Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=4 sw=2 sts=2 et cin: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// HttpLog.h should generally be included first
#include "nsHttpTransaction.h"
#include <algorithm>
#include <utility>
#include "HttpLog.h"
#include "HTTPSRecordResolver.h"
#include "NSSErrorsService.h"
#include "base/basictypes.h"
#include "mozilla/Components.h"
#include "mozilla/glean/GleanMetrics.h"
#include "mozilla/net/SSLTokensCache.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Tokenizer.h"
#include "mozilla/StaticPrefs_network.h"
#include "MockHttpAuth.h"
#include "nsCRT.h"
#include "nsComponentManagerUtils.h" // do_CreateInstance
#include "nsHttpBasicAuth.h"
#include "nsHttpChannel.h"
#include "nsHttpChunkedDecoder.h"
#include "nsHttpDigestAuth.h"
#include "nsHttpHandler.h"
#include "nsHttpNTLMAuth.h"
#ifdef MOZ_AUTH_EXTENSION
# include "nsHttpNegotiateAuth.h"
#endif
#include "nsHttpRequestHead.h"
#include "nsHttpResponseHead.h"
#include "nsICancelable.h"
#include "nsIClassOfService.h"
#include "nsIDNSByTypeRecord.h"
#include "nsIDNSRecord.h"
#include "nsIDNSService.h"
#include "nsIEventTarget.h"
#include "nsIHttpActivityObserver.h"
#include "nsIHttpAuthenticator.h"
#include "nsIInputStream.h"
#include "nsIInputStreamPriority.h"
#include "nsIMultiplexInputStream.h"
#include "nsIOService.h"
#include "nsIPipe.h"
#include "nsIRequestContext.h"
#include "nsISeekableStream.h"
#include "nsITLSSocketControl.h"
#include "nsIThrottledInputChannel.h"
#include "nsITransport.h"
#include "nsMultiplexInputStream.h"
#include "nsNetCID.h"
#include "nsNetUtil.h"
#include "nsQueryObject.h"
#include "nsSocketTransportService2.h"
#include "nsStringStream.h"
#include "nsTransportUtils.h"
#include "sslerr.h"
#include "SpeculativeTransaction.h"
//-----------------------------------------------------------------------------
// Place a limit on how much non-compliant HTTP can be skipped while
// looking for a response header
#define MAX_INVALID_RESPONSE_BODY_SIZE (1024 * 128)
using namespace mozilla::net;
namespace mozilla::net {
//-----------------------------------------------------------------------------
// nsHttpTransaction <public>
//-----------------------------------------------------------------------------
nsHttpTransaction::nsHttpTransaction() {
LOG(("Creating nsHttpTransaction @%p\n", this));
#ifdef MOZ_VALGRIND
memset(&mSelfAddr, 0, sizeof(NetAddr));
memset(&mPeerAddr, 0, sizeof(NetAddr));
#endif
mSelfAddr.raw.family = PR_AF_UNSPEC;
mPeerAddr.raw.family = PR_AF_UNSPEC;
mThroughCaptivePortal = gHttpHandler->GetThroughCaptivePortal();
}
void nsHttpTransaction::ResumeReading() {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (!mReadingStopped) {
return;
}
LOG(("nsHttpTransaction::ResumeReading %p", this));
mReadingStopped = false;
// This with either reengage the limit when still throttled in WriteSegments
// or simply reset to allow unlimeted reading again.
mThrottlingReadAllowance = THROTTLE_NO_LIMIT;
if (mConnection) {
mConnection->TransactionHasDataToRecv(this);
nsresult rv = mConnection->ResumeRecv();
if (NS_FAILED(rv)) {
LOG((" resume failed with rv=%" PRIx32, static_cast<uint32_t>(rv)));
}
}
}
bool nsHttpTransaction::EligibleForThrottling() const {
return (mClassOfServiceFlags &
(nsIClassOfService::Throttleable | nsIClassOfService::DontThrottle |
nsIClassOfService::Leader | nsIClassOfService::Unblocked)) ==
nsIClassOfService::Throttleable;
}
void nsHttpTransaction::SetClassOfService(ClassOfService cos) {
if (mClosed) {
return;
}
bool wasThrottling = EligibleForThrottling();
mClassOfServiceFlags = cos.Flags();
mClassOfServiceIncremental = cos.Incremental();
bool isThrottling = EligibleForThrottling();
if (mConnection && wasThrottling != isThrottling) {
// Do nothing until we are actually activated. For now
// only remember the throttle flag. Call to UpdateActiveTransaction
// would add this transaction to the list too early.
gHttpHandler->ConnMgr()->UpdateActiveTransaction(this);
if (mReadingStopped && !isThrottling) {
ResumeReading();
}
}
}
class ReleaseOnSocketThread final : public mozilla::Runnable {
public:
explicit ReleaseOnSocketThread(nsTArray<nsCOMPtr<nsISupports>>&& aDoomed)
: Runnable("ReleaseOnSocketThread"), mDoomed(std::move(aDoomed)) {}
NS_IMETHOD
Run() override {
mDoomed.Clear();
return NS_OK;
}
void Dispatch() {
nsCOMPtr<nsIEventTarget> sts =
do_GetService("@mozilla.org/network/socket-transport-service;1");
Unused << sts->Dispatch(this, nsIEventTarget::DISPATCH_NORMAL);
}
private:
virtual ~ReleaseOnSocketThread() = default;
nsTArray<nsCOMPtr<nsISupports>> mDoomed;
};
nsHttpTransaction::~nsHttpTransaction() {
LOG(("Destroying nsHttpTransaction @%p\n", this));
if (mPushedStream) {
mPushedStream->OnPushFailed();
mPushedStream = nullptr;
}
if (mTokenBucketCancel) {
mTokenBucketCancel->Cancel(NS_ERROR_ABORT);
mTokenBucketCancel = nullptr;
}
// Force the callbacks and connection to be released right now
{
MutexAutoLock lock(mLock);
mCallbacks = nullptr;
}
mEarlyHintObserver = nullptr;
delete mResponseHead;
delete mChunkedDecoder;
ReleaseBlockingTransaction();
nsTArray<nsCOMPtr<nsISupports>> arrayToRelease;
if (mConnection) {
arrayToRelease.AppendElement(mConnection.forget());
}
if (!arrayToRelease.IsEmpty()) {
RefPtr<ReleaseOnSocketThread> r =
new ReleaseOnSocketThread(std::move(arrayToRelease));
r->Dispatch();
}
}
nsresult nsHttpTransaction::Init(
uint32_t caps, nsHttpConnectionInfo* cinfo, nsHttpRequestHead* requestHead,
nsIInputStream* requestBody, uint64_t requestContentLength,
bool requestBodyHasHeaders, nsIEventTarget* target,
nsIInterfaceRequestor* callbacks, nsITransportEventSink* eventsink,
uint64_t browserId, HttpTrafficCategory trafficCategory,
nsIRequestContext* requestContext, ClassOfService classOfService,
uint32_t initialRwin, bool responseTimeoutEnabled, uint64_t channelId,
TransactionObserverFunc&& transactionObserver,
OnPushCallback&& aOnPushCallback,
HttpTransactionShell* transWithPushedStream, uint32_t aPushedStreamId) {
nsresult rv;
LOG1(("nsHttpTransaction::Init [this=%p caps=%x]\n", this, caps));
if (AppShutdown::IsInOrBeyond(ShutdownPhase::AppShutdownConfirmed)) {
LOG(
("nsHttpTransaction aborting init because of app"
"shutdown"));
return NS_ERROR_ILLEGAL_DURING_SHUTDOWN;
}
MOZ_ASSERT(cinfo);
MOZ_ASSERT(requestHead);
MOZ_ASSERT(target);
MOZ_ASSERT(target->IsOnCurrentThread());
mChannelId = channelId;
mTransactionObserver = std::move(transactionObserver);
mOnPushCallback = std::move(aOnPushCallback);
mBrowserId = browserId;
mTrafficCategory = trafficCategory;
LOG1(("nsHttpTransaction %p SetRequestContext %p\n", this, requestContext));
mRequestContext = requestContext;
SetClassOfService(classOfService);
mResponseTimeoutEnabled = responseTimeoutEnabled;
mInitialRwin = initialRwin;
// create transport event sink proxy. it coalesces consecutive
// events of the same status type.
rv = net_NewTransportEventSinkProxy(getter_AddRefs(mTransportSink), eventsink,
target);
if (NS_FAILED(rv)) return rv;
mConnInfo = cinfo;
mCallbacks = callbacks;
mConsumerTarget = target;
mCaps = caps;
// eventsink is a nsHttpChannel when we expect "103 Early Hints" responses.
// We expect it in document requests and not e.g. in TRR requests.
mEarlyHintObserver = do_QueryInterface(eventsink);
if (requestHead->IsHead()) {
mNoContent = true;
}
// grab a weak reference to the request head
mRequestHead = requestHead;
mReqHeaderBuf = nsHttp::ConvertRequestHeadToString(
*requestHead, !!requestBody, requestBodyHasHeaders,
cinfo->UsingConnect());
if (LOG1_ENABLED()) {
LOG1(("http request [\n"));
LogHeaders(mReqHeaderBuf.get());
LOG1(("]\n"));
}
// report the request header
if (gHttpHandler->HttpActivityDistributorActivated()) {
nsCString requestBuf(mReqHeaderBuf);
NS_DispatchToMainThread(NS_NewRunnableFunction(
"ObserveHttpActivityWithArgs", [channelId(mChannelId), requestBuf]() {
if (!gHttpHandler) {
return;
}
gHttpHandler->ObserveHttpActivityWithArgs(
HttpActivityArgs(channelId),
NS_HTTP_ACTIVITY_TYPE_HTTP_TRANSACTION,
NS_HTTP_ACTIVITY_SUBTYPE_REQUEST_HEADER, PR_Now(), 0, requestBuf);
}));
}
// Create a string stream for the request header buf (the stream holds
// a non-owning reference to the request header data, so we MUST keep
// mReqHeaderBuf around).
nsCOMPtr<nsIInputStream> headers;
rv = NS_NewByteInputStream(getter_AddRefs(headers), mReqHeaderBuf,
NS_ASSIGNMENT_DEPEND);
if (NS_FAILED(rv)) return rv;
mHasRequestBody = !!requestBody;
if (mHasRequestBody && !requestContentLength) {
mHasRequestBody = false;
}
requestContentLength += mReqHeaderBuf.Length();
if (mHasRequestBody) {
// wrap the headers and request body in a multiplexed input stream.
