Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: rust; rust-indent-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#![allow(non_snake_case)]
extern crate byteorder;
extern crate pkcs11_bindings;
#[macro_use]
extern crate rsclientcerts;
extern crate sha2;
use pkcs11_bindings::*;
use rsclientcerts::manager::{Manager, SlotType};
use std::ffi::{c_void, CStr};
use std::sync::Mutex;
mod backend;
use backend::Backend;
type FindObjectsCallback = Option<
unsafe extern "C" fn(
typ: u8,
data_len: usize,
data: *const u8,
extra_len: usize,
extra: *const u8,
slot_type: u32,
ctx: *mut c_void,
),
>;
type FindObjectsFunction = extern "C" fn(callback: FindObjectsCallback, ctx: *mut c_void);
type SignCallback =
Option<unsafe extern "C" fn(data_len: usize, data: *const u8, ctx: *mut c_void)>;
type SignFunction = extern "C" fn(
cert_len: usize,
cert: *const u8,
data_len: usize,
data: *const u8,
params_len: usize,
params: *const u8,
callback: SignCallback,
ctx: *mut c_void,
);
/// The singleton `Manager` that handles state with respect to PKCS #11. Only one thread
/// may use it at a time, but there is no restriction on which threads may use it.
static MANAGER: Mutex<Option<Manager<Backend>>> = Mutex::new(None);
// Obtaining a handle on the manager is a two-step process. First the mutex must be locked, which
// (if successful), results in a mutex guard object. We must then get a mutable refence to the
// underlying manager (if set - otherwise we return an error). This can't happen all in one macro
// without dropping a reference that needs to live long enough for this to be safe. In
// practice, this looks like:
// let mut manager_guard = try_to_get_manager_guard!();
// let manager = manager_guard_to_manager!(manager_guard);
macro_rules! try_to_get_manager_guard {
() => {
match MANAGER.lock() {
Ok(maybe_manager) => maybe_manager,
Err(_) => return CKR_DEVICE_ERROR,
}
};
}
macro_rules! manager_guard_to_manager {
($manager_guard:ident) => {
match $manager_guard.as_mut() {
Some(manager) => manager,
None => return CKR_DEVICE_ERROR,
}
};
}
/// This gets called to initialize the module. For this implementation, this consists of
/// instantiating the `Manager`.
extern "C" fn C_Initialize(pInitArgs: CK_VOID_PTR) -> CK_RV {
// pInitArgs.pReserved will be a c-string containing the base-16
// stringification of the addresses of the functions to call to communicate
// with the main process.
if pInitArgs.is_null() {
return CKR_DEVICE_ERROR;
}
let serialized_addresses_ptr = unsafe { (*(pInitArgs as CK_C_INITIALIZE_ARGS_PTR)).pReserved };
if serialized_addresses_ptr.is_null() {
return CKR_DEVICE_ERROR;
}
let serialized_addresses_cstr =
unsafe { CStr::from_ptr(serialized_addresses_ptr as *mut std::os::raw::c_char) };
let serialized_addresses = match serialized_addresses_cstr.to_str() {
Ok(serialized_addresses) => serialized_addresses,
Err(_) => return CKR_DEVICE_ERROR,
};
let function_addresses: Vec<usize> = serialized_addresses
.split(',')
.filter_map(|serialized_address| usize::from_str_radix(serialized_address, 16).ok())
.collect();
if function_addresses.len() != 2 {
return CKR_DEVICE_ERROR;
}
let find_objects: FindObjectsFunction = unsafe { std::mem::transmute(function_addresses[0]) };
let sign: SignFunction = unsafe { std::mem::transmute(function_addresses[1]) };
let mut manager_guard = try_to_get_manager_guard!();
let _unexpected_previous_manager =
manager_guard.replace(Manager::new(Backend::new(find_objects, sign)));
CKR_OK
}
extern "C" fn C_Finalize(_pReserved: CK_VOID_PTR) -> CK_RV {
// Drop the manager. When C_Finalize is called, there should be only one
// reference to this module (which is going away), so there shouldn't be
// any concurrency issues.
let mut manager_guard = try_to_get_manager_guard!();
match manager_guard.take() {
Some(_) => CKR_OK,
None => CKR_CRYPTOKI_NOT_INITIALIZED,
}
}
// The specification mandates that these strings be padded with spaces to the appropriate length.
// Since the length of fixed-size arrays in rust is part of the type, the compiler enforces that
// these byte strings are of the correct length.
const MANUFACTURER_ID_BYTES: &[u8; 32] = b"Mozilla Corporation ";
const LIBRARY_DESCRIPTION_BYTES: &[u8; 32] = b"IPC Client Cert Module ";
/// This gets called to gather some information about the module. In particular, this implementation
/// supports (portions of) cryptoki (PKCS #11) version 2.2.
extern "C" fn C_GetInfo(pInfo: CK_INFO_PTR) -> CK_RV {
if pInfo.is_null() {
return CKR_ARGUMENTS_BAD;
}
let mut info = CK_INFO::default();
info.cryptokiVersion.major = 2;
info.cryptokiVersion.minor = 2;
info.manufacturerID = *MANUFACTURER_ID_BYTES;
info.libraryDescription = *LIBRARY_DESCRIPTION_BYTES;
unsafe {
*pInfo = info;
}
CKR_OK
}
/// This module has two slots.
const SLOT_COUNT: CK_ULONG = 2;
/// The slot with ID 1 supports modern mechanisms like RSA-PSS.
const SLOT_ID_MODERN: CK_SLOT_ID = 1;
/// The slot with ID 2 only supports legacy mechanisms.
const SLOT_ID_LEGACY: CK_SLOT_ID = 2;
/// This gets called twice: once with a null `pSlotList` to get the number of slots (returned via
/// `pulCount`) and a second time to get the ID for each slot.
extern "C" fn C_GetSlotList(
_tokenPresent: CK_BBOOL,
pSlotList: CK_SLOT_ID_PTR,
pulCount: CK_ULONG_PTR,
) -> CK_RV {
if pulCount.is_null() {
return CKR_ARGUMENTS_BAD;
}
if !pSlotList.is_null() {
if unsafe { *pulCount } < SLOT_COUNT {
return CKR_BUFFER_TOO_SMALL;
}
unsafe {
*pSlotList = SLOT_ID_MODERN;
*pSlotList.offset(1) = SLOT_ID_LEGACY;
}
};
unsafe {
*pulCount = SLOT_COUNT;
}
CKR_OK
}
const SLOT_DESCRIPTION_MODERN_BYTES: &[u8; 64] =
b"IPC Client Cert Slot (Modern) ";
const SLOT_DESCRIPTION_LEGACY_BYTES: &[u8; 64] =
b"IPC Client Cert Slot (Legacy) ";
/// This gets called to obtain information about slots. In this implementation, the tokens are
/// always present in the slots.
extern "C" fn C_GetSlotInfo(slotID: CK_SLOT_ID, pInfo: CK_SLOT_INFO_PTR) -> CK_RV {
if (slotID != SLOT_ID_MODERN && slotID != SLOT_ID_LEGACY) || pInfo.is_null() {
return CKR_ARGUMENTS_BAD;
}
let description = if slotID == SLOT_ID_MODERN {
SLOT_DESCRIPTION_MODERN_BYTES
} else {
SLOT_DESCRIPTION_LEGACY_BYTES
};
let slot_info = CK_SLOT_INFO {
slotDescription: *description,
manufacturerID: *MANUFACTURER_ID_BYTES,
flags: CKF_TOKEN_PRESENT,
hardwareVersion: CK_VERSION::default(),
firmwareVersion: CK_VERSION::default(),
};
unsafe {
*pInfo = slot_info;
}
CKR_OK
}
const TOKEN_LABEL_MODERN_BYTES: &[u8; 32] = b"IPC Client Cert Token (Modern) ";
const TOKEN_LABEL_LEGACY_BYTES: &[u8; 32] = b"IPC Client Cert Token (Legacy) ";
const TOKEN_MODEL_BYTES: &[u8; 16] = b"ipcclientcerts ";
const TOKEN_SERIAL_NUMBER_BYTES: &[u8; 16] = b"0000000000000000";
/// This gets called to obtain some information about tokens. This implementation has two slots,
/// so it has two tokens. This information is primarily for display purposes.
extern "C" fn C_GetTokenInfo(slotID: CK_SLOT_ID, pInfo: CK_TOKEN_INFO_PTR) -> CK_RV {
if (slotID != SLOT_ID_MODERN && slotID != SLOT_ID_LEGACY) || pInfo.is_null() {
return CKR_ARGUMENTS_BAD;
}
let mut token_info = CK_TOKEN_INFO::default();
let label = if slotID == SLOT_ID_MODERN {
TOKEN_LABEL_MODERN_BYTES
} else {
TOKEN_LABEL_LEGACY_BYTES
};
token_info.label = *label;
token_info.manufacturerID = *MANUFACTURER_ID_BYTES;
token_info.model = *TOKEN_MODEL_BYTES;
token_info.serialNumber = *TOKEN_SERIAL_NUMBER_BYTES;
unsafe {
*pInfo = token_info;
}
CKR_OK
}
/// This gets called to determine what mechanisms a slot supports. The modern slot supports ECDSA,
/// RSA PKCS, and RSA PSS. The legacy slot only supports RSA PKCS.
extern "C" fn C_GetMechanismList(
slotID: CK_SLOT_ID,
pMechanismList: CK_MECHANISM_TYPE_PTR,
pulCount: CK_ULONG_PTR,
) -> CK_RV {
if (slotID != SLOT_ID_MODERN && slotID != SLOT_ID_LEGACY) || pulCount.is_null() {
return CKR_ARGUMENTS_BAD;
}
let mechanisms = if slotID == SLOT_ID_MODERN {
vec![CKM_ECDSA, CKM_RSA_PKCS, CKM_RSA_PKCS_PSS]
} else {
vec![CKM_RSA_PKCS]
};
if !pMechanismList.is_null() {
if unsafe { *pulCount as usize } < mechanisms.len() {
return CKR_ARGUMENTS_BAD;
}
for i in 0..mechanisms.len() {
unsafe {
*pMechanismList.offset(i as isize) = mechanisms[i];
}
}
}
unsafe {
*pulCount = mechanisms.len() as CK_ULONG;
}
CKR_OK
}
extern "C" fn C_GetMechanismInfo(
_slotID: CK_SLOT_ID,
_type: CK_MECHANISM_TYPE,
_pInfo: CK_MECHANISM_INFO_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_InitToken(
_slotID: CK_SLOT_ID,
_pPin: CK_UTF8CHAR_PTR,
_ulPinLen: CK_ULONG,
_pLabel: CK_UTF8CHAR_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_InitPIN(
_hSession: CK_SESSION_HANDLE,
_pPin: CK_UTF8CHAR_PTR,
_ulPinLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_SetPIN(
_hSession: CK_SESSION_HANDLE,
_pOldPin: CK_UTF8CHAR_PTR,
_ulOldLen: CK_ULONG,
_pNewPin: CK_UTF8CHAR_PTR,
_ulNewLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
/// This gets called to create a new session. This module defers to the `ManagerProxy` to implement
/// this.
extern "C" fn C_OpenSession(
slotID: CK_SLOT_ID,
_flags: CK_FLAGS,
_pApplication: CK_VOID_PTR,
_Notify: CK_NOTIFY,
phSession: CK_SESSION_HANDLE_PTR,
) -> CK_RV {
if (slotID != SLOT_ID_MODERN && slotID != SLOT_ID_LEGACY) || phSession.is_null() {
return CKR_ARGUMENTS_BAD;
}
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
let slot_type = if slotID == SLOT_ID_MODERN {
SlotType::Modern
} else {
SlotType::Legacy
};
let session_handle = match manager.open_session(slot_type) {
Ok(session_handle) => session_handle,
Err(_) => return CKR_DEVICE_ERROR,
};
unsafe {
*phSession = session_handle;
}
CKR_OK
}
/// This gets called to close a session. This is handled by the `ManagerProxy`.
extern "C" fn C_CloseSession(hSession: CK_SESSION_HANDLE) -> CK_RV {
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
if manager.close_session(hSession).is_err() {
return CKR_SESSION_HANDLE_INVALID;
}
CKR_OK
}
/// This gets called to close all open sessions at once. This is handled by the `ManagerProxy`.
extern "C" fn C_CloseAllSessions(slotID: CK_SLOT_ID) -> CK_RV {
if slotID != SLOT_ID_MODERN && slotID != SLOT_ID_LEGACY {
return CKR_ARGUMENTS_BAD;
}
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
let slot_type = if slotID == SLOT_ID_MODERN {
SlotType::Modern
} else {
SlotType::Legacy
};
match manager.close_all_sessions(slot_type) {
Ok(()) => CKR_OK,
Err(_) => CKR_DEVICE_ERROR,
}
}
extern "C" fn C_GetSessionInfo(_hSession: CK_SESSION_HANDLE, _pInfo: CK_SESSION_INFO_PTR) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_GetOperationState(
_hSession: CK_SESSION_HANDLE,
_pOperationState: CK_BYTE_PTR,
_pulOperationStateLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_SetOperationState(
_hSession: CK_SESSION_HANDLE,
_pOperationState: CK_BYTE_PTR,
_ulOperationStateLen: CK_ULONG,
_hEncryptionKey: CK_OBJECT_HANDLE,
_hAuthenticationKey: CK_OBJECT_HANDLE,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_Login(
_hSession: CK_SESSION_HANDLE,
_userType: CK_USER_TYPE,
_pPin: CK_UTF8CHAR_PTR,
_ulPinLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
/// This gets called to log out and drop any authenticated resources. Because this module does not
/// hold on to authenticated resources, this module "implements" this by doing nothing and
/// returning a success result.
extern "C" fn C_Logout(_hSession: CK_SESSION_HANDLE) -> CK_RV {
CKR_OK
}
extern "C" fn C_CreateObject(
_hSession: CK_SESSION_HANDLE,
_pTemplate: CK_ATTRIBUTE_PTR,
_ulCount: CK_ULONG,
_phObject: CK_OBJECT_HANDLE_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_CopyObject(
_hSession: CK_SESSION_HANDLE,
_hObject: CK_OBJECT_HANDLE,
_pTemplate: CK_ATTRIBUTE_PTR,
_ulCount: CK_ULONG,
_phNewObject: CK_OBJECT_HANDLE_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DestroyObject(_hSession: CK_SESSION_HANDLE, _hObject: CK_OBJECT_HANDLE) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_GetObjectSize(
_hSession: CK_SESSION_HANDLE,
_hObject: CK_OBJECT_HANDLE,
_pulSize: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
/// This gets called to obtain the values of a number of attributes of an object identified by the
/// given handle. This module implements this by requesting that the `ManagerProxy` find the object
/// and attempt to get the value of each attribute. If a specified attribute is not defined on the
/// object, the length of that attribute is set to -1 to indicate that it is not available.
/// This gets called twice: once to obtain the lengths of the attributes and again to get the
/// values.
extern "C" fn C_GetAttributeValue(
_hSession: CK_SESSION_HANDLE,
hObject: CK_OBJECT_HANDLE,
pTemplate: CK_ATTRIBUTE_PTR,
ulCount: CK_ULONG,
) -> CK_RV {
if pTemplate.is_null() {
return CKR_ARGUMENTS_BAD;
}
let mut attr_types = Vec::with_capacity(ulCount as usize);
for i in 0..ulCount {
let attr = unsafe { &*pTemplate.offset(i as isize) };
attr_types.push(attr.type_);
}
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
let values = match manager.get_attributes(hObject, attr_types) {
Ok(values) => values,
Err(_) => return CKR_ARGUMENTS_BAD,
};
if values.len() != ulCount as usize {
return CKR_DEVICE_ERROR;
}
for i in 0..ulCount as usize {
let attr = unsafe { &mut *pTemplate.offset(i as isize) };
// NB: the safety of this array access depends on the length check above
if let Some(attr_value) = &values[i] {
if attr.pValue.is_null() {
attr.ulValueLen = attr_value.len() as CK_ULONG;
} else {
let ptr: *mut u8 = attr.pValue as *mut u8;
if attr_value.len() != attr.ulValueLen as usize {
return CKR_ARGUMENTS_BAD;
}
unsafe {
std::ptr::copy_nonoverlapping(attr_value.as_ptr(), ptr, attr_value.len());
}
}
} else {
attr.ulValueLen = (0 - 1) as CK_ULONG;
}
}
CKR_OK
}
extern "C" fn C_SetAttributeValue(
_hSession: CK_SESSION_HANDLE,
_hObject: CK_OBJECT_HANDLE,
_pTemplate: CK_ATTRIBUTE_PTR,
_ulCount: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
/// This gets called to initialize a search for objects matching a given list of attributes. This
/// module implements this by gathering the attributes and passing them to the `ManagerProxy` to
/// start the search.
extern "C" fn C_FindObjectsInit(
hSession: CK_SESSION_HANDLE,
pTemplate: CK_ATTRIBUTE_PTR,
ulCount: CK_ULONG,
) -> CK_RV {
if pTemplate.is_null() {
return CKR_ARGUMENTS_BAD;
}
let mut attrs = Vec::new();
for i in 0..ulCount {
let attr = unsafe { &*pTemplate.offset(i as isize) };
let slice = unsafe {
std::slice::from_raw_parts(attr.pValue as *const u8, attr.ulValueLen as usize)
};
attrs.push((attr.type_, slice.to_owned()));
}
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
match manager.start_search(hSession, attrs) {
Ok(()) => {}
Err(_) => return CKR_ARGUMENTS_BAD,
}
CKR_OK
}
/// This gets called after `C_FindObjectsInit` to get the results of a search. This module
/// implements this by looking up the search in the `ManagerProxy` and copying out the matching
/// object handles.
extern "C" fn C_FindObjects(
hSession: CK_SESSION_HANDLE,
phObject: CK_OBJECT_HANDLE_PTR,
ulMaxObjectCount: CK_ULONG,
pulObjectCount: CK_ULONG_PTR,
) -> CK_RV {
if phObject.is_null() || pulObjectCount.is_null() || ulMaxObjectCount == 0 {
return CKR_ARGUMENTS_BAD;
}
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
let handles = match manager.search(hSession, ulMaxObjectCount as usize) {
Ok(handles) => handles,
Err(_) => return CKR_ARGUMENTS_BAD,
};
if handles.len() > ulMaxObjectCount as usize {
return CKR_DEVICE_ERROR;
}
unsafe {
*pulObjectCount = handles.len() as CK_ULONG;
}
for (index, handle) in handles.iter().enumerate() {
if index < ulMaxObjectCount as usize {
unsafe {
*(phObject.add(index)) = *handle;
}
}
}
CKR_OK
}
/// This gets called after `C_FindObjectsInit` and `C_FindObjects` to finish a search. The module
/// tells the `ManagerProxy` to clear the search.
extern "C" fn C_FindObjectsFinal(hSession: CK_SESSION_HANDLE) -> CK_RV {
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
// It would be an error if there were no search for this session, but we can be permissive here.
match manager.clear_search(hSession) {
Ok(()) => CKR_OK,
Err(_) => CKR_DEVICE_ERROR,
}
}
extern "C" fn C_EncryptInit(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_hKey: CK_OBJECT_HANDLE,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_Encrypt(
_hSession: CK_SESSION_HANDLE,
_pData: CK_BYTE_PTR,
_ulDataLen: CK_ULONG,
_pEncryptedData: CK_BYTE_PTR,
_pulEncryptedDataLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_EncryptUpdate(
_hSession: CK_SESSION_HANDLE,
_pPart: CK_BYTE_PTR,
_ulPartLen: CK_ULONG,
_pEncryptedPart: CK_BYTE_PTR,
_pulEncryptedPartLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_EncryptFinal(
_hSession: CK_SESSION_HANDLE,
_pLastEncryptedPart: CK_BYTE_PTR,
_pulLastEncryptedPartLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DecryptInit(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_hKey: CK_OBJECT_HANDLE,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_Decrypt(
_hSession: CK_SESSION_HANDLE,
_pEncryptedData: CK_BYTE_PTR,
_ulEncryptedDataLen: CK_ULONG,
_pData: CK_BYTE_PTR,
_pulDataLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DecryptUpdate(
_hSession: CK_SESSION_HANDLE,
_pEncryptedPart: CK_BYTE_PTR,
_ulEncryptedPartLen: CK_ULONG,
_pPart: CK_BYTE_PTR,
_pulPartLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DecryptFinal(
_hSession: CK_SESSION_HANDLE,
_pLastPart: CK_BYTE_PTR,
_pulLastPartLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DigestInit(_hSession: CK_SESSION_HANDLE, _pMechanism: CK_MECHANISM_PTR) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_Digest(
_hSession: CK_SESSION_HANDLE,
_pData: CK_BYTE_PTR,
_ulDataLen: CK_ULONG,
_pDigest: CK_BYTE_PTR,
_pulDigestLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DigestUpdate(
_hSession: CK_SESSION_HANDLE,
_pPart: CK_BYTE_PTR,
_ulPartLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DigestKey(_hSession: CK_SESSION_HANDLE, _hKey: CK_OBJECT_HANDLE) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DigestFinal(
_hSession: CK_SESSION_HANDLE,
_pDigest: CK_BYTE_PTR,
_pulDigestLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
/// This gets called to set up a sign operation. The module essentially defers to the
/// `ManagerProxy`.
extern "C" fn C_SignInit(
hSession: CK_SESSION_HANDLE,
pMechanism: CK_MECHANISM_PTR,
hKey: CK_OBJECT_HANDLE,
) -> CK_RV {
if pMechanism.is_null() {
return CKR_ARGUMENTS_BAD;
}
// Presumably we should validate the mechanism against hKey, but the specification doesn't
// actually seem to require this.
let mechanism = unsafe { *pMechanism };
let mechanism_params = if mechanism.mechanism == CKM_RSA_PKCS_PSS {
if mechanism.ulParameterLen as usize != std::mem::size_of::<CK_RSA_PKCS_PSS_PARAMS>() {
return CKR_ARGUMENTS_BAD;
}
Some(unsafe { *(mechanism.pParameter as *const CK_RSA_PKCS_PSS_PARAMS) })
} else {
None
};
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
match manager.start_sign(hSession, hKey, mechanism_params) {
Ok(()) => {}
Err(_) => return CKR_GENERAL_ERROR,
};
CKR_OK
}
/// NSS calls this after `C_SignInit` (there are more ways in the PKCS #11 specification to sign
/// data, but this is the only way supported by this module). The module essentially defers to the
/// `ManagerProxy` and copies out the resulting signature.
extern "C" fn C_Sign(
hSession: CK_SESSION_HANDLE,
pData: CK_BYTE_PTR,
ulDataLen: CK_ULONG,
pSignature: CK_BYTE_PTR,
pulSignatureLen: CK_ULONG_PTR,
) -> CK_RV {
if pData.is_null() || pulSignatureLen.is_null() {
return CKR_ARGUMENTS_BAD;
}
let data = unsafe { std::slice::from_raw_parts(pData, ulDataLen as usize) };
if pSignature.is_null() {
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
match manager.get_signature_length(hSession, data.to_vec()) {
Ok(signature_length) => unsafe {
*pulSignatureLen = signature_length as CK_ULONG;
},
Err(_) => return CKR_GENERAL_ERROR,
}
} else {
let mut manager_guard = try_to_get_manager_guard!();
let manager = manager_guard_to_manager!(manager_guard);
match manager.sign(hSession, data.to_vec()) {
Ok(signature) => {
let signature_capacity = unsafe { *pulSignatureLen } as usize;
if signature_capacity < signature.len() {
return CKR_ARGUMENTS_BAD;
}
let ptr: *mut u8 = pSignature as *mut u8;
unsafe {
std::ptr::copy_nonoverlapping(signature.as_ptr(), ptr, signature.len());
*pulSignatureLen = signature.len() as CK_ULONG;
}
}
Err(_) => return CKR_GENERAL_ERROR,
}
}
CKR_OK
}
extern "C" fn C_SignUpdate(
_hSession: CK_SESSION_HANDLE,
_pPart: CK_BYTE_PTR,
_ulPartLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_SignFinal(
_hSession: CK_SESSION_HANDLE,
_pSignature: CK_BYTE_PTR,
_pulSignatureLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_SignRecoverInit(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_hKey: CK_OBJECT_HANDLE,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_SignRecover(
_hSession: CK_SESSION_HANDLE,
_pData: CK_BYTE_PTR,
_ulDataLen: CK_ULONG,
_pSignature: CK_BYTE_PTR,
_pulSignatureLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_VerifyInit(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_hKey: CK_OBJECT_HANDLE,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_Verify(
_hSession: CK_SESSION_HANDLE,
_pData: CK_BYTE_PTR,
_ulDataLen: CK_ULONG,
_pSignature: CK_BYTE_PTR,
_ulSignatureLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_VerifyUpdate(
_hSession: CK_SESSION_HANDLE,
_pPart: CK_BYTE_PTR,
_ulPartLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_VerifyFinal(
_hSession: CK_SESSION_HANDLE,
_pSignature: CK_BYTE_PTR,
_ulSignatureLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_VerifyRecoverInit(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_hKey: CK_OBJECT_HANDLE,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_VerifyRecover(
_hSession: CK_SESSION_HANDLE,
_pSignature: CK_BYTE_PTR,
_ulSignatureLen: CK_ULONG,
_pData: CK_BYTE_PTR,
_pulDataLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DigestEncryptUpdate(
_hSession: CK_SESSION_HANDLE,
_pPart: CK_BYTE_PTR,
_ulPartLen: CK_ULONG,
_pEncryptedPart: CK_BYTE_PTR,
_pulEncryptedPartLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DecryptDigestUpdate(
_hSession: CK_SESSION_HANDLE,
_pEncryptedPart: CK_BYTE_PTR,
_ulEncryptedPartLen: CK_ULONG,
_pPart: CK_BYTE_PTR,
_pulPartLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_SignEncryptUpdate(
_hSession: CK_SESSION_HANDLE,
_pPart: CK_BYTE_PTR,
_ulPartLen: CK_ULONG,
_pEncryptedPart: CK_BYTE_PTR,
_pulEncryptedPartLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DecryptVerifyUpdate(
_hSession: CK_SESSION_HANDLE,
_pEncryptedPart: CK_BYTE_PTR,
_ulEncryptedPartLen: CK_ULONG,
_pPart: CK_BYTE_PTR,
_pulPartLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_GenerateKey(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_pTemplate: CK_ATTRIBUTE_PTR,
_ulCount: CK_ULONG,
_phKey: CK_OBJECT_HANDLE_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_GenerateKeyPair(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_pPublicKeyTemplate: CK_ATTRIBUTE_PTR,
_ulPublicKeyAttributeCount: CK_ULONG,
_pPrivateKeyTemplate: CK_ATTRIBUTE_PTR,
_ulPrivateKeyAttributeCount: CK_ULONG,
_phPublicKey: CK_OBJECT_HANDLE_PTR,
_phPrivateKey: CK_OBJECT_HANDLE_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_WrapKey(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_hWrappingKey: CK_OBJECT_HANDLE,
_hKey: CK_OBJECT_HANDLE,
_pWrappedKey: CK_BYTE_PTR,
_pulWrappedKeyLen: CK_ULONG_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_UnwrapKey(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_hUnwrappingKey: CK_OBJECT_HANDLE,
_pWrappedKey: CK_BYTE_PTR,
_ulWrappedKeyLen: CK_ULONG,
_pTemplate: CK_ATTRIBUTE_PTR,
_ulAttributeCount: CK_ULONG,
_phKey: CK_OBJECT_HANDLE_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_DeriveKey(
_hSession: CK_SESSION_HANDLE,
_pMechanism: CK_MECHANISM_PTR,
_hBaseKey: CK_OBJECT_HANDLE,
_pTemplate: CK_ATTRIBUTE_PTR,
_ulAttributeCount: CK_ULONG,
_phKey: CK_OBJECT_HANDLE_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_SeedRandom(
_hSession: CK_SESSION_HANDLE,
_pSeed: CK_BYTE_PTR,
_ulSeedLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_GenerateRandom(
_hSession: CK_SESSION_HANDLE,
_RandomData: CK_BYTE_PTR,
_ulRandomLen: CK_ULONG,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_GetFunctionStatus(_hSession: CK_SESSION_HANDLE) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_CancelFunction(_hSession: CK_SESSION_HANDLE) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
extern "C" fn C_WaitForSlotEvent(
_flags: CK_FLAGS,
_pSlot: CK_SLOT_ID_PTR,
_pRserved: CK_VOID_PTR,
) -> CK_RV {
CKR_FUNCTION_NOT_SUPPORTED
}
/// To be a valid PKCS #11 module, this list of functions must be supported. At least cryptoki 2.2
/// must be supported for this module to work in NSS.
static FUNCTION_LIST: CK_FUNCTION_LIST = CK_FUNCTION_LIST {
version: CK_VERSION { major: 2, minor: 2 },
C_Initialize: Some(C_Initialize),
C_Finalize: Some(C_Finalize),
C_GetInfo: Some(C_GetInfo),
C_GetFunctionList: None,
C_GetSlotList: Some(C_GetSlotList),
C_GetSlotInfo: Some(C_GetSlotInfo),
C_GetTokenInfo: Some(C_GetTokenInfo),
C_GetMechanismList: Some(C_GetMechanismList),
C_GetMechanismInfo: Some(C_GetMechanismInfo),
C_InitToken: Some(C_InitToken),
C_InitPIN: Some(C_InitPIN),
C_SetPIN: Some(C_SetPIN),
C_OpenSession: Some(C_OpenSession),
C_CloseSession: Some(C_CloseSession),
C_CloseAllSessions: Some(C_CloseAllSessions),
C_GetSessionInfo: Some(C_GetSessionInfo),
C_GetOperationState: Some(C_GetOperationState),
C_SetOperationState: Some(C_SetOperationState),
C_Login: Some(C_Login),
C_Logout: Some(C_Logout),
C_CreateObject: Some(C_CreateObject),
C_CopyObject: Some(C_CopyObject),
C_DestroyObject: Some(C_DestroyObject),
C_GetObjectSize: Some(C_GetObjectSize),
C_GetAttributeValue: Some(C_GetAttributeValue),
C_SetAttributeValue: Some(C_SetAttributeValue),
C_FindObjectsInit: Some(C_FindObjectsInit),
C_FindObjects: Some(C_FindObjects),
C_FindObjectsFinal: Some(C_FindObjectsFinal),
C_EncryptInit: Some(C_EncryptInit),
C_Encrypt: Some(C_Encrypt),
C_EncryptUpdate: Some(C_EncryptUpdate),
C_EncryptFinal: Some(C_EncryptFinal),
C_DecryptInit: Some(C_DecryptInit),
C_Decrypt: Some(C_Decrypt),
C_DecryptUpdate: Some(C_DecryptUpdate),
C_DecryptFinal: Some(C_DecryptFinal),
C_DigestInit: Some(C_DigestInit),
C_Digest: Some(C_Digest),
C_DigestUpdate: Some(C_DigestUpdate),
C_DigestKey: Some(C_DigestKey),
C_DigestFinal: Some(C_DigestFinal),
C_SignInit: Some(C_SignInit),
C_Sign: Some(C_Sign),
C_SignUpdate: Some(C_SignUpdate),
C_SignFinal: Some(C_SignFinal),
C_SignRecoverInit: Some(C_SignRecoverInit),
C_SignRecover: Some(C_SignRecover),
C_VerifyInit: Some(C_VerifyInit),
C_Verify: Some(C_Verify),
C_VerifyUpdate: Some(C_VerifyUpdate),
C_VerifyFinal: Some(C_VerifyFinal),
C_VerifyRecoverInit: Some(C_VerifyRecoverInit),
C_VerifyRecover: Some(C_VerifyRecover),
C_DigestEncryptUpdate: Some(C_DigestEncryptUpdate),
C_DecryptDigestUpdate: Some(C_DecryptDigestUpdate),
C_SignEncryptUpdate: Some(C_SignEncryptUpdate),
C_DecryptVerifyUpdate: Some(C_DecryptVerifyUpdate),
C_GenerateKey: Some(C_GenerateKey),
C_GenerateKeyPair: Some(C_GenerateKeyPair),
C_WrapKey: Some(C_WrapKey),
C_UnwrapKey: Some(C_UnwrapKey),
C_DeriveKey: Some(C_DeriveKey),
C_SeedRandom: Some(C_SeedRandom),
C_GenerateRandom: Some(C_GenerateRandom),
C_GetFunctionStatus: Some(C_GetFunctionStatus),
C_CancelFunction: Some(C_CancelFunction),
C_WaitForSlotEvent: Some(C_WaitForSlotEvent),
};
/// This is the only function this module exposes. The C stub calls it when NSS
/// calls its exposed C_GetFunctionList function to obtain the list of functions
/// comprising this module.
#[no_mangle]
pub extern "C" fn IPCCC_GetFunctionList(ppFunctionList: CK_FUNCTION_LIST_PTR_PTR) -> CK_RV {
if ppFunctionList.is_null() {
return CKR_ARGUMENTS_BAD;
}
unsafe {
// CK_FUNCTION_LIST_PTR is a *mut CK_FUNCTION_LIST, but as per the
// specification, the caller must treat it as *const CK_FUNCTION_LIST.
*ppFunctionList = std::ptr::addr_of!(FUNCTION_LIST) as CK_FUNCTION_LIST_PTR;
}
CKR_OK
}
#[cfg_attr(
any(target_os = "macos", target_os = "ios"),
link(name = "Security", kind = "framework")
)]
extern "C" {}