Source code

Revision control

Copy as Markdown

Other Tools

/*
* blake2b.c - definitions for the blake2b hash function
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif
#include "secerr.h"
#include "blapi.h"
#include "blake2b.h"
#include "crypto_primitives.h"
/**
* This contains the BLAKE2b initialization vectors.
*/
static const uint64_t iv[8] = {
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
/**
* This contains the table of permutations for blake2b compression function.
*/
static const uint8_t sigma[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
/**
* This function increments the blake2b ctx counter.
*/
void
blake2b_IncrementCounter(BLAKE2BContext* ctx, const uint64_t inc)
{
ctx->t[0] += inc;
ctx->t[1] += ctx->t[0] < inc;
}
/**
* This macro implements the blake2b mixing function which mixes two 8-byte
* words from the message into the hash.
*/
#define G(a, b, c, d, x, y) \
a += b + x; \
d = ROTR64(d ^ a, 32); \
c += d; \
b = ROTR64(b ^ c, 24); \
a += b + y; \
d = ROTR64(d ^ a, 16); \
c += d; \
b = ROTR64(b ^ c, 63)
#define ROUND(i) \
G(v[0], v[4], v[8], v[12], m[sigma[i][0]], m[sigma[i][1]]); \
G(v[1], v[5], v[9], v[13], m[sigma[i][2]], m[sigma[i][3]]); \
G(v[2], v[6], v[10], v[14], m[sigma[i][4]], m[sigma[i][5]]); \
G(v[3], v[7], v[11], v[15], m[sigma[i][6]], m[sigma[i][7]]); \
G(v[0], v[5], v[10], v[15], m[sigma[i][8]], m[sigma[i][9]]); \
G(v[1], v[6], v[11], v[12], m[sigma[i][10]], m[sigma[i][11]]); \
G(v[2], v[7], v[8], v[13], m[sigma[i][12]], m[sigma[i][13]]); \
G(v[3], v[4], v[9], v[14], m[sigma[i][14]], m[sigma[i][15]])
/**
* The blake2b compression function which takes a full 128-byte chunk of the
* input message and mixes it into the ongoing ctx array, i.e., permute the
* ctx while xoring in the block of data.
*/
void
blake2b_Compress(BLAKE2BContext* ctx, const uint8_t* block)
{
size_t i;
uint64_t v[16], m[16];
PORT_Memcpy(m, block, BLAKE2B_BLOCK_LENGTH);
#if !defined(IS_LITTLE_ENDIAN)
for (i = 0; i < 16; ++i) {
m[i] = FREEBL_HTONLL(m[i]);
}
#endif
PORT_Memcpy(v, ctx->h, 8 * 8);
PORT_Memcpy(v + 8, iv, 8 * 8);
v[12] ^= ctx->t[0];
v[13] ^= ctx->t[1];
v[14] ^= ctx->f;
ROUND(0);
ROUND(1);
ROUND(2);
ROUND(3);
ROUND(4);
ROUND(5);
ROUND(6);
ROUND(7);
ROUND(8);
ROUND(9);
ROUND(10);
ROUND(11);
for (i = 0; i < 8; i++) {
ctx->h[i] ^= v[i] ^ v[i + 8];
}
}
/**
* This function can be used for both keyed and unkeyed version.
*/
BLAKE2BContext*
BLAKE2B_NewContext()
{
return PORT_ZNew(BLAKE2BContext);
}
/**
* Zero and free the context and can be used for both keyed and unkeyed version.
*/
void
BLAKE2B_DestroyContext(BLAKE2BContext* ctx, PRBool freeit)
{
PORT_Memset(ctx, 0, sizeof(*ctx));
if (freeit) {
PORT_Free(ctx);
}
}
/**
* This function initializes blake2b ctx and can be used for both keyed and
* unkeyed version. It also checks ctx and sets error states.
*/
static SECStatus
blake2b_Begin(BLAKE2BContext* ctx, uint8_t outlen, const uint8_t* key,
size_t keylen)
{
if (!ctx) {
goto failure_noclean;
}
if (outlen == 0 || outlen > BLAKE2B512_LENGTH) {
goto failure;
}
if (key && keylen > BLAKE2B_KEY_SIZE) {
goto failure;
}
/* Note: key can be null if it's unkeyed. */
if ((key == NULL && keylen > 0) || keylen > BLAKE2B_KEY_SIZE ||
(key != NULL && keylen == 0)) {
goto failure;
}
/* Mix key size(keylen) and desired hash length(outlen) into h0 */
uint64_t param = outlen ^ (keylen << 8) ^ (1 << 16) ^ (1 << 24);
PORT_Memcpy(ctx->h, iv, 8 * 8);
ctx->h[0] ^= param;
ctx->outlen = outlen;
/* This updates the context for only the keyed version */
if (keylen > 0 && keylen <= BLAKE2B_KEY_SIZE && key) {
uint8_t block[BLAKE2B_BLOCK_LENGTH] = { 0 };
PORT_Memcpy(block, key, keylen);
BLAKE2B_Update(ctx, block, BLAKE2B_BLOCK_LENGTH);
PORT_Memset(block, 0, BLAKE2B_BLOCK_LENGTH);
}
return SECSuccess;
failure:
PORT_Memset(ctx, 0, sizeof(*ctx));
failure_noclean:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
SECStatus
BLAKE2B_Begin(BLAKE2BContext* ctx)
{
return blake2b_Begin(ctx, BLAKE2B512_LENGTH, NULL, 0);
}
SECStatus
BLAKE2B_MAC_Begin(BLAKE2BContext* ctx, const PRUint8* key, const size_t keylen)
{
PORT_Assert(key != NULL);
if (!key) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
return blake2b_Begin(ctx, BLAKE2B512_LENGTH, (const uint8_t*)key, keylen);
}
static void
blake2b_IncrementCompress(BLAKE2BContext* ctx, size_t blockLength,
const unsigned char* input)
{
blake2b_IncrementCounter(ctx, blockLength);
blake2b_Compress(ctx, input);
}
/**
* This function updates blake2b ctx and can be used for both keyed and unkeyed
* version.
*/
SECStatus
BLAKE2B_Update(BLAKE2BContext* ctx, const unsigned char* in,
unsigned int inlen)
{
/* Nothing to do if there's nothing. */
if (inlen == 0) {
return SECSuccess;
}
if (!ctx || !in) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* Is this a reused context? */
if (ctx->f) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
size_t left = ctx->buflen;
PORT_Assert(left <= BLAKE2B_BLOCK_LENGTH);
size_t fill = BLAKE2B_BLOCK_LENGTH - left;
if (inlen > fill) {
if (ctx->buflen) {
/* There's some remaining data in ctx->buf that we have to prepend
* to in. */
PORT_Memcpy(ctx->buf + left, in, fill);
ctx->buflen = 0;
blake2b_IncrementCompress(ctx, BLAKE2B_BLOCK_LENGTH, ctx->buf);
in += fill;
inlen -= fill;
}
while (inlen > BLAKE2B_BLOCK_LENGTH) {
blake2b_IncrementCompress(ctx, BLAKE2B_BLOCK_LENGTH, in);
in += BLAKE2B_BLOCK_LENGTH;
inlen -= BLAKE2B_BLOCK_LENGTH;
}
}
/* Store the remaining data from in in ctx->buf to process later.
* Note that ctx->buflen can be BLAKE2B_BLOCK_LENGTH. We can't process that
* here because we have to update ctx->f before compressing the last block.
*/
PORT_Assert(inlen <= BLAKE2B_BLOCK_LENGTH);
PORT_Memcpy(ctx->buf + ctx->buflen, in, inlen);
ctx->buflen += inlen;
return SECSuccess;
}
/**
* This function finalizes ctx, pads final block and stores hash.
* It can be used for both keyed and unkeyed version.
*/
SECStatus
BLAKE2B_End(BLAKE2BContext* ctx, unsigned char* out,
unsigned int* digestLen, size_t maxDigestLen)
{
size_t i;
unsigned int outlen = PR_MIN(BLAKE2B512_LENGTH, maxDigestLen);
/* Argument checks */
if (!ctx || !out) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* Sanity check against outlen in context. */
if (ctx->outlen < outlen) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* Is this a reused context? */
if (ctx->f != 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* Process the remaining data from ctx->buf (padded with 0). */
blake2b_IncrementCounter(ctx, ctx->buflen);
/* BLAKE2B_BLOCK_LENGTH - ctx->buflen can be 0. */
PORT_Memset(ctx->buf + ctx->buflen, 0, BLAKE2B_BLOCK_LENGTH - ctx->buflen);
ctx->f = UINT64_MAX;
blake2b_Compress(ctx, ctx->buf);
/* Write out the blake2b context(ctx). */
for (i = 0; i < outlen; ++i) {
out[i] = ctx->h[i / 8] >> ((i % 8) * 8);
}
if (digestLen) {
*digestLen = outlen;
}
return SECSuccess;
}
SECStatus
blake2b_HashBuf(uint8_t* output, const uint8_t* input, uint8_t outlen,
size_t inlen, const uint8_t* key, size_t keylen)
{
SECStatus rv = SECFailure;
BLAKE2BContext ctx = { { 0 } };
if (inlen != 0) {
PORT_Assert(input != NULL);
if (input == NULL) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
goto done;
}
}
PORT_Assert(output != NULL);
if (output == NULL) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
goto done;
}
if (blake2b_Begin(&ctx, outlen, key, keylen) != SECSuccess) {
goto done;
}
if (BLAKE2B_Update(&ctx, input, inlen) != SECSuccess) {
goto done;
}
if (BLAKE2B_End(&ctx, output, NULL, outlen) != SECSuccess) {
goto done;
}
rv = SECSuccess;
done:
PORT_Memset(&ctx, 0, sizeof ctx);
return rv;
}
SECStatus
BLAKE2B_Hash(unsigned char* dest, const char* src)
{
return blake2b_HashBuf(dest, (const unsigned char*)src, BLAKE2B512_LENGTH,
PORT_Strlen(src), NULL, 0);
}
SECStatus
BLAKE2B_HashBuf(unsigned char* output, const unsigned char* input, PRUint32 inlen)
{
return blake2b_HashBuf(output, input, BLAKE2B512_LENGTH, inlen, NULL, 0);
}
SECStatus
BLAKE2B_MAC_HashBuf(unsigned char* output, const unsigned char* input,
unsigned int inlen, const unsigned char* key,
unsigned int keylen)
{
PORT_Assert(key != NULL);
if (!key && keylen <= BLAKE2B_KEY_SIZE) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
return blake2b_HashBuf(output, input, BLAKE2B512_LENGTH, inlen, key, keylen);
}
unsigned int
BLAKE2B_FlattenSize(BLAKE2BContext* ctx)
{
return sizeof(BLAKE2BContext);
}
SECStatus
BLAKE2B_Flatten(BLAKE2BContext* ctx, unsigned char* space)
{
PORT_Assert(space != NULL);
if (!space) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
PORT_Memcpy(space, ctx, sizeof(BLAKE2BContext));
return SECSuccess;
}
BLAKE2BContext*
BLAKE2B_Resurrect(unsigned char* space, void* arg)
{
PORT_Assert(space != NULL);
if (!space) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
BLAKE2BContext* ctx = BLAKE2B_NewContext();
if (ctx == NULL) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
PORT_Memcpy(ctx, space, sizeof(BLAKE2BContext));
return ctx;
}
void
BLAKE2B_Clone(BLAKE2BContext* dest, BLAKE2BContext* src)
{
PORT_Assert(dest != NULL);
PORT_Assert(src != NULL);
if (!dest || !src) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return;
}
PORT_Memcpy(dest, src, sizeof(BLAKE2BContext));
}