nsCOMPtr<nsIMultiplexInputStream> multi;
rv = nsMultiplexInputStreamConstructor(NS_GET_IID(nsIMultiplexInputStream),
getter_AddRefs(multi));
if (NS_FAILED(rv)) return rv;
rv = multi->AppendStream(headers);
if (NS_FAILED(rv)) return rv;
rv = multi->AppendStream(requestBody);
if (NS_FAILED(rv)) return rv;
// wrap the multiplexed input stream with a buffered input stream, so
// that we write data in the largest chunks possible. this is actually
// necessary to workaround some common server bugs (see bug 137155).
nsCOMPtr<nsIInputStream> stream(do_QueryInterface(multi));
rv = NS_NewBufferedInputStream(getter_AddRefs(mRequestStream),
stream.forget(),
nsIOService::gDefaultSegmentSize);
if (NS_FAILED(rv)) return rv;
} else {
mRequestStream = headers;
}
nsCOMPtr<nsIThrottledInputChannel> throttled = do_QueryInterface(eventsink);
if (throttled) {
nsCOMPtr<nsIInputChannelThrottleQueue> queue;
rv = throttled->GetThrottleQueue(getter_AddRefs(queue));
// In case of failure, just carry on without throttling.
if (NS_SUCCEEDED(rv) && queue) {
nsCOMPtr<nsIAsyncInputStream> wrappedStream;
rv = queue->WrapStream(mRequestStream, getter_AddRefs(wrappedStream));
// Failure to throttle isn't sufficient reason to fail
// initialization
if (NS_SUCCEEDED(rv)) {
MOZ_ASSERT(wrappedStream != nullptr);
LOG(
("nsHttpTransaction::Init %p wrapping input stream using throttle "
"queue %p\n",
this, queue.get()));
mRequestStream = wrappedStream;
}
}
}
// make sure request content-length fits within js MAX_SAFE_INTEGER
mRequestSize = InScriptableRange(requestContentLength)
? static_cast<int64_t>(requestContentLength)
: -1;
// create pipe for response stream
NS_NewPipe2(getter_AddRefs(mPipeIn), getter_AddRefs(mPipeOut), true, true,
nsIOService::gDefaultSegmentSize,
nsIOService::gDefaultSegmentCount);
if (transWithPushedStream && aPushedStreamId) {
RefPtr<nsHttpTransaction> trans =
transWithPushedStream->AsHttpTransaction();
MOZ_ASSERT(trans);
mPushedStream = trans->TakePushedStreamById(aPushedStreamId);
}
bool forceUseHTTPSRR = StaticPrefs::network_dns_force_use_https_rr();
if ((gHttpHandler->UseHTTPSRRAsAltSvcEnabled() &&
!(mCaps & NS_HTTP_DISALLOW_HTTPS_RR)) ||
forceUseHTTPSRR) {
nsCOMPtr<nsIEventTarget> target;
Unused << gHttpHandler->GetSocketThreadTarget(getter_AddRefs(target));
if (target) {
if (StaticPrefs::network_dns_force_waiting_https_rr() ||
StaticPrefs::network_dns_echconfig_enabled() || forceUseHTTPSRR) {
mCaps |= NS_HTTP_FORCE_WAIT_HTTP_RR;
}
mResolver = new HTTPSRecordResolver(this);
nsCOMPtr<nsICancelable> dnsRequest;
rv = mResolver->FetchHTTPSRRInternal(target, getter_AddRefs(dnsRequest));
if (NS_SUCCEEDED(rv)) {
mHTTPSSVCReceivedStage = HTTPSSVC_NOT_PRESENT;
}
{
MutexAutoLock lock(mLock);
mDNSRequest.swap(dnsRequest);
if (NS_FAILED(rv)) {
MakeDontWaitHTTPSRR();
}
}
}
}
RefPtr<nsHttpChannel> httpChannel = do_QueryObject(eventsink);
RefPtr<WebTransportSessionEventListener> listener =
httpChannel ? httpChannel->GetWebTransportSessionEventListener()
: nullptr;
if (listener) {
mWebTransportSessionEventListener = std::move(listener);
}
return NS_OK;
}
static inline void CreateAndStartTimer(nsCOMPtr<nsITimer>& aTimer,
nsITimerCallback* aCallback,
uint32_t aTimeout) {
MOZ_DIAGNOSTIC_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!aTimer);
if (!aTimeout) {
return;
}
NS_NewTimerWithCallback(getter_AddRefs(aTimer), aCallback, aTimeout,
nsITimer::TYPE_ONE_SHOT);
}
void nsHttpTransaction::OnPendingQueueInserted(
const nsACString& aConnectionHashKey) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
{
MutexAutoLock lock(mLock);
mHashKeyOfConnectionEntry.Assign(aConnectionHashKey);
}
// Don't create mHttp3BackupTimer if HTTPS RR is in play.
if (mConnInfo->IsHttp3() && !mOrigConnInfo && !mConnInfo->GetWebTransport()) {
// Backup timer should only be created once.
if (!mHttp3BackupTimerCreated) {
CreateAndStartTimer(mHttp3BackupTimer, this,
StaticPrefs::network_http_http3_backup_timer_delay());
mHttp3BackupTimerCreated = true;
}
}
}
nsresult nsHttpTransaction::AsyncRead(nsIStreamListener* listener,
nsIRequest** pump) {
RefPtr<nsInputStreamPump> transactionPump;
nsresult rv =
nsInputStreamPump::Create(getter_AddRefs(transactionPump), mPipeIn);
NS_ENSURE_SUCCESS(rv, rv);
rv = transactionPump->AsyncRead(listener);
NS_ENSURE_SUCCESS(rv, rv);
transactionPump.forget(pump);
return NS_OK;
}
// This method should only be used on the socket thread
nsAHttpConnection* nsHttpTransaction::Connection() {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
return mConnection.get();
}
void nsHttpTransaction::SetH2WSConnRefTaken() {
if (!OnSocketThread()) {
nsCOMPtr<nsIRunnable> event =
NewRunnableMethod("nsHttpTransaction::SetH2WSConnRefTaken", this,
&nsHttpTransaction::SetH2WSConnRefTaken);
gSocketTransportService->Dispatch(event, NS_DISPATCH_NORMAL);
return;
}
}
UniquePtr<nsHttpResponseHead> nsHttpTransaction::TakeResponseHead() {
MOZ_ASSERT(!mResponseHeadTaken, "TakeResponseHead called 2x");
// Lock TakeResponseHead() against main thread
MutexAutoLock lock(mLock);
mResponseHeadTaken = true;
// Even in OnStartRequest() the headers won't be available if we were
// canceled
if (!mHaveAllHeaders) {
NS_WARNING("response headers not available or incomplete");
return nullptr;
}
return WrapUnique(std::exchange(mResponseHead, nullptr));
}
UniquePtr<nsHttpHeaderArray> nsHttpTransaction::TakeResponseTrailers() {
MOZ_ASSERT(!mResponseTrailersTaken, "TakeResponseTrailers called 2x");
// Lock TakeResponseTrailers() against main thread
MutexAutoLock lock(mLock);
mResponseTrailersTaken = true;
return std::move(mForTakeResponseTrailers);
}
void nsHttpTransaction::SetProxyConnectFailed() { mProxyConnectFailed = true; }
nsHttpRequestHead* nsHttpTransaction::RequestHead() { return mRequestHead; }
uint32_t nsHttpTransaction::Http1xTransactionCount() { return 1; }
nsresult nsHttpTransaction::TakeSubTransactions(
nsTArray<RefPtr<nsAHttpTransaction>>& outTransactions) {
return NS_ERROR_NOT_IMPLEMENTED;
}
//----------------------------------------------------------------------------
// nsHttpTransaction::nsAHttpTransaction
//----------------------------------------------------------------------------
void nsHttpTransaction::SetConnection(nsAHttpConnection* conn) {
{
MutexAutoLock lock(mLock);
mConnection = conn;
if (mConnection) {
mIsHttp3Used = mConnection->Version() == HttpVersion::v3_0;
}
}
}
void nsHttpTransaction::OnActivated() {
MOZ_ASSERT(OnSocketThread());
if (mActivated) {
return;
}
if (mTrafficCategory != HttpTrafficCategory::eInvalid) {
HttpTrafficAnalyzer* hta = gHttpHandler->GetHttpTrafficAnalyzer();
if (hta) {
hta->IncrementHttpTransaction(mTrafficCategory);
}
if (mConnection) {
mConnection->SetTrafficCategory(mTrafficCategory);
}
}
if (mConnection && mRequestHead &&
mConnection->Version() >= HttpVersion::v2_0) {
// So this is fun. On http/2, we want to send TE: trailers, to be
// spec-compliant. So we add it to the request head here. The fun part
// is that adding a header to the request head at this point has no
// effect on what we send on the wire, as the headers are already
// flattened (in Init()) by the time we get here. So the *real* adding
// of the header happens in the h2 compression code. We still have to
// add the header to the request head here, though, so that devtools can
// show that we sent the header. FUN!
Unused << mRequestHead->SetHeader(nsHttp::TE, "trailers"_ns);
}
mActivated = true;
gHttpHandler->ConnMgr()->AddActiveTransaction(this);
}
void nsHttpTransaction::GetSecurityCallbacks(nsIInterfaceRequestor** cb) {
MutexAutoLock lock(mLock);
nsCOMPtr<nsIInterfaceRequestor> tmp(mCallbacks);
tmp.forget(cb);
}
void nsHttpTransaction::SetSecurityCallbacks(
nsIInterfaceRequestor* aCallbacks) {
{
MutexAutoLock lock(mLock);
mCallbacks = aCallbacks;
}
if (gSocketTransportService) {
RefPtr<UpdateSecurityCallbacks> event =
new UpdateSecurityCallbacks(this, aCallbacks);
gSocketTransportService->Dispatch(event, nsIEventTarget::DISPATCH_NORMAL);
}
}
void nsHttpTransaction::OnTransportStatus(nsITransport* transport,
nsresult status, int64_t progress) {
LOG1(("nsHttpTransaction::OnSocketStatus [this=%p status=%" PRIx32
" progress=%" PRId64 "]\n",
this, static_cast<uint32_t>(status), progress));
if (status == NS_NET_STATUS_CONNECTED_TO ||
status == NS_NET_STATUS_WAITING_FOR) {
if (mConnection) {
MutexAutoLock lock(mLock);
mConnection->GetSelfAddr(&mSelfAddr);
mConnection->GetPeerAddr(&mPeerAddr);
mResolvedByTRR = mConnection->ResolvedByTRR();
mEffectiveTRRMode = mConnection->EffectiveTRRMode();
mTRRSkipReason = mConnection->TRRSkipReason();
mEchConfigUsed = mConnection->GetEchConfigUsed();
}
}
// If the timing is enabled, and we are not using a persistent connection
// then the requestStart timestamp will be null, so we mark the timestamps
// for domainLookupStart/End and connectStart/End
// If we are using a persistent connection they will remain null,
// and the correct value will be returned in Performance.
if (TimingEnabled() && GetRequestStart().IsNull()) {
if (status == NS_NET_STATUS_RESOLVING_HOST) {
SetDomainLookupStart(TimeStamp::Now(), true);
} else if (status == NS_NET_STATUS_RESOLVED_HOST) {
SetDomainLookupEnd(TimeStamp::Now());
} else if (status == NS_NET_STATUS_CONNECTING_TO) {
SetConnectStart(TimeStamp::Now());
} else if (status == NS_NET_STATUS_CONNECTED_TO) {
TimeStamp tnow = TimeStamp::Now();
SetConnectEnd(tnow, true);
{
MutexAutoLock lock(mLock);
mTimings.tcpConnectEnd = tnow;
}
} else if (status == NS_NET_STATUS_TLS_HANDSHAKE_STARTING) {
{
MutexAutoLock lock(mLock);
mTimings.secureConnectionStart = TimeStamp::Now();
}
} else if (status == NS_NET_STATUS_TLS_HANDSHAKE_ENDED) {
SetConnectEnd(TimeStamp::Now(), false);
} else if (status == NS_NET_STATUS_SENDING_TO) {
// Set the timestamp to Now(), only if it null
SetRequestStart(TimeStamp::Now(), true);
}
}
if (!mTransportSink) return;
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// Need to do this before the STATUS_RECEIVING_FROM check below, to make
// sure that the activity distributor gets told about all status events.
// upon STATUS_WAITING_FOR; report request body sent
if ((mHasRequestBody) && (status == NS_NET_STATUS_WAITING_FOR)) {
gHttpHandler->ObserveHttpActivityWithArgs(
HttpActivityArgs(mChannelId), NS_HTTP_ACTIVITY_TYPE_HTTP_TRANSACTION,
NS_HTTP_ACTIVITY_SUBTYPE_REQUEST_BODY_SENT, PR_Now(), 0, ""_ns);
}
// report the status and progress
gHttpHandler->ObserveHttpActivityWithArgs(
HttpActivityArgs(mChannelId), NS_HTTP_ACTIVITY_TYPE_SOCKET_TRANSPORT,
static_cast<uint32_t>(status), PR_Now(), progress, ""_ns);
// nsHttpChannel synthesizes progress events in OnDataAvailable
if (status == NS_NET_STATUS_RECEIVING_FROM) return;
int64_t progressMax;
if (status == NS_NET_STATUS_SENDING_TO) {
// suppress progress when only writing request headers
if (!mHasRequestBody) {
LOG1(
("nsHttpTransaction::OnTransportStatus %p "
"SENDING_TO without request body\n",
this));
return;
}
if (mReader) {
// A mRequestStream method is on the stack - wait.
LOG(
("nsHttpTransaction::OnSocketStatus [this=%p] "
"Skipping Re-Entrant NS_NET_STATUS_SENDING_TO\n",
this));
// its ok to coalesce several of these into one deferred event
mDeferredSendProgress = true;
return;
}
nsCOMPtr<nsITellableStream> tellable = do_QueryInterface(mRequestStream);
if (!tellable) {
LOG1(
("nsHttpTransaction::OnTransportStatus %p "
"SENDING_TO without tellable request stream\n",
this));
MOZ_ASSERT(
!mRequestStream,
"mRequestStream should be tellable as it was wrapped in "
"nsBufferedInputStream, which provides the tellable interface even "
"when wrapping non-tellable streams.");
progress = 0;
} else {
int64_t prog = 0;
tellable->Tell(&prog);
progress = prog;
}
// when uploading, we include the request headers in the progress
// notifications.
progressMax = mRequestSize;
} else {
progress = 0;
progressMax = 0;
}
mTransportSink->OnTransportStatus(transport, status, progress, progressMax);
}
bool nsHttpTransaction::IsDone() { return mTransactionDone; }
nsresult nsHttpTransaction::Status() { return mStatus; }
uint32_t nsHttpTransaction::Caps() { return mCaps & ~mCapsToClear; }
void nsHttpTransaction::SetDNSWasRefreshed() {
MOZ_ASSERT(mConsumerTarget->IsOnCurrentThread(),
"SetDNSWasRefreshed on target thread only!");
mCapsToClear |= NS_HTTP_REFRESH_DNS;
}
nsresult nsHttpTransaction::ReadRequestSegment(nsIInputStream* stream,
void* closure, const char* buf,
uint32_t offset, uint32_t count,
uint32_t* countRead) {
// For the tracking of sent bytes that we used to do for the networkstats
// API, please see bug 1318883 where it was removed.
nsHttpTransaction* trans = (nsHttpTransaction*)closure;
nsresult rv = trans->mReader->OnReadSegment(buf, count, countRead);
if (NS_FAILED(rv)) {
trans->MaybeRefreshSecurityInfo();
return rv;
}
LOG(("nsHttpTransaction::ReadRequestSegment %p read=%u", trans, *countRead));
trans->mSentData = true;
return NS_OK;
}
nsresult nsHttpTransaction::ReadSegments(nsAHttpSegmentReader* reader,
uint32_t count, uint32_t* countRead) {
LOG(("nsHttpTransaction::ReadSegments %p", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mTransactionDone) {
*countRead = 0;
return mStatus;
}
if (!m0RTTInProgress) {
MaybeCancelFallbackTimer();
}
if (!mConnected && !m0RTTInProgress) {
mConnected = true;
MaybeRefreshSecurityInfo();
}
mDeferredSendProgress = false;
mReader = reader;
nsresult rv =
mRequestStream->ReadSegments(ReadRequestSegment, this, count, countRead);
mReader = nullptr;
if (m0RTTInProgress && (mEarlyDataDisposition == EARLY_NONE) &&
NS_SUCCEEDED(rv) && (*countRead > 0)) {
LOG(("mEarlyDataDisposition = EARLY_SENT"));
mEarlyDataDisposition = EARLY_SENT;
}
if (mDeferredSendProgress && mConnection) {
// to avoid using mRequestStream concurrently, OnTransportStatus()
// did not report upload status off the ReadSegments() stack from
// nsSocketTransport do it now.
OnTransportStatus(mConnection->Transport(), NS_NET_STATUS_SENDING_TO, 0);
}
mDeferredSendProgress = false;
if (mForceRestart) {
// The forceRestart condition was dealt with on the stack, but it did not
// clear the flag because nsPipe in the readsegment stack clears out
// return codes, so we need to use the flag here as a cue to return
// ERETARGETED
if (NS_SUCCEEDED(rv)) {
rv = NS_BINDING_RETARGETED;
}
mForceRestart = false;
}
// if read would block then we need to AsyncWait on the request stream.
// have callback occur on socket thread so we stay synchronized.
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
nsCOMPtr<nsIAsyncInputStream> asyncIn = do_QueryInterface(mRequestStream);
if (asyncIn) {
nsCOMPtr<nsIEventTarget> target;
Unused << gHttpHandler->GetSocketThreadTarget(getter_AddRefs(target));
if (target) {
asyncIn->AsyncWait(this, 0, 0, target);
} else {
NS_ERROR("no socket thread event target");
rv = NS_ERROR_UNEXPECTED;
}
}
}
return rv;
}
nsresult nsHttpTransaction::WritePipeSegment(nsIOutputStream* stream,
void* closure, char* buf,
uint32_t offset, uint32_t count,
uint32_t* countWritten) {
nsHttpTransaction* trans = (nsHttpTransaction*)closure;
if (trans->mTransactionDone) return NS_BASE_STREAM_CLOSED; // stop iterating
if (trans->TimingEnabled()) {
// Set the timestamp to Now(), only if it null
trans->SetResponseStart(TimeStamp::Now(), true);
}
// Bug 1153929 - add checks to fix windows crash
MOZ_ASSERT(trans->mWriter);
if (!trans->mWriter) {
return NS_ERROR_UNEXPECTED;
}
nsresult rv;
//
// OK, now let the caller fill this segment with data.
//
rv = trans->mWriter->OnWriteSegment(buf, count, countWritten);
if (NS_FAILED(rv)) {
trans->MaybeRefreshSecurityInfo();
return rv; // caller didn't want to write anything
}
LOG(("nsHttpTransaction::WritePipeSegment %p written=%u", trans,
*countWritten));
MOZ_ASSERT(*countWritten > 0, "bad writer");
trans->mReceivedData = true;
trans->mTransferSize += *countWritten;
// Let the transaction "play" with the buffer. It is free to modify
// the contents of the buffer and/or modify countWritten.
// - Bytes in HTTP headers don't count towards countWritten, so the input
// side of pipe (aka nsHttpChannel's mTransactionPump) won't hit
// OnInputStreamReady until all headers have been parsed.
//
rv = trans->ProcessData(buf, *countWritten, countWritten);
if (NS_FAILED(rv)) trans->Close(rv);
return rv; // failure code only stops WriteSegments; it is not propagated.
}
bool nsHttpTransaction::ShouldThrottle() {
if (mClassOfServiceFlags & nsIClassOfService::DontThrottle) {
// We deliberately don't touch the throttling window here since
// DontThrottle requests are expected to be long-standing media
// streams and would just unnecessarily block running downloads.
// If we want to ballance bandwidth for media responses against
// running downloads, we need to find something smarter like
// changing the suspend/resume throttling intervals at-runtime.
return false;
}
if (!gHttpHandler->ConnMgr()->ShouldThrottle(this)) {
// We are not obligated to throttle
return false;
}
if (mContentRead < 16000) {
// Let the first bytes go, it may also well be all the content we get
LOG(("nsHttpTransaction::ShouldThrottle too few content (%" PRIi64
") this=%p",
mContentRead, this));
return false;
}
if (!(mClassOfServiceFlags & nsIClassOfService::Throttleable) &&
gHttpHandler->ConnMgr()->IsConnEntryUnderPressure(mConnInfo)) {
LOG(("nsHttpTransaction::ShouldThrottle entry pressure this=%p", this));
// This is expensive to check (two hashtable lookups) but may help
// freeing connections for active tab transactions.
// Checking this only for transactions that are not explicitly marked
// as throttleable because trackers and (specially) downloads should
// keep throttling even under pressure.
return false;
}
return true;
}
void nsHttpTransaction::DontReuseConnection() {
LOG(("nsHttpTransaction::DontReuseConnection %p\n", this));
if (!OnSocketThread()) {
LOG(("DontReuseConnection %p not on socket thread\n", this));
nsCOMPtr<nsIRunnable> event =
NewRunnableMethod("nsHttpTransaction::DontReuseConnection", this,
&nsHttpTransaction::DontReuseConnection);
gSocketTransportService->Dispatch(event, NS_DISPATCH_NORMAL);
return;
}
if (mConnection) {
mConnection->DontReuse();
}
}
nsresult nsHttpTransaction::WriteSegments(nsAHttpSegmentWriter* writer,
uint32_t count,
uint32_t* countWritten) {
LOG(("nsHttpTransaction::WriteSegments %p", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mTransactionDone) {
return NS_SUCCEEDED(mStatus) ? NS_BASE_STREAM_CLOSED : mStatus;
}
if (ShouldThrottle()) {
if (mThrottlingReadAllowance == THROTTLE_NO_LIMIT) { // no limit set
// V1: ThrottlingReadLimit() returns 0
mThrottlingReadAllowance = gHttpHandler->ThrottlingReadLimit();
}
} else {
mThrottlingReadAllowance = THROTTLE_NO_LIMIT; // don't limit
}
if (mThrottlingReadAllowance == 0) { // depleted
if (gHttpHandler->ConnMgr()->CurrentBrowserId() != mBrowserId) {
nsHttp::NotifyActiveTabLoadOptimization();
}
// Must remember that we have to call ResumeRecv() on our connection when
// called back by the conn manager to resume reading.
LOG(("nsHttpTransaction::WriteSegments %p response throttled", this));
mReadingStopped = true;
// This makes the underlaying connection or stream wait for explicit resume.
// For h1 this means we stop reading from the socket.
// For h2 this means we stop updating recv window for the stream.
return NS_BASE_STREAM_WOULD_BLOCK;
}
mWriter = writer;
if (!mPipeOut) {
return NS_ERROR_UNEXPECTED;
}
if (mThrottlingReadAllowance > 0) {
LOG(("nsHttpTransaction::WriteSegments %p limiting read from %u to %d",
this, count, mThrottlingReadAllowance));
count = std::min(count, static_cast<uint32_t>(mThrottlingReadAllowance));
}
nsresult rv =
mPipeOut->WriteSegments(WritePipeSegment, this, count, countWritten);
mWriter = nullptr;
if (mForceRestart) {
// The forceRestart condition was dealt with on the stack, but it did not
// clear the flag because nsPipe in the writesegment stack clears out
// return codes, so we need to use the flag here as a cue to return
// ERETARGETED
if (NS_SUCCEEDED(rv)) {
rv = NS_BINDING_RETARGETED;
}
mForceRestart = false;
}
// if pipe would block then we need to AsyncWait on it. have callback
// occur on socket thread so we stay synchronized.
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
nsCOMPtr<nsIEventTarget> target;
Unused << gHttpHandler->GetSocketThreadTarget(getter_AddRefs(target));
if (target) {
mPipeOut->AsyncWait(this, 0, 0, target);
mWaitingOnPipeOut = true;
} else {
NS_ERROR("no socket thread event target");
rv = NS_ERROR_UNEXPECTED;
}
} else if (mThrottlingReadAllowance > 0 && NS_SUCCEEDED(rv)) {
MOZ_ASSERT(count >= *countWritten);
mThrottlingReadAllowance -= *countWritten;
}
return rv;
}
bool nsHttpTransaction::ProxyConnectFailed() { return mProxyConnectFailed; }
bool nsHttpTransaction::DataSentToChildProcess() { return false; }
already_AddRefed<nsITransportSecurityInfo> nsHttpTransaction::SecurityInfo() {
MutexAutoLock lock(mLock);
return do_AddRef(mSecurityInfo);
}
bool nsHttpTransaction::HasStickyConnection() const {
return mCaps & NS_HTTP_STICKY_CONNECTION;
}
bool nsHttpTransaction::ResponseIsComplete() { return mResponseIsComplete; }
int64_t nsHttpTransaction::GetTransferSize() { return mTransferSize; }
int64_t nsHttpTransaction::GetRequestSize() { return mRequestSize; }
bool nsHttpTransaction::IsHttp3Used() { return mIsHttp3Used; }
bool nsHttpTransaction::Http2Disabled() const {
return mCaps & NS_HTTP_DISALLOW_SPDY;
}
bool nsHttpTransaction::Http3Disabled() const {
return mCaps & NS_HTTP_DISALLOW_HTTP3;
}
already_AddRefed<nsHttpConnectionInfo> nsHttpTransaction::GetConnInfo() const {
RefPtr<nsHttpConnectionInfo> connInfo = mConnInfo->Clone();
return connInfo.forget();
}
already_AddRefed<Http2PushedStreamWrapper>
nsHttpTransaction::TakePushedStreamById(uint32_t aStreamId) {
MOZ_ASSERT(mConsumerTarget->IsOnCurrentThread());
MOZ_ASSERT(aStreamId);
auto entry = mIDToStreamMap.Lookup(aStreamId);
if (entry) {
RefPtr<Http2PushedStreamWrapper> stream = entry.Data();
entry.Remove();
return stream.forget();
}
return nullptr;
}
void nsHttpTransaction::OnPush(Http2PushedStreamWrapper* aStream) {
LOG(("nsHttpTransaction::OnPush %p aStream=%p", this, aStream));
MOZ_ASSERT(aStream);
MOZ_ASSERT(mOnPushCallback);
MOZ_ASSERT(mConsumerTarget);
RefPtr<Http2PushedStreamWrapper> stream = aStream;
if (!mConsumerTarget->IsOnCurrentThread()) {
RefPtr<nsHttpTransaction> self = this;
if (NS_FAILED(mConsumerTarget->Dispatch(
NS_NewRunnableFunction("nsHttpTransaction::OnPush",
[self, stream]() { self->OnPush(stream); }),
NS_DISPATCH_NORMAL))) {
stream->OnPushFailed();
}
return;
}
mIDToStreamMap.WithEntryHandle(stream->StreamID(), [&](auto&& entry) {
MOZ_ASSERT(!entry);
entry.OrInsert(stream);
});
if (NS_FAILED(mOnPushCallback(stream->StreamID(), stream->GetResourceUrl(),
stream->GetRequestString(), this))) {
stream->OnPushFailed();
mIDToStreamMap.Remove(stream->StreamID());
}
}
nsHttpTransaction* nsHttpTransaction::AsHttpTransaction() { return this; }
HttpTransactionParent* nsHttpTransaction::AsHttpTransactionParent() {
return nullptr;
}
nsHttpTransaction::HTTPSSVC_CONNECTION_FAILED_REASON
nsHttpTransaction::ErrorCodeToFailedReason(nsresult aErrorCode) {
HTTPSSVC_CONNECTION_FAILED_REASON reason = HTTPSSVC_CONNECTION_OTHERS;
switch (aErrorCode) {
case NS_ERROR_UNKNOWN_HOST:
reason = HTTPSSVC_CONNECTION_UNKNOWN_HOST;
break;
case NS_ERROR_CONNECTION_REFUSED:
reason = HTTPSSVC_CONNECTION_UNREACHABLE;
break;
default:
if (m421Received) {
reason = HTTPSSVC_CONNECTION_421_RECEIVED;
} else if (NS_ERROR_GET_MODULE(aErrorCode) == NS_ERROR_MODULE_SECURITY) {
reason = HTTPSSVC_CONNECTION_SECURITY_ERROR;
}
break;
}
return reason;
}
bool nsHttpTransaction::PrepareSVCBRecordsForRetry(
const nsACString& aFailedDomainName, const nsACString& aFailedAlpn,
bool& aAllRecordsHaveEchConfig) {
MOZ_ASSERT(mRecordsForRetry.IsEmpty());
if (!mHTTPSSVCRecord) {
return false;
}
// If we already failed to connect with h3, don't select records that supports
// h3.
bool noHttp3 = mCaps & NS_HTTP_DISALLOW_HTTP3;
bool unused;
nsTArray<RefPtr<nsISVCBRecord>> records;
Unused << mHTTPSSVCRecord->GetAllRecordsWithEchConfig(
mCaps & NS_HTTP_DISALLOW_SPDY, noHttp3, &aAllRecordsHaveEchConfig,
&unused, records);
// Note that it's possible that we can't get any usable record here. For
// example, when http3 connection is failed, we won't select records with
// http3 alpn.
// If not all records have echConfig, we'll directly fallback to the origin
// server.
if (!aAllRecordsHaveEchConfig) {
return false;
}
// Take the records behind the failed one and put them into mRecordsForRetry.
for (const auto& record : records) {
nsAutoCString name;
record->GetName(name);
nsAutoCString alpn;
nsresult rv = record->GetSelectedAlpn(alpn);
if (name == aFailedDomainName) {
// If the record has no alpn or the alpn is already tried, we skip this
// record.
if (NS_FAILED(rv) || alpn == aFailedAlpn) {
continue;
}
}
mRecordsForRetry.InsertElementAt(0, record);
}
// Set mHTTPSSVCRecord to null to avoid this function being executed twice.
mHTTPSSVCRecord = nullptr;
return !mRecordsForRetry.IsEmpty();
}
already_AddRefed<nsHttpConnectionInfo>
nsHttpTransaction::PrepareFastFallbackConnInfo(bool aEchConfigUsed) {
MOZ_ASSERT(mHTTPSSVCRecord && mOrigConnInfo);
RefPtr<nsHttpConnectionInfo> fallbackConnInfo;
nsCOMPtr<nsISVCBRecord> fastFallbackRecord;
Unused << mHTTPSSVCRecord->GetServiceModeRecord(
mCaps & NS_HTTP_DISALLOW_SPDY, true, getter_AddRefs(fastFallbackRecord));
if (fastFallbackRecord && aEchConfigUsed) {
nsAutoCString echConfig;
Unused << fastFallbackRecord->GetEchConfig(echConfig);
if (echConfig.IsEmpty()) {
fastFallbackRecord = nullptr;
}
}
if (!fastFallbackRecord) {
if (aEchConfigUsed) {
LOG(
("nsHttpTransaction::PrepareFastFallbackConnInfo [this=%p] no record "
"can be used",
this));
return nullptr;
}
if (mOrigConnInfo->IsHttp3()) {
mOrigConnInfo->CloneAsDirectRoute(getter_AddRefs(fallbackConnInfo));
} else {
fallbackConnInfo = mOrigConnInfo;
}
return fallbackConnInfo.forget();
}
fallbackConnInfo =
mOrigConnInfo->CloneAndAdoptHTTPSSVCRecord(fastFallbackRecord);
return fallbackConnInfo.forget();
}
void nsHttpTransaction::PrepareConnInfoForRetry(nsresult aReason) {
LOG(("nsHttpTransaction::PrepareConnInfoForRetry [this=%p reason=%" PRIx32
"]",
this, static_cast<uint32_t>(aReason)));
RefPtr<nsHttpConnectionInfo> failedConnInfo = mConnInfo->Clone();
mConnInfo = nullptr;
bool echConfigUsed =
gHttpHandler->EchConfigEnabled(failedConnInfo->IsHttp3()) &&
!failedConnInfo->GetEchConfig().IsEmpty();
if (mFastFallbackTriggered) {
mFastFallbackTriggered = false;
MOZ_ASSERT(mBackupConnInfo);
mConnInfo.swap(mBackupConnInfo);
return;
}
auto useOrigConnInfoToRetry = [&]() {
mOrigConnInfo.swap(mConnInfo);
if (mConnInfo->IsHttp3() &&
((mCaps & NS_HTTP_DISALLOW_HTTP3) ||
gHttpHandler->IsHttp3Excluded(mConnInfo->GetRoutedHost().IsEmpty()
? mConnInfo->GetOrigin()
: mConnInfo->GetRoutedHost()))) {
RefPtr<nsHttpConnectionInfo> ci;
mConnInfo->CloneAsDirectRoute(getter_AddRefs(ci));
mConnInfo = ci;
}
};
if (!echConfigUsed) {
LOG((" echConfig is not used, fallback to origin conn info"));
useOrigConnInfoToRetry();
return;
}
Telemetry::HistogramID id = Telemetry::TRANSACTION_ECH_RETRY_OTHERS_COUNT;
auto updateCount = MakeScopeExit([&] {
auto entry = mEchRetryCounterMap.Lookup(id);
MOZ_ASSERT(entry, "table not initialized");
if (entry) {
*entry += 1;
}
});
if (aReason == psm::GetXPCOMFromNSSError(SSL_ERROR_ECH_RETRY_WITHOUT_ECH)) {
LOG((" Got SSL_ERROR_ECH_RETRY_WITHOUT_ECH, use empty echConfig to retry"));
failedConnInfo->SetEchConfig(EmptyCString());
failedConnInfo.swap(mConnInfo);
id = Telemetry::TRANSACTION_ECH_RETRY_WITHOUT_ECH_COUNT;
return;
}
if (aReason == psm::GetXPCOMFromNSSError(SSL_ERROR_ECH_RETRY_WITH_ECH)) {
LOG((" Got SSL_ERROR_ECH_RETRY_WITH_ECH, use retry echConfig"));
MOZ_ASSERT(mConnection);
nsCOMPtr<nsITLSSocketControl> socketControl;
if (mConnection) {
mConnection->GetTLSSocketControl(getter_AddRefs(socketControl));
}
MOZ_ASSERT(socketControl);
nsAutoCString retryEchConfig;
if (socketControl &&
NS_SUCCEEDED(socketControl->GetRetryEchConfig(retryEchConfig))) {
MOZ_ASSERT(!retryEchConfig.IsEmpty());
failedConnInfo->SetEchConfig(retryEchConfig);
failedConnInfo.swap(mConnInfo);
}
id = Telemetry::TRANSACTION_ECH_RETRY_WITH_ECH_COUNT;
return;
}
// Note that we retry the connection not only for SSL_ERROR_ECH_FAILED, but
// also for all failure cases.
if (aReason == psm::GetXPCOMFromNSSError(SSL_ERROR_ECH_FAILED) ||
NS_FAILED(aReason)) {
LOG((" Got SSL_ERROR_ECH_FAILED, try other records"));
if (aReason == psm::GetXPCOMFromNSSError(SSL_ERROR_ECH_FAILED)) {
id = Telemetry::TRANSACTION_ECH_RETRY_ECH_FAILED_COUNT;
}
if (mRecordsForRetry.IsEmpty()) {
if (mHTTPSSVCRecord) {
bool allRecordsHaveEchConfig = true;
if (!PrepareSVCBRecordsForRetry(failedConnInfo->GetRoutedHost(),
failedConnInfo->GetNPNToken(),
allRecordsHaveEchConfig)) {
LOG(
(" Can't find other records with echConfig, "
"allRecordsHaveEchConfig=%d",
allRecordsHaveEchConfig));
if (gHttpHandler->FallbackToOriginIfConfigsAreECHAndAllFailed() ||
!allRecordsHaveEchConfig) {
useOrigConnInfoToRetry();
}
return;
}
} else {
LOG((" No available records to retry"));
if (gHttpHandler->FallbackToOriginIfConfigsAreECHAndAllFailed()) {
useOrigConnInfoToRetry();
}
return;
}
}
if (LOG5_ENABLED()) {
LOG(("SvcDomainName to retry: ["));
for (const auto& r : mRecordsForRetry) {
nsAutoCString name;
r->GetName(name);
nsAutoCString alpn;
r->GetSelectedAlpn(alpn);
LOG((" name=%s alpn=%s", name.get(), alpn.get()));
}
LOG(("]"));
}
RefPtr<nsISVCBRecord> recordsForRetry =
mRecordsForRetry.PopLastElement().forget();
mConnInfo = mOrigConnInfo->CloneAndAdoptHTTPSSVCRecord(recordsForRetry);
}
}
void nsHttpTransaction::MaybeReportFailedSVCDomain(
nsresult aReason, nsHttpConnectionInfo* aFailedConnInfo) {
if (aReason == psm::GetXPCOMFromNSSError(SSL_ERROR_ECH_RETRY_WITHOUT_ECH) ||
aReason != psm::GetXPCOMFromNSSError(SSL_ERROR_ECH_RETRY_WITH_ECH)) {
return;
}
Telemetry::Accumulate(Telemetry::DNS_HTTPSSVC_CONNECTION_FAILED_REASON,
ErrorCodeToFailedReason(aReason));
nsCOMPtr<nsIDNSService> dns = do_GetService(NS_DNSSERVICE_CONTRACTID);
if (dns) {
const nsCString& failedHost = aFailedConnInfo->GetRoutedHost().IsEmpty()
? aFailedConnInfo->GetOrigin()
: aFailedConnInfo->GetRoutedHost();
LOG(("add failed domain name [%s] -> [%s] to exclusion list",
aFailedConnInfo->GetOrigin().get(), failedHost.get()));
Unused << dns->ReportFailedSVCDomainName(aFailedConnInfo->GetOrigin(),
failedHost);
}
}
bool nsHttpTransaction::ShouldRestartOn0RttError(nsresult reason) {
LOG(
("nsHttpTransaction::ShouldRestartOn0RttError [this=%p, "
"mEarlyDataWasAvailable=%d error=%" PRIx32 "]\n",
this, mEarlyDataWasAvailable, static_cast<uint32_t>(reason)));
return StaticPrefs::network_http_early_data_disable_on_error() &&
mEarlyDataWasAvailable && PossibleZeroRTTRetryError(reason);
}
static void MaybeRemoveSSLToken(nsITransportSecurityInfo* aSecurityInfo) {
if (!StaticPrefs::
network_http_remove_resumption_token_when_early_data_failed()) {
return;
}
if (!aSecurityInfo) {
return;
}
nsAutoCString key;
aSecurityInfo->GetPeerId(key);
nsresult rv = SSLTokensCache::RemoveAll(key);
LOG(("RemoveSSLToken [key=%s, rv=%" PRIx32 "]", key.get(),
static_cast<uint32_t>(rv)));
}
void nsHttpTransaction::Close(nsresult reason) {
LOG(("nsHttpTransaction::Close [this=%p reason=%" PRIx32 "]\n", this,
static_cast<uint32_t>(reason)));
{
MutexAutoLock lock(mLock);
mEarlyHintObserver = nullptr;
mWebTransportSessionEventListener = nullptr;
}
if (!mClosed) {
gHttpHandler->ConnMgr()->RemoveActiveTransaction(this);
mActivated = false;
}
if (mDNSRequest) {
mDNSRequest->Cancel(NS_ERROR_ABORT);
mDNSRequest = nullptr;
}
MaybeCancelFallbackTimer();
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (reason == NS_BINDING_RETARGETED) {
LOG((" close %p skipped due to ERETARGETED\n", this));
return;
}
if (mClosed) {
LOG((" already closed\n"));
return;
}
NotifyTransactionObserver(reason);
if (mTokenBucketCancel) {
mTokenBucketCancel->Cancel(reason);
mTokenBucketCancel = nullptr;
}
// report the reponse is complete if not already reported
if (!mResponseIsComplete) {
gHttpHandler->ObserveHttpActivityWithArgs(
HttpActivityArgs(mChannelId), NS_HTTP_ACTIVITY_TYPE_HTTP_TRANSACTION,
NS_HTTP_ACTIVITY_SUBTYPE_RESPONSE_COMPLETE, PR_Now(),
static_cast<uint64_t>(mContentRead), ""_ns);
}
// report that this transaction is closing
gHttpHandler->ObserveHttpActivityWithArgs(
HttpActivityArgs(mChannelId), NS_HTTP_ACTIVITY_TYPE_HTTP_TRANSACTION,
NS_HTTP_ACTIVITY_SUBTYPE_TRANSACTION_CLOSE, PR_Now(), 0, ""_ns);
// we must no longer reference the connection! find out if the
// connection was being reused before letting it go.
bool connReused = false;
bool isHttp2or3 = false;
if (mConnection) {
connReused = mConnection->IsReused();
isHttp2or3 = mConnection->Version() >= HttpVersion::v2_0;
if (!mConnected) {
MaybeRefreshSecurityInfo();
}
}
mConnected = false;
// When mDoNotRemoveAltSvc is true, this means we want to keep the AltSvc in
// in the conncetion info. In this case, let's not apply HTTPS RR retry logic
// to make sure this transaction can be restarted with the same conncetion
// info.
bool shouldRestartTransactionForHTTPSRR =
mOrigConnInfo && AllowedErrorForHTTPSRRFallback(reason) &&
!mDoNotRemoveAltSvc;
//
// if the connection was reset or closed before we wrote any part of the
// request or if we wrote the request but didn't receive any part of the
// response and the connection was being reused, then we can (and really
// should) assume that we wrote to a stale connection and we must therefore
// repeat the request over a new connection.
//
// We have decided to retry not only in case of the reused connections, but
// all safe methods(bug 1236277).
//
// NOTE: the conditions under which we will automatically retry the HTTP
// request have to be carefully selected to avoid duplication of the
// request from the point-of-view of the server. such duplication could
// have dire consequences including repeated purchases, etc.
//
// NOTE: because of the way SSL proxy CONNECT is implemented, it is
// possible that the transaction may have received data without having
// sent any data. for this reason, mSendData == FALSE does not imply
// mReceivedData == FALSE. (see bug 203057 for more info.)
//
// Never restart transactions that are marked as sticky to their conenction.
// We use that capability to identify transactions bound to connection based
// authentication. Reissuing them on a different connections will break
// this bondage. Major issue may arise when there is an NTLM message auth
// header on the transaction and we send it to a different NTLM authenticated
// connection. It will break that connection and also confuse the channel's
// auth provider, beliving the cached credentials are wrong and asking for
// the password mistakenly again from the user.
if ((reason == NS_ERROR_NET_RESET || reason == NS_OK ||
reason ==
psm::GetXPCOMFromNSSError(SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA) ||
ShouldRestartOn0RttError(reason) ||
shouldRestartTransactionForHTTPSRR) &&
(!(mCaps & NS_HTTP_STICKY_CONNECTION) ||
(mCaps & NS_HTTP_CONNECTION_RESTARTABLE) ||
(mEarlyDataDisposition == EARLY_425))) {
if (mForceRestart) {
SetRestartReason(TRANSACTION_RESTART_FORCED);
if (NS_SUCCEEDED(Restart())) {
if (mResponseHead) {
mResponseHead->Reset();
}
mContentRead = 0;
mContentLength = -1;
delete mChunkedDecoder;
mChunkedDecoder = nullptr;
mHaveStatusLine = false;
mHaveAllHeaders = false;
mHttpResponseMatched = false;
mResponseIsComplete = false;
mDidContentStart = false;
mNoContent = false;
mSentData = false;
mReceivedData = false;
mSupportsHTTP3 = false;
LOG(("transaction force restarted\n"));
return;
}
}
mDoNotTryEarlyData = true;
// reallySentData is meant to separate the instances where data has
// been sent by this transaction but buffered at a higher level while
// a TLS session (perhaps via a tunnel) is setup.
bool reallySentData =
mSentData && (!mConnection || mConnection->BytesWritten());
// If this is true, it means we failed to use the HTTPSSVC connection info
// to connect to the server. We need to retry with the original connection
// info.
shouldRestartTransactionForHTTPSRR &= !reallySentData;
if (reason ==
psm::GetXPCOMFromNSSError(SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA) ||
PossibleZeroRTTRetryError(reason) ||
(!mReceivedData && ((mRequestHead && mRequestHead->IsSafeMethod()) ||
!reallySentData || connReused)) ||
shouldRestartTransactionForHTTPSRR) {
if (shouldRestartTransactionForHTTPSRR) {
MaybeReportFailedSVCDomain(reason, mConnInfo);
PrepareConnInfoForRetry(reason);
mDontRetryWithDirectRoute = true;
LOG(
("transaction will be restarted with the fallback connection info "
"key=%s",
mConnInfo ? mConnInfo->HashKey().get() : "None"));
}
if (shouldRestartTransactionForHTTPSRR) {
auto toRestartReason =
[](nsresult aStatus) -> TRANSACTION_RESTART_REASON {
if (aStatus == NS_ERROR_NET_RESET) {
return TRANSACTION_RESTART_HTTPS_RR_NET_RESET;
}
if (aStatus == NS_ERROR_CONNECTION_REFUSED) {
return TRANSACTION_RESTART_HTTPS_RR_CONNECTION_REFUSED;
}
if (aStatus == NS_ERROR_UNKNOWN_HOST) {
return TRANSACTION_RESTART_HTTPS_RR_UNKNOWN_HOST;
}
if (aStatus == NS_ERROR_NET_TIMEOUT) {
return TRANSACTION_RESTART_HTTPS_RR_NET_TIMEOUT;
}
if (psm::IsNSSErrorCode(-1 * NS_ERROR_GET_CODE(aStatus))) {
return TRANSACTION_RESTART_HTTPS_RR_SEC_ERROR;
}
MOZ_ASSERT_UNREACHABLE("Unexpected reason");
return TRANSACTION_RESTART_OTHERS;
};
SetRestartReason(toRestartReason(reason));
} else if (!reallySentData) {
SetRestartReason(TRANSACTION_RESTART_NO_DATA_SENT);
} else if (reason == psm::GetXPCOMFromNSSError(
SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA)) {
SetRestartReason(TRANSACTION_RESTART_DOWNGRADE_WITH_EARLY_DATA);
} else if (PossibleZeroRTTRetryError(reason)) {
SetRestartReason(TRANSACTION_RESTART_POSSIBLE_0RTT_ERROR);
}
// if restarting fails, then we must proceed to close the pipe,
// which will notify the channel that the transaction failed.
// Note that when echConfig is enabled, it's possible that we don't have a
// usable connection info to retry.
if (mConnInfo && NS_SUCCEEDED(Restart())) {
return;
}
// mConnInfo could be set to null in PrepareConnInfoForRetry() when we
// can't find an available https rr to retry. We have to set mConnInfo
// back to mOrigConnInfo to make sure no crash when mConnInfo being
// accessed again.
if (!mConnInfo) {
mConnInfo.swap(mOrigConnInfo);
MOZ_ASSERT(mConnInfo);
}
}
}
Telemetry::Accumulate(Telemetry::HTTP_TRANSACTION_RESTART_REASON,
mRestartReason);
if (!mResponseIsComplete && NS_SUCCEEDED(reason) && isHttp2or3) {
// Responses without content-length header field are still complete if
// they are transfered over http2 or http3 and the stream is properly
// closed.
mResponseIsComplete = true;
}
if ((mChunkedDecoder || (mContentLength >= int64_t(0))) &&
(NS_SUCCEEDED(reason) && !mResponseIsComplete)) {
NS_WARNING("Partial transfer, incomplete HTTP response received");
if ((mHttpResponseCode / 100 == 2) && (mHttpVersion >= HttpVersion::v1_1)) {
FrameCheckLevel clevel = gHttpHandler->GetEnforceH1Framing();
if (clevel >= FRAMECHECK_BARELY) {
// If clevel == FRAMECHECK_STRICT mark any incomplete response as
// partial.
// if clevel == FRAMECHECK_BARELY: 1) mark a chunked-encoded response
// that do not ends on exactly a chunk boundary as partial; We are not
// strict about the last 0-size chunk and do not mark as parial
// responses that do not have the last 0-size chunk but do end on a
// chunk boundary. (check mChunkedDecoder->GetChunkRemaining() != 0)
// 2) mark a transfer that is partial and it is not chunk-encoded or
// gzip-encoded or other content-encoding as partial. (check
// !mChunkedDecoder && !mContentDecoding && mContentDecodingCheck))
// if clevel == FRAMECHECK_STRICT_CHUNKED mark a chunked-encoded
// response that ends on exactly a chunk boundary also as partial.
// Here a response must have the last 0-size chunk.
if ((clevel == FRAMECHECK_STRICT) ||
(mChunkedDecoder && (mChunkedDecoder->GetChunkRemaining() ||
(clevel == FRAMECHECK_STRICT_CHUNKED))) ||
(!mChunkedDecoder && !mContentDecoding && mContentDecodingCheck)) {
reason = NS_ERROR_NET_PARTIAL_TRANSFER;
LOG(("Partial transfer, incomplete HTTP response received: %s",
mChunkedDecoder ? "broken chunk" : "c-l underrun"));
}
}
}
if (mConnection) {
// whether or not we generate an error for the transaction
// bad framing means we don't want a pconn
mConnection->DontReuse();
}
}
bool relConn = true;
if (NS_SUCCEEDED(reason)) {
// the server has not sent the final \r\n terminating the header
// section, and there may still be a header line unparsed. let's make
// sure we parse the remaining header line, and then hopefully, the
// response will be usable (see bug 88792).
if (!mHaveAllHeaders) {
char data[] = "\n\n";
uint32_t unused = 0;
// If we have a partial line already, we actually need two \ns to finish
// the headers section.
Unused << ParseHead(data, mLineBuf.IsEmpty() ? 1 : 2, &unused);
if (mResponseHead->Version() == HttpVersion::v0_9) {
// Reject 0 byte HTTP/0.9 Responses - bug 423506
LOG(("nsHttpTransaction::Close %p 0 Byte 0.9 Response", this));
reason = NS_ERROR_NET_RESET;
}
}
// honor the sticky connection flag...
if (mCaps & NS_HTTP_STICKY_CONNECTION) {
LOG((" keeping the connection because of STICKY_CONNECTION flag"));
relConn = false;
}
// if the proxy connection has failed, we want the connection be held
// to allow the upper layers (think nsHttpChannel) to close it when
// the failure is unrecoverable.
// we can't just close it here, because mProxyConnectFailed is to a general
// flag and is also set for e.g. 407 which doesn't mean to kill the
// connection, specifically when connection oriented auth may be involved.
if (mProxyConnectFailed) {
LOG((" keeping the connection because of mProxyConnectFailed"));
relConn = false;
}
// Use mOrigConnInfo as an indicator that this transaction is completed
// successfully with an HTTPSSVC record.
if (mOrigConnInfo) {
Telemetry::Accumulate(Telemetry::DNS_HTTPSSVC_CONNECTION_FAILED_REASON,
HTTPSSVC_CONNECTION_OK);
}
}
// mTimings.responseEnd is normally recorded based on the end of a
// HTTP delimiter such as chunked-encodings or content-length. However,
// EOF or an error still require an end time be recorded.
if (TimingEnabled()) {
const TimingStruct timings = Timings();
if (timings.responseEnd.IsNull() && !timings.responseStart.IsNull()) {
SetResponseEnd(TimeStamp::Now());
}
// Accumulate download throughput telemetry
const int64_t TELEMETRY_DOWNLOAD_SIZE_GREATER_THAN_10MB =
(int64_t)10 * (int64_t)(1 << 20);
if ((mContentRead > TELEMETRY_DOWNLOAD_SIZE_GREATER_THAN_10MB) &&
!timings.requestStart.IsNull() && !timings.responseEnd.IsNull()) {
TimeDuration elapsed = timings.responseEnd - timings.requestStart;
double megabits = static_cast<double>(mContentRead) * 8.0 / 1000000.0;
uint32_t mpbs = static_cast<uint32_t>(megabits / elapsed.ToSeconds());
switch (mHttpVersion) {
case HttpVersion::v1_0:
case HttpVersion::v1_1:
glean::networking::http_1_download_throughput.AccumulateSingleSample(
mpbs);
break;
case HttpVersion::v2_0:
glean::networking::http_2_download_throughput.AccumulateSingleSample(
mpbs);
break;
case HttpVersion::v3_0:
glean::networking::http_3_download_throughput.AccumulateSingleSample(
mpbs);
break;
default:
break;
}
}
}
if (mTrafficCategory != HttpTrafficCategory::eInvalid) {
HttpTrafficAnalyzer* hta = gHttpHandler->GetHttpTrafficAnalyzer();
if (hta) {
hta->AccumulateHttpTransferredSize(mTrafficCategory, mTransferSize,
mContentRead);
}
}
if (mThroughCaptivePortal) {
Telemetry::ScalarAdd(
Telemetry::ScalarID::NETWORKING_HTTP_TRANSACTIONS_CAPTIVE_PORTAL, 1);
}
if (relConn && mConnection) {
MutexAutoLock lock(mLock);
mConnection = nullptr;
}
if (isHttp2or3 &&
reason == psm::GetXPCOMFromNSSError(SSL_ERROR_PROTOCOL_VERSION_ALERT)) {
// Change reason to NS_ERROR_ABORT, so we avoid showing a missleading
// error page tthat TLS1.0 is disabled. H2 or H3 is used here so the
// TLS version is not a problem.
reason = NS_ERROR_ABORT;
}
mStatus = reason;
mTransactionDone = true; // forcibly flag the transaction as complete
mClosed = true;
if (mResolver) {
mResolver->Close();
mResolver = nullptr;
}
ReleaseBlockingTransaction();
// release some resources that we no longer need
mRequestStream = nullptr;
mReqHeaderBuf.Truncate();
mLineBuf.Truncate();
if (mChunkedDecoder) {
delete mChunkedDecoder;
mChunkedDecoder = nullptr;
}
for (const auto& entry : mEchRetryCounterMap) {
Telemetry::Accumulate(static_cast<Telemetry::HistogramID>(entry.GetKey()),
entry.GetData());
}
// closing this pipe triggers the channel's OnStopRequest method.
mPipeOut->CloseWithStatus(reason);
}
nsHttpConnectionInfo* nsHttpTransaction::ConnectionInfo() {
return mConnInfo.get();
}
bool // NOTE BASE CLASS
nsAHttpTransaction::ResponseTimeoutEnabled() const {
return false;
}
PRIntervalTime // NOTE BASE CLASS
nsAHttpTransaction::ResponseTimeout() {
return gHttpHandler->ResponseTimeout();
}
bool nsHttpTransaction::ResponseTimeoutEnabled() const {
return mResponseTimeoutEnabled;
}
//-----------------------------------------------------------------------------
// nsHttpTransaction <private>
//-----------------------------------------------------------------------------
static inline void RemoveAlternateServiceUsedHeader(
nsHttpRequestHead* aRequestHead) {
if (aRequestHead) {
DebugOnly<nsresult> rv =
aRequestHead->SetHeader(nsHttp::Alternate_Service_Used, "0"_ns);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
}
void nsHttpTransaction::SetRestartReason(TRANSACTION_RESTART_REASON aReason) {
if (mRestartReason == TRANSACTION_RESTART_NONE) {
mRestartReason = aReason;
}
}
nsresult nsHttpTransaction::Restart() {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// limit the number of restart attempts - bug 92224
if (++mRestartCount >= gHttpHandler->MaxRequestAttempts()) {
LOG(("reached max request attempts, failing transaction @%p\n", this));
return NS_ERROR_NET_RESET;
}
LOG(("restarting transaction @%p\n", this));
if (mRequestHead) {
// Dispatching on a new connection better w/o an ambient connection proxy
// auth request header to not confuse the proxy authenticator.
nsAutoCString proxyAuth;
if (NS_SUCCEEDED(
mRequestHead->GetHeader(nsHttp::Proxy_Authorization, proxyAuth)) &&
IsStickyAuthSchemeAt(proxyAuth)) {
Unused << mRequestHead->ClearHeader(nsHttp::Proxy_Authorization);
}
}
// rewind streams in case we already wrote out the request
nsCOMPtr<nsISeekableStream> seekable = do_QueryInterface(mRequestStream);
if (seekable) seekable->Seek(nsISeekableStream::NS_SEEK_SET, 0);
if (mDoNotTryEarlyData) {
MutexAutoLock lock(mLock);
MaybeRemoveSSLToken(mSecurityInfo);
}
// clear old connection state...
{
MutexAutoLock lock(mLock);
mSecurityInfo = nullptr;
}
if (mConnection) {
if (!mReuseOnRestart) {
mConnection->DontReuse();
}
MutexAutoLock lock(mLock);
mConnection = nullptr;
}
// Reset this to our default state, since this may change from one restart
// to the next
mReuseOnRestart = false;
if (!mDoNotRemoveAltSvc &&
(!mConnInfo->GetRoutedHost().IsEmpty() || mConnInfo->IsHttp3()) &&
!mDontRetryWithDirectRoute) {
RefPtr<nsHttpConnectionInfo> ci;
mConnInfo->CloneAsDirectRoute(getter_AddRefs(ci));
mConnInfo = ci;
RemoveAlternateServiceUsedHeader(mRequestHead);
}
// Reset mDoNotRemoveAltSvc for the next try.
mDoNotRemoveAltSvc = false;
mEarlyDataWasAvailable = false;
mRestarted = true;
// If we weren't trying to do 'proper' ECH, disable ECH GREASE when retrying.
if (mConnInfo->GetEchConfig().IsEmpty() &&
StaticPrefs::security_tls_ech_disable_grease_on_fallback()) {
mCaps |= NS_HTTP_DISALLOW_ECH;
}
mCaps |= NS_HTTP_IS_RETRY;
// Use TRANSACTION_RESTART_OTHERS as a catch-all.
SetRestartReason(TRANSACTION_RESTART_OTHERS);
if (!mDoNotResetIPFamilyPreference) {
// Reset the IP family preferences, so the new connection can try to use
// another IPv4 or IPv6 address.
gHttpHandler->ConnMgr()->ResetIPFamilyPreference(mConnInfo);
}
return gHttpHandler->InitiateTransaction(this, mPriority);
}
bool nsHttpTransaction::TakeRestartedState() {
// This return true if the transaction has been restarted internally. Used to
// let the consuming nsHttpChannel reset proxy authentication. The flag is
// reset to false by this method.
return mRestarted.exchange(false);
}
char* nsHttpTransaction::LocateHttpStart(char* buf, uint32_t len,
bool aAllowPartialMatch) {
MOZ_ASSERT(!aAllowPartialMatch || mLineBuf.IsEmpty());
static const char HTTPHeader[] = "HTTP/1.";
static const uint32_t HTTPHeaderLen = sizeof(HTTPHeader) - 1;
static const char HTTP2Header[] = "HTTP/2";
static const uint32_t HTTP2HeaderLen = sizeof(HTTP2Header) - 1;
static const char HTTP3Header[] = "HTTP/3";
static const uint32_t HTTP3HeaderLen = sizeof(HTTP3Header) - 1;
// ShoutCast ICY is treated as HTTP/1.0
static const char ICYHeader[] = "ICY ";
static const uint32_t ICYHeaderLen = sizeof(ICYHeader) - 1;
if (aAllowPartialMatch && (len < HTTPHeaderLen)) {
return (nsCRT::strncasecmp(buf, HTTPHeader, len) == 0) ? buf : nullptr;
}
// mLineBuf can contain partial match from previous search
if (!mLineBuf.IsEmpty()) {
MOZ_ASSERT(mLineBuf.Length() < HTTPHeaderLen);
int32_t checkChars =
std::min<uint32_t>(len, HTTPHeaderLen - mLineBuf.Length());
if (nsCRT::strncasecmp(buf, HTTPHeader + mLineBuf.Length(), checkChars) ==
0) {
mLineBuf.Append(buf, checkChars);
if (mLineBuf.Length() == HTTPHeaderLen) {
// We've found whole HTTPHeader sequence. Return pointer at the
// end of matched sequence since it is stored in mLineBuf.
return (buf + checkChars);
}
// Response matches pattern but is still incomplete.
return nullptr;
}
// Previous partial match together with new data doesn't match the
// pattern. Start the search again.
mLineBuf.Truncate();
}
bool firstByte = true;
while (len > 0) {
if (nsCRT::strncasecmp(buf, HTTPHeader,
std::min<uint32_t>(len, HTTPHeaderLen)) == 0) {
if (len < HTTPHeaderLen) {
// partial HTTPHeader sequence found
// save partial match to mLineBuf
mLineBuf.Assign(buf, len);
return nullptr;
}
// whole HTTPHeader sequence found
return buf;
}
// At least "SmarterTools/2.0.3974.16813" generates nonsensical
// HTTP/2.0 responses to our HTTP/1 requests. Treat the minimal case of
// it as HTTP/1.1 to be compatible with old versions of ourselves and
// other browsers
if (firstByte && !mInvalidResponseBytesRead && len >= HTTP2HeaderLen &&
(nsCRT::strncasecmp(buf, HTTP2Header, HTTP2HeaderLen) == 0)) {
LOG(("nsHttpTransaction:: Identified HTTP/2.0 treating as 1.x\n"));
return buf;
}
// HTTP/3.0 responses to our HTTP/1 requests. Treat the minimal case of
// it as HTTP/1.1 to be compatible with old versions of ourselves and
// other browsers
if (firstByte && !mInvalidResponseBytesRead && len >= HTTP3HeaderLen &&
(nsCRT::strncasecmp(buf, HTTP3Header, HTTP3HeaderLen) == 0)) {
LOG(("nsHttpTransaction:: Identified HTTP/3.0 treating as 1.x\n"));
return buf;
}
// Treat ICY (AOL/Nullsoft ShoutCast) non-standard header in same fashion
// as HTTP/2.0 is treated above. This will allow "ICY " to be interpretted
// as HTTP/1.0 in nsHttpResponseHead::ParseVersion
if (firstByte && !mInvalidResponseBytesRead && len >= ICYHeaderLen &&
(nsCRT::strncasecmp(buf, ICYHeader, ICYHeaderLen) == 0)) {
LOG(("nsHttpTransaction:: Identified ICY treating as HTTP/1.0\n"));
return buf;
}
if (!nsCRT::IsAsciiSpace(*buf)) firstByte = false;
buf++;
len--;
}
return nullptr;
}
nsresult nsHttpTransaction::ParseLine(nsACString& line) {
LOG1(("nsHttpTransaction::ParseLine [%s]\n", PromiseFlatCString(line).get()));
nsresult rv = NS_OK;
if (!mHaveStatusLine) {
rv = mResponseHead->ParseStatusLine(line);
if (NS_SUCCEEDED(rv)) {
mHaveStatusLine = true;
}
// XXX this should probably never happen
if (mResponseHead->Version() == HttpVersion::v0_9) mHaveAllHeaders = true;
} else {
rv = mResponseHead->ParseHeaderLine(line);
}
return rv;
}
nsresult nsHttpTransaction::ParseLineSegment(char* segment, uint32_t len) {
MOZ_ASSERT(!mHaveAllHeaders, "already have all headers");
if (!mLineBuf.IsEmpty() && mLineBuf.Last() == '\n') {
// trim off the new line char, and if this segment is
// not a continuation of the previous or if we haven't
// parsed the status line yet, then parse the contents
// of mLineBuf.
mLineBuf.Truncate(mLineBuf.Length() - 1);
if (!mHaveStatusLine || (*segment != ' ' && *segment != '\t')) {
nsresult rv = ParseLine(mLineBuf);
mLineBuf.Truncate();
if (NS_FAILED(rv)) {
return rv;
}
}
}
// append segment to mLineBuf...
mLineBuf.Append(segment, len);
// a line buf with only a new line char signifies the end of headers.
if (mLineBuf.First() == '\n') {
mLineBuf.Truncate();
// discard this response if it is a 100 continue or other 1xx status.
uint16_t status = mResponseHead->Status();
if (status == 103) {
nsCString linkHeader;
nsresult rv = mResponseHead->GetHeader(nsHttp::Link, linkHeader);
nsCString referrerPolicy;
Unused << mResponseHead->GetHeader(nsHttp::Referrer_Policy,
referrerPolicy);
if (NS_SUCCEEDED(rv) && !linkHeader.IsEmpty()) {
nsCString cspHeader;
Unused << mResponseHead->GetHeader(nsHttp::Content_Security_Policy,
cspHeader);
nsCOMPtr<nsIEarlyHintObserver> earlyHint;
{
MutexAutoLock lock(mLock);
earlyHint = mEarlyHintObserver;
}
if (earlyHint) {
DebugOnly<nsresult> rv = NS_DispatchToMainThread(
NS_NewRunnableFunction(
"nsIEarlyHintObserver->EarlyHint",
[obs{std::move(earlyHint)}, header{std::move(linkHeader)},
referrerPolicy{std::move(referrerPolicy)},
cspHeader{std::move(cspHeader)}]() {
obs->EarlyHint(header, referrerPolicy, cspHeader);
}),
NS_DISPATCH_NORMAL);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
}
}
if ((status != 101) && (status / 100 == 1)) {
LOG(("ignoring 1xx response except 101 and 103\n"));
mHaveStatusLine = false;
mHttpResponseMatched = false;
mConnection->SetLastTransactionExpectedNoContent(true);
mResponseHead->Reset();
return NS_OK;
}
if (!mConnection->IsProxyConnectInProgress()) {
MutexAutoLock lock(mLock);
mEarlyHintObserver = nullptr;
}
mHaveAllHeaders = true;
}
return NS_OK;
}
nsresult nsHttpTransaction::ParseHead(char* buf, uint32_t count,
uint32_t* countRead) {
nsresult rv;
uint32_t len;
char* eol;
LOG(("nsHttpTransaction::ParseHead [count=%u]\n", count));
*countRead = 0;
MOZ_ASSERT(!mHaveAllHeaders, "oops");
// allocate the response head object if necessary
if (!mResponseHead) {
mResponseHead = new nsHttpResponseHead();
if (!mResponseHead) return NS_ERROR_OUT_OF_MEMORY;
// report that we have a least some of the response
if (!mReportedStart) {
mReportedStart = true;
gHttpHandler->ObserveHttpActivityWithArgs(
HttpActivityArgs(mChannelId), NS_HTTP_ACTIVITY_TYPE_HTTP_TRANSACTION,
NS_HTTP_ACTIVITY_SUBTYPE_RESPONSE_START, PR_Now(), 0, ""_ns);
}
}
if (!mHttpResponseMatched) {
// Normally we insist on seeing HTTP/1.x in the first few bytes,
// but if we are on a persistent connection and the previous transaction
// was not supposed to have any content then we need to be prepared
// to skip over a response body that the server may have sent even
// though it wasn't allowed.
if (!mConnection || !mConnection->LastTransactionExpectedNoContent()) {
// tolerate only minor junk before the status line
mHttpResponseMatched = true;
char* p = LocateHttpStart(buf, std::min<uint32_t>(count, 11), true);
if (!p) {
// Treat any 0.9 style response of a put as a failure.
if (mRequestHead->IsPut()) return NS_ERROR_ABORT;
if (NS_FAILED(mResponseHead->ParseStatusLine(""_ns))) {
return NS_ERROR_FAILURE;
}
mHaveStatusLine = true;
mHaveAllHeaders = true;
return NS_OK;
}
if (p > buf) {
// skip over the junk
mInvalidResponseBytesRead += p - buf;
*countRead = p - buf;
buf = p;
}
} else {
char* p = LocateHttpStart(buf, count, false);
if (p) {
mInvalidResponseBytesRead += p - buf;
*countRead = p - buf;
buf = p;
mHttpResponseMatched = true;
} else {
mInvalidResponseBytesRead += count;
*countRead = count;
if (mInvalidResponseBytesRead > MAX_INVALID_RESPONSE_BODY_SIZE) {
LOG(
("nsHttpTransaction::ParseHead() "
"Cannot find Response Header\n"));
// cannot go back and call this 0.9 anymore as we
// have thrown away a lot of the leading junk
return NS_ERROR_ABORT;
}
return NS_OK;
}
}
}
// otherwise we can assume that we don't have a HTTP/0.9 response.
MOZ_ASSERT(mHttpResponseMatched);
while ((eol = static_cast<char*>(memchr(buf, '\n', count - *countRead))) !=
nullptr) {
// found line in range [buf:eol]
len = eol - buf + 1;
*countRead += len;
// actually, the line is in the range [buf:eol-1]
if ((eol > buf) && (*(eol - 1) == '\r')) len--;
buf[len - 1] = '\n';
rv = ParseLineSegment(buf, len);
if (NS_FAILED(rv)) return rv;
if (mHaveAllHeaders) return NS_OK;
// skip over line
buf = eol + 1;
if (!mHttpResponseMatched) {
// a 100 class response has caused us to throw away that set of
// response headers and look for the next response
return NS_ERROR_NET_INTERRUPT;
}
}
// do something about a partial header line
if (!mHaveAllHeaders && (len = count - *countRead)) {
*countRead = count;
// ignore a trailing carriage return, and don't bother calling
// ParseLineSegment if buf only contains a carriage return.
if ((buf[len - 1] == '\r') && (--len == 0)) return NS_OK;
rv = ParseLineSegment(buf, len);
if (NS_FAILED(rv)) return rv;
}
return NS_OK;
}
bool nsHttpTransaction::HandleWebTransportResponse(uint16_t aStatus) {
MOZ_ASSERT(mIsForWebTransport);
if (!(aStatus >= 200 && aStatus < 300)) {
return false;
}
RefPtr<Http3WebTransportSession> wtSession =
mConnection->GetWebTransportSession(this);
if (!wtSession) {
return false;
}
nsCOMPtr<WebTransportSessionEventListener> webTransportListener;
{
MutexAutoLock lock(mLock);
webTransportListener = mWebTransportSessionEventListener;
mWebTransportSessionEventListener = nullptr;
}
if (webTransportListener) {
webTransportListener->OnSessionReadyInternal(wtSession);
wtSession->SetWebTransportSessionEventListener(webTransportListener);
}
return true;
}
nsresult nsHttpTransaction::HandleContentStart() {
LOG(("nsHttpTransaction::HandleContentStart [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mResponseHead) {
if (mEarlyDataDisposition == EARLY_ACCEPTED) {
if (mResponseHead->Status() == 425) {
// We will report this state when the final responce arrives.
mEarlyDataDisposition = EARLY_425;
} else {
Unused << mResponseHead->SetHeader(nsHttp::X_Firefox_Early_Data,
"accepted"_ns);
}
} else if (mEarlyDataDisposition == EARLY_SENT) {
Unused << mResponseHead->SetHeader(nsHttp::X_Firefox_Early_Data,
"sent"_ns);
} else if (mEarlyDataDisposition == EARLY_425) {
Unused << mResponseHead->SetHeader(nsHttp::X_Firefox_Early_Data,
"received 425"_ns);
mEarlyDataDisposition = EARLY_NONE;
} // no header on NONE case
if (LOG3_ENABLED()) {
LOG3(("http response [\n"));
nsAutoCString headers;
mResponseHead->Flatten(headers, false);
headers.AppendLiteral(" OriginalHeaders");
headers.AppendLiteral("\r\n");
mResponseHead->FlattenNetworkOriginalHeaders(headers);
LogHeaders(headers.get());
LOG3(("]\n"));
}
CheckForStickyAuthScheme();
// Save http version, mResponseHead isn't available anymore after
// TakeResponseHead() is called
mHttpVersion = mResponseHead->Version();
mHttpResponseCode = mResponseHead->Status();
// notify the connection, give it a chance to cause a reset.
bool reset = false;
nsresult rv = mConnection->OnHeadersAvailable(this, mRequestHead,
mResponseHead, &reset);
NS_ENSURE_SUCCESS(rv, rv);
// looks like we should ignore this response, resetting...
if (reset) {
LOG(("resetting transaction's response head\n"));
mHaveAllHeaders = false;
mHaveStatