE_DES_CBC:
pbe_param->pbeType = NSSPKCS5_PKCS12_V2;
pbe_param->keyLen = 24;
pbe_param->encAlg = SEC_OID_DES_EDE3_CBC;
break;
case SEC_OID_PKCS12_PBE_WITH_SHA1_AND_TRIPLE_DES_CBC:
pbe_param->keyLen = 24;
pbe_param->encAlg = SEC_OID_DES_EDE3_CBC;
break;
/* DES Algorithms */
case SEC_OID_PKCS5_PBE_WITH_MD2_AND_DES_CBC:
pbe_param->hashType = HASH_AlgMD2;
goto finish_des;
case SEC_OID_PKCS5_PBE_WITH_MD5_AND_DES_CBC:
pbe_param->hashType = HASH_AlgMD5;
/* fall through */
case SEC_OID_PKCS5_PBE_WITH_SHA1_AND_DES_CBC:
finish_des:
pbe_param->keyLen = 8;
pbe_param->encAlg = SEC_OID_DES_CBC;
break;
#ifndef NSS_DISABLE_DEPRECATED_RC2
/* RC2 Algorithms */
case SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_128_BIT_RC2_CBC:
pbe_param->keyLen = 16;
/* fall through */
case SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_40_BIT_RC2_CBC:
pbe_param->pbeType = NSSPKCS5_PKCS12_V2;
break;
case SEC_OID_PKCS12_PBE_WITH_SHA1_AND_128_BIT_RC2_CBC:
pbe_param->keyLen = 16;
/* fall through */
case SEC_OID_PKCS12_PBE_WITH_SHA1_AND_40_BIT_RC2_CBC:
break;
#endif
/* RC4 algorithms */
case SEC_OID_PKCS12_PBE_WITH_SHA1_AND_128_BIT_RC4:
skipType = PR_TRUE;
/* fall through */
case SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_128_BIT_RC4:
pbe_param->keyLen = 16;
/* fall through */
case SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_40_BIT_RC4:
if (!skipType) {
pbe_param->pbeType = NSSPKCS5_PKCS12_V2;
}
/* fall through */
case SEC_OID_PKCS12_PBE_WITH_SHA1_AND_40_BIT_RC4:
pbe_param->ivLen = 0;
pbe_param->encAlg = SEC_OID_RC4;
break;
case SEC_OID_PKCS5_PBKDF2:
case SEC_OID_PKCS5_PBES2:
case SEC_OID_PKCS5_PBMAC1:
/* everything else will be filled in by the template */
pbe_param->ivLen = 0;
pbe_param->pbeType = NSSPKCS5_PBKDF2;
pbe_param->encAlg = SEC_OID_PKCS5_PBKDF2;
pbe_param->keyLen = 0; /* needs to be set by caller after return */
break;
/* AES uses PBKDF2 */
case SEC_OID_AES_128_CBC:
rv = nsspkcs5_SetIVParam(pbe_param, 16);
if (rv != SECSuccess) {
return rv;
}
pbe_param->ivLen = 16;
pbe_param->pbeType = NSSPKCS5_PBKDF2;
pbe_param->encAlg = algorithm;
pbe_param->keyLen = 128 / 8;
break;
case SEC_OID_AES_192_CBC:
rv = nsspkcs5_SetIVParam(pbe_param, 16);
if (rv != SECSuccess) {
return rv;
}
pbe_param->pbeType = NSSPKCS5_PBKDF2;
pbe_param->encAlg = algorithm;
pbe_param->keyLen = 192 / 8;
break;
case SEC_OID_AES_256_CBC:
rv = nsspkcs5_SetIVParam(pbe_param, 16);
if (rv != SECSuccess) {
return rv;
}
pbe_param->pbeType = NSSPKCS5_PBKDF2;
pbe_param->encAlg = algorithm;
pbe_param->keyLen = 256 / 8;
break;
case SEC_OID_AES_128_KEY_WRAP:
pbe_param->ivLen = 0;
pbe_param->pbeType = NSSPKCS5_PBKDF2;
pbe_param->encAlg = algorithm;
pbe_param->keyLen = 128 / 8;
break;
case SEC_OID_AES_192_KEY_WRAP:
pbe_param->ivLen = 0;
pbe_param->pbeType = NSSPKCS5_PBKDF2;
pbe_param->encAlg = algorithm;
pbe_param->keyLen = 192 / 8;
break;
case SEC_OID_AES_256_KEY_WRAP:
pbe_param->ivLen = 0;
pbe_param->pbeType = NSSPKCS5_PBKDF2;
pbe_param->encAlg = algorithm;
pbe_param->keyLen = 256 / 8;
break;
default:
return SECFailure;
}
if (pbe_param->pbeType == NSSPKCS5_PBKDF2) {
SECOidTag prfAlg = HASH_HMACOidFromHash(pbe_param->hashType);
if (prfAlg == SEC_OID_UNKNOWN) {
return SECFailure;
}
rv = SECOID_SetAlgorithmID(pbe_param->poolp, &pbe_param->prfAlg,
prfAlg, NULL);
if (rv != SECSuccess) {
return rv;
}
}
return SECSuccess;
}
/* decode the algid and generate a PKCS 5 parameter from it
*/
NSSPKCS5PBEParameter *
nsspkcs5_NewParam(SECOidTag alg, HASH_HashType hashType, SECItem *salt,
int iterationCount)
{
PLArenaPool *arena = NULL;
NSSPKCS5PBEParameter *pbe_param = NULL;
SECStatus rv = SECFailure;
arena = PORT_NewArena(SEC_ASN1_DEFAULT_ARENA_SIZE);
if (arena == NULL)
return NULL;
/* allocate memory for the parameter */
pbe_param = (NSSPKCS5PBEParameter *)PORT_ArenaZAlloc(arena,
sizeof(NSSPKCS5PBEParameter));
if (pbe_param == NULL) {
goto loser;
}
pbe_param->poolp = arena;
rv = nsspkcs5_FillInParam(alg, hashType, pbe_param);
if (rv != SECSuccess) {
goto loser;
}
pbe_param->iter = iterationCount;
if (salt) {
rv = SECITEM_CopyItem(arena, &pbe_param->salt, salt);
}
/* default key gen */
pbe_param->keyID = pbeBitGenCipherKey;
loser:
if (rv != SECSuccess) {
PORT_FreeArena(arena, PR_TRUE);
pbe_param = NULL;
}
return pbe_param;
}
/*
* find the hash type needed to implement a specific HMAC.
* OID definitions are from pkcs 5 v2.0 and 2.1
*/
HASH_HashType
HASH_FromHMACOid(SECOidTag hmac)
{
switch (hmac) {
case SEC_OID_HMAC_SHA1:
return HASH_AlgSHA1;
case SEC_OID_HMAC_SHA256:
return HASH_AlgSHA256;
case SEC_OID_HMAC_SHA384:
return HASH_AlgSHA384;
case SEC_OID_HMAC_SHA512:
return HASH_AlgSHA512;
case SEC_OID_HMAC_SHA224:
default:
break;
}
return HASH_AlgNULL;
}
SECOidTag
HASH_HMACOidFromHash(HASH_HashType hashType)
{
switch (hashType) {
case HASH_AlgSHA1:
return SEC_OID_HMAC_SHA1;
case HASH_AlgSHA256:
return SEC_OID_HMAC_SHA256;
case HASH_AlgSHA384:
return SEC_OID_HMAC_SHA384;
case HASH_AlgSHA512:
return SEC_OID_HMAC_SHA512;
case HASH_AlgSHA224:
return SEC_OID_HMAC_SHA224;
case HASH_AlgMD2:
case HASH_AlgMD5:
case HASH_AlgTOTAL:
default:
break;
}
return SEC_OID_UNKNOWN;
}
/* decode the algid and generate a PKCS 5 parameter from it
*/
NSSPKCS5PBEParameter *
nsspkcs5_AlgidToParam(SECAlgorithmID *algid)
{
NSSPKCS5PBEParameter *pbe_param = NULL;
nsspkcs5V2PBEParameter pbev2_param;
SECOidTag algorithm;
SECStatus rv = SECFailure;
if (algid == NULL) {
return NULL;
}
algorithm = SECOID_GetAlgorithmTag(algid);
if (algorithm == SEC_OID_UNKNOWN) {
goto loser;
}
pbe_param = nsspkcs5_NewParam(algorithm, HASH_AlgSHA1, NULL, 1);
if (pbe_param == NULL) {
goto loser;
}
/* decode parameter */
rv = SECFailure;
switch (pbe_param->pbeType) {
case NSSPKCS5_PBKDF1:
rv = SEC_ASN1DecodeItem(pbe_param->poolp, pbe_param,
NSSPKCS5PBEParameterTemplate, &algid->parameters);
break;
case NSSPKCS5_PKCS12_V2:
rv = SEC_ASN1DecodeItem(pbe_param->poolp, pbe_param,
NSSPKCS5PKCS12V2PBEParameterTemplate, &algid->parameters);
break;
case NSSPKCS5_PBKDF2:
PORT_Memset(&pbev2_param, 0, sizeof(pbev2_param));
/* just the PBE */
if (algorithm == SEC_OID_PKCS5_PBKDF2) {
rv = SEC_ASN1DecodeItem(pbe_param->poolp, pbe_param,
NSSPKCS5V2PBEParameterTemplate, &algid->parameters);
} else {
/* PBE data an others */
rv = SEC_ASN1DecodeItem(pbe_param->poolp, &pbev2_param,
NSSPKCS5V2PBES2ParameterTemplate, &algid->parameters);
if (rv != SECSuccess) {
break;
}
pbe_param->encAlg = SECOID_GetAlgorithmTag(&pbev2_param.algParams);
rv = SEC_ASN1DecodeItem(pbe_param->poolp, pbe_param,
NSSPKCS5V2PBEParameterTemplate,
&pbev2_param.keyParams.parameters);
if (rv != SECSuccess) {
break;
}
pbe_param->keyLen = DER_GetInteger(&pbe_param->keyLength);
}
/* we we are encrypting, save any iv's */
if (algorithm == SEC_OID_PKCS5_PBES2) {
pbe_param->ivLen = pbev2_param.algParams.parameters.len;
pbe_param->ivData = pbev2_param.algParams.parameters.data;
}
pbe_param->hashType =
HASH_FromHMACOid(SECOID_GetAlgorithmTag(&pbe_param->prfAlg));
if (pbe_param->hashType == HASH_AlgNULL) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
rv = SECFailure;
}
break;
}
loser:
PORT_Memset(&pbev2_param, 0, sizeof(pbev2_param));
if (rv == SECSuccess) {
pbe_param->iter = DER_GetInteger(&pbe_param->iteration);
} else {
nsspkcs5_DestroyPBEParameter(pbe_param);
pbe_param = NULL;
}
return pbe_param;
}
/* destroy a pbe parameter. it assumes that the parameter was
* generated using the appropriate create function and therefor
* contains an arena pool.
*/
void
nsspkcs5_DestroyPBEParameter(NSSPKCS5PBEParameter *pbe_param)
{
if (pbe_param != NULL) {
PORT_FreeArena(pbe_param->poolp, PR_TRUE);
}
}
/* crypto routines */
/* perform DES encryption and decryption. these routines are called
* by nsspkcs5_CipherData. In the case of an error, NULL is returned.
*/
static SECItem *
sec_pkcs5_des(SECItem *key, SECItem *iv, SECItem *src, PRBool triple_des,
PRBool encrypt)
{
SECItem *dest;
SECItem *dup_src;
CK_RV crv = CKR_DEVICE_ERROR;
int error;
SECStatus rv = SECFailure;
DESContext *ctxt;
unsigned int pad;
if ((src == NULL) || (key == NULL) || (iv == NULL)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
dup_src = SECITEM_DupItem(src);
if (dup_src == NULL) {
return NULL;
}
if (encrypt != PR_FALSE) {
void *dummy;
dummy = CBC_PadBuffer(NULL, dup_src->data,
dup_src->len, &dup_src->len, DES_BLOCK_SIZE);
if (dummy == NULL) {
SECITEM_ZfreeItem(dup_src, PR_TRUE);
return NULL;
}
dup_src->data = (unsigned char *)dummy;
}
dest = SECITEM_AllocItem(NULL, NULL, dup_src->len + MAX_CRYPTO_EXPANSION);
if (dest == NULL) {
goto loser;
}
ctxt = DES_CreateContext(key->data, iv->data,
(triple_des ? NSS_DES_EDE3_CBC : NSS_DES_CBC),
encrypt);
if (ctxt == NULL) {
goto loser;
}
rv = (encrypt ? DES_Encrypt : DES_Decrypt)(
ctxt, dest->data, &dest->len,
dest->len, dup_src->data, dup_src->len);
crv = (rv == SECSuccess) ? CKR_OK : CKR_DEVICE_ERROR;
error = PORT_GetError();
/* remove padding */
if ((encrypt == PR_FALSE) && (rv == SECSuccess)) {
crv = sftk_CheckCBCPadding(dest->data, dest->len, DES_BLOCK_SIZE, &pad);
dest->len = PORT_CT_SEL(sftk_CKRVToMask(crv), dest->len - pad, dest->len);
PORT_SetError(PORT_CT_SEL(sftk_CKRVToMask(crv), error, SEC_ERROR_BAD_PASSWORD));
}
DES_DestroyContext(ctxt, PR_TRUE);
loser:
if (crv != CKR_OK) {
if (dest != NULL) {
SECITEM_ZfreeItem(dest, PR_TRUE);
}
dest = NULL;
}
if (dup_src != NULL) {
SECITEM_ZfreeItem(dup_src, PR_TRUE);
}
return dest;
}
/* perform aes encryption/decryption if an error occurs, NULL is returned
*/
static SECItem *
sec_pkcs5_aes(SECItem *key, SECItem *iv, SECItem *src, PRBool triple_des,
PRBool encrypt)
{
SECItem *dest;
SECItem *dup_src;
CK_RV crv = CKR_DEVICE_ERROR;
int error;
SECStatus rv = SECFailure;
AESContext *ctxt;
unsigned int pad;
if ((src == NULL) || (key == NULL) || (iv == NULL)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
dup_src = SECITEM_DupItem(src);
if (dup_src == NULL) {
return NULL;
}
if (encrypt != PR_FALSE) {
void *dummy;
dummy = CBC_PadBuffer(NULL, dup_src->data,
dup_src->len, &dup_src->len, AES_BLOCK_SIZE);
if (dummy == NULL) {
SECITEM_ZfreeItem(dup_src, PR_TRUE);
return NULL;
}
dup_src->data = (unsigned char *)dummy;
}
dest = SECITEM_AllocItem(NULL, NULL, dup_src->len + MAX_CRYPTO_EXPANSION);
if (dest == NULL) {
goto loser;
}
ctxt = AES_CreateContext(key->data, iv->data, NSS_AES_CBC,
encrypt, key->len, AES_BLOCK_SIZE);
if (ctxt == NULL) {
goto loser;
}
rv = (encrypt ? AES_Encrypt : AES_Decrypt)(
ctxt, dest->data, &dest->len,
dest->len, dup_src->data, dup_src->len);
crv = (rv == SECSuccess) ? CKR_OK : CKR_DEVICE_ERROR;
error = PORT_GetError();
/* remove padding */
if ((encrypt == PR_FALSE) && (rv == SECSuccess)) {
crv = sftk_CheckCBCPadding(dest->data, dest->len, AES_BLOCK_SIZE, &pad);
dest->len = PORT_CT_SEL(sftk_CKRVToMask(crv), dest->len - pad, dest->len);
PORT_SetError(PORT_CT_SEL(sftk_CKRVToMask(crv), error, SEC_ERROR_BAD_PASSWORD));
}
AES_DestroyContext(ctxt, PR_TRUE);
loser:
if (crv != CKR_OK) {
if (dest != NULL) {
SECITEM_ZfreeItem(dest, PR_TRUE);
}
dest = NULL;
}
if (dup_src != NULL) {
SECITEM_ZfreeItem(dup_src, PR_TRUE);
}
return dest;
}
/* perform aes encryption/decryption if an error occurs, NULL is returned
*/
static SECItem *
sec_pkcs5_aes_key_wrap(SECItem *key, SECItem *iv, SECItem *src, PRBool triple_des,
PRBool encrypt)
{
SECItem *dest;
SECItem *dup_src;
CK_RV crv = CKR_DEVICE_ERROR;
int error;
SECStatus rv = SECFailure;
AESKeyWrapContext *ctxt;
unsigned int pad;
if ((src == NULL) || (key == NULL) || (iv == NULL)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
dup_src = SECITEM_DupItem(src);
if (dup_src == NULL) {
return NULL;
}
if (encrypt != PR_FALSE) {
void *dummy;
dummy = CBC_PadBuffer(NULL, dup_src->data,
dup_src->len, &dup_src->len, AES_BLOCK_SIZE);
if (dummy == NULL) {
SECITEM_ZfreeItem(dup_src, PR_TRUE);
return NULL;
}
dup_src->data = (unsigned char *)dummy;
}
dest = SECITEM_AllocItem(NULL, NULL, dup_src->len + MAX_CRYPTO_EXPANSION);
if (dest == NULL) {
goto loser;
}
ctxt = AESKeyWrap_CreateContext(key->data, iv->data, encrypt,
key->len);
if (ctxt == NULL) {
goto loser;
}
rv = (encrypt ? AESKeyWrap_Encrypt : AESKeyWrap_Decrypt)(
ctxt, dest->data, &dest->len,
dest->len, dup_src->data, dup_src->len);
crv = (rv == SECSuccess) ? CKR_OK : CKR_DEVICE_ERROR;
error = PORT_GetError();
/* remove padding */
if ((encrypt == PR_FALSE) && (rv == SECSuccess)) {
crv = sftk_CheckCBCPadding(dest->data, dest->len, AES_BLOCK_SIZE, &pad);
dest->len = PORT_CT_SEL(sftk_CKRVToMask(crv), dest->len - pad, dest->len);
PORT_SetError(PORT_CT_SEL(sftk_CKRVToMask(crv), error, SEC_ERROR_BAD_PASSWORD));
}
AESKeyWrap_DestroyContext(ctxt, PR_TRUE);
loser:
if (crv != CKR_OK) {
if (dest != NULL) {
SECITEM_ZfreeItem(dest, PR_TRUE);
}
dest = NULL;
}
if (dup_src != NULL) {
SECITEM_ZfreeItem(dup_src, PR_TRUE);
}
return dest;
}
#ifndef NSS_DISABLE_DEPRECATED_RC2
/* perform rc2 encryption/decryption if an error occurs, NULL is returned
*/
static SECItem *
sec_pkcs5_rc2(SECItem *key, SECItem *iv, SECItem *src, PRBool dummy,
PRBool encrypt)
{
SECItem *dest;
SECItem *dup_src;
SECStatus rv = SECFailure;
int pad;
if ((src == NULL) || (key == NULL) || (iv == NULL)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
dup_src = SECITEM_DupItem(src);
if (dup_src == NULL) {
return NULL;
}
if (encrypt != PR_FALSE) {
void *v;
v = CBC_PadBuffer(NULL, dup_src->data,
dup_src->len, &dup_src->len, 8 /* RC2_BLOCK_SIZE */);
if (v == NULL) {
SECITEM_ZfreeItem(dup_src, PR_TRUE);
return NULL;
}
dup_src->data = (unsigned char *)v;
}
dest = (SECItem *)PORT_ZAlloc(sizeof(SECItem));
if (dest != NULL) {
dest->data = (unsigned char *)PORT_ZAlloc(dup_src->len + 64);
if (dest->data != NULL) {
RC2Context *ctxt;
ctxt = RC2_CreateContext(key->data, key->len, iv->data,
NSS_RC2_CBC, key->len);
if (ctxt != NULL) {
rv = (encrypt ? RC2_Encrypt : RC2_Decrypt)(
ctxt, dest->data, &dest->len,
dup_src->len + 64, dup_src->data, dup_src->len);
/* assumes 8 byte blocks -- remove padding */
if ((rv == SECSuccess) && (encrypt != PR_TRUE)) {
pad = dest->data[dest->len - 1];
if ((pad > 0) && (pad <= 8)) {
if (dest->data[dest->len - pad] != pad) {
PORT_SetError(SEC_ERROR_BAD_PASSWORD);
rv = SECFailure;
} else {
dest->len -= pad;
}
} else {
PORT_SetError(SEC_ERROR_BAD_PASSWORD);
rv = SECFailure;
}
}
}
}
}
if ((rv != SECSuccess) && (dest != NULL)) {
SECITEM_ZfreeItem(dest, PR_TRUE);
dest = NULL;
}
if (dup_src != NULL) {
SECITEM_ZfreeItem(dup_src, PR_TRUE);
}
return dest;
}
#endif /* NSS_DISABLE_DEPRECATED_RC2 */
/* perform rc4 encryption and decryption */
static SECItem *
sec_pkcs5_rc4(SECItem *key, SECItem *iv, SECItem *src, PRBool dummy_op,
PRBool encrypt)
{
SECItem *dest;
SECStatus rv = SECFailure;
if ((src == NULL) || (key == NULL) || (iv == NULL)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
dest = (SECItem *)PORT_ZAlloc(sizeof(SECItem));
if (dest != NULL) {
dest->data = (unsigned char *)PORT_ZAlloc(sizeof(unsigned char) *
(src->len + 64));
if (dest->data != NULL) {
RC4Context *ctxt;
ctxt = RC4_CreateContext(key->data, key->len);
if (ctxt) {
rv = (encrypt ? RC4_Encrypt : RC4_Decrypt)(
ctxt, dest->data, &dest->len,
src->len + 64, src->data, src->len);
RC4_DestroyContext(ctxt, PR_TRUE);
}
}
}
if ((rv != SECSuccess) && (dest)) {
SECITEM_ZfreeItem(dest, PR_TRUE);
dest = NULL;
}
return dest;
}
/* function pointer template for crypto functions */
typedef SECItem *(*pkcs5_crypto_func)(SECItem *key, SECItem *iv,
SECItem *src, PRBool op1, PRBool op2);
/* performs the cipher operation on the src and returns the result.
* if an error occurs, NULL is returned.
*
* a null length password is allowed. this corresponds to encrypting
* the data with ust the salt.
*/
/* change this to use PKCS 11? */
SECItem *
nsspkcs5_CipherData(NSSPKCS5PBEParameter *pbe_param, SECItem *pwitem,
SECItem *src, PRBool encrypt, PRBool *update)
{
SECItem *key = NULL, iv;
SECItem *dest = NULL;
PRBool tripleDES = PR_TRUE;
pkcs5_crypto_func cryptof;
iv.data = NULL;
if (update) {
*update = PR_FALSE;
}
if ((pwitem == NULL) || (src == NULL)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
/* get key, and iv */
key = nsspkcs5_ComputeKeyAndIV(pbe_param, pwitem, &iv, PR_FALSE);
if (key == NULL) {
return NULL;
}
switch (pbe_param->encAlg) {
/* PKCS 5 v2 only */
case SEC_OID_AES_128_KEY_WRAP:
case SEC_OID_AES_192_KEY_WRAP:
case SEC_OID_AES_256_KEY_WRAP:
cryptof = sec_pkcs5_aes_key_wrap;
break;
case SEC_OID_AES_128_CBC:
case SEC_OID_AES_192_CBC:
case SEC_OID_AES_256_CBC:
cryptof = sec_pkcs5_aes;
break;
case SEC_OID_DES_EDE3_CBC:
cryptof = sec_pkcs5_des;
tripleDES = PR_TRUE;
break;
case SEC_OID_DES_CBC:
cryptof = sec_pkcs5_des;
tripleDES = PR_FALSE;
break;
#ifndef NSS_DISABLE_DEPRECATED_RC2
case SEC_OID_RC2_CBC:
cryptof = sec_pkcs5_rc2;
break;
#endif
case SEC_OID_RC4:
cryptof = sec_pkcs5_rc4;
break;
default:
cryptof = NULL;
break;
}
if (cryptof == NULL) {
goto loser;
}
dest = (*cryptof)(key, &iv, src, tripleDES, encrypt);
/*
* it's possible for some keys and keydb's to claim to
* be triple des when they're really des. In this case
* we simply try des. If des works we set the update flag
* so the key db knows it needs to update all it's entries.
* The case can only happen on decrypted of a
* SEC_OID_DES_EDE3_CBD.
*/
if ((pbe_param->encAlg == SEC_OID_DES_EDE3_CBC) &&
(dest == NULL) && (encrypt == PR_FALSE)) {
dest = (*cryptof)(key, &iv, src, PR_FALSE, encrypt);
if (update && (dest != NULL))
*update = PR_TRUE;
}
loser:
if (key != NULL) {
SECITEM_ZfreeItem(key, PR_TRUE);
}
if (iv.data != NULL) {
SECITEM_ZfreeItem(&iv, PR_FALSE);
}
return dest;
}
/* creates a algorithm ID containing the PBE algorithm and appropriate
* parameters. the required parameter is the algorithm. if salt is
* not specified, it is generated randomly. if IV is specified, it overrides
* the PKCS 5 generation of the IV.
*
* the returned SECAlgorithmID should be destroyed using
* SECOID_DestroyAlgorithmID
*/
SECAlgorithmID *
nsspkcs5_CreateAlgorithmID(PLArenaPool *arena, SECOidTag algorithm,
NSSPKCS5PBEParameter *pbe_param)
{
SECAlgorithmID *algid, *ret_algid = NULL;
SECItem der_param;
nsspkcs5V2PBEParameter pkcs5v2_param;
SECStatus rv = SECFailure;
void *dummy = NULL;
if (arena == NULL) {
return NULL;
}
der_param.data = NULL;
der_param.len = 0;
/* generate the algorithm id */
algid = (SECAlgorithmID *)PORT_ArenaZAlloc(arena, sizeof(SECAlgorithmID));
if (algid == NULL) {
goto loser;
}
if (pbe_param->iteration.data == NULL) {
dummy = SEC_ASN1EncodeInteger(pbe_param->poolp, &pbe_param->iteration,
pbe_param->iter);
if (dummy == NULL) {
goto loser;
}
}
switch (pbe_param->pbeType) {
case NSSPKCS5_PBKDF1:
dummy = SEC_ASN1EncodeItem(arena, &der_param, pbe_param,
NSSPKCS5PBEParameterTemplate);
break;
case NSSPKCS5_PKCS12_V2:
dummy = SEC_ASN1EncodeItem(arena, &der_param, pbe_param,
NSSPKCS5PKCS12V2PBEParameterTemplate);
break;
case NSSPKCS5_PBKDF2:
if (pbe_param->keyLength.data == NULL) {
dummy = SEC_ASN1EncodeInteger(pbe_param->poolp,
&pbe_param->keyLength, pbe_param->keyLen);
if (dummy == NULL) {
goto loser;
}
}
PORT_Memset(&pkcs5v2_param, 0, sizeof(pkcs5v2_param));
dummy = SEC_ASN1EncodeItem(arena, &der_param, pbe_param,
NSSPKCS5V2PBEParameterTemplate);
if (dummy == NULL) {
break;
}
dummy = NULL;
rv = SECOID_SetAlgorithmID(arena, &pkcs5v2_param.keyParams,
SEC_OID_PKCS5_PBKDF2, &der_param);
if (rv != SECSuccess) {
break;
}
der_param.data = pbe_param->ivData;
der_param.len = pbe_param->ivLen;
rv = SECOID_SetAlgorithmID(arena, &pkcs5v2_param.algParams,
pbe_param->encAlg, pbe_param->ivLen ? &der_param : NULL);
if (rv != SECSuccess) {
dummy = NULL;
break;
}
der_param.data = NULL;
der_param.len = 0;
dummy = SEC_ASN1EncodeItem(arena, &der_param, &pkcs5v2_param,
NSSPKCS5V2PBES2ParameterTemplate);
/* If the algorithm was set to some encryption oid, set it
* to PBES2 */
if ((algorithm != SEC_OID_PKCS5_PBKDF2) &&
(algorithm != SEC_OID_PKCS5_PBMAC1)) {
algorithm = SEC_OID_PKCS5_PBES2;
}
break;
default:
break;
}
if (dummy == NULL) {
goto loser;
}
rv = SECOID_SetAlgorithmID(arena, algid, algorithm, &der_param);
if (rv != SECSuccess) {
goto loser;
}
ret_algid = (SECAlgorithmID *)PORT_ZAlloc(sizeof(SECAlgorithmID));
if (ret_algid == NULL) {
goto loser;
}
rv = SECOID_CopyAlgorithmID(NULL, ret_algid, algid);
if (rv != SECSuccess) {
SECOID_DestroyAlgorithmID(ret_algid, PR_TRUE);
ret_algid = NULL;
}
loser:
return ret_algid;
}
#define TEST_KEY "pbkdf test key"
SECStatus
sftk_fips_pbkdf_PowerUpSelfTests(void)
{
SECItem *result;
SECItem inKey;
NSSPKCS5PBEParameter pbe_params;
unsigned char iteration_count = 5;
unsigned char keyLen = 64;
char *inKeyData = TEST_KEY;
static const unsigned char saltData[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 };
static const unsigned char pbkdf_known_answer[] = {
0x31, 0xf0, 0xe5, 0x39, 0x9f, 0x39, 0xb9, 0x29,
0x68, 0xac, 0xf2, 0xe9, 0x53, 0x9b, 0xb4, 0x9c,
0x28, 0x59, 0x8b, 0x5c, 0xd8, 0xd4, 0x02, 0x37,
0x18, 0x22, 0xc1, 0x92, 0xd0, 0xfa, 0x72, 0x90,
0x2c, 0x8d, 0x19, 0xd4, 0x56, 0xfb, 0x16, 0xfa,
0x8d, 0x5c, 0x06, 0x33, 0xd1, 0x5f, 0x17, 0xb1,
0x22, 0xd9, 0x9c, 0xaf, 0x5e, 0x3f, 0xf3, 0x66,
0xc6, 0x14, 0xfe, 0x83, 0xfa, 0x1a, 0x2a, 0xc5
};
sftk_PBELockInit();
inKey.data = (unsigned char *)inKeyData;
inKey.len = sizeof(TEST_KEY) - 1;
pbe_params.salt.data = (unsigned char *)saltData;
pbe_params.salt.len = sizeof(saltData);
/* the interation and keyLength are used as intermediate
* values when decoding the Algorithm ID, set them for completeness,
* but they are not used */
pbe_params.iteration.data = &iteration_count;
pbe_params.iteration.len = 1;
pbe_params.keyLength.data = &keyLen;
pbe_params.keyLength.len = 1;
/* pkcs5v2 stores the key in the AlgorithmID, so we don't need to
* generate it here */
pbe_params.ivLen = 0;
pbe_params.ivData = NULL;
/* keyID is only used by pkcs12 extensions to pkcs5v1 */
pbe_params.keyID = pbeBitGenCipherKey;
/* Algorithm is used by the decryption code after get get our key */
pbe_params.encAlg = SEC_OID_AES_256_CBC;
/* these are the fields actually used in nsspkcs5_ComputeKeyAndIV
* for NSSPKCS5_PBKDF2 */
pbe_params.iter = iteration_count;
pbe_params.keyLen = keyLen;
pbe_params.hashType = HASH_AlgSHA256;
pbe_params.pbeType = NSSPKCS5_PBKDF2;
pbe_params.is2KeyDES = PR_FALSE;
result = nsspkcs5_ComputeKeyAndIV(&pbe_params, &inKey, NULL, PR_FALSE);
if ((result == NULL) || (result->len != sizeof(pbkdf_known_answer)) ||
(PORT_Memcmp(result->data, pbkdf_known_answer, sizeof(pbkdf_known_answer)) != 0)) {
SECITEM_FreeItem(result, PR_TRUE);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
SECITEM_FreeItem(result, PR_TRUE);
return SECSuccess;
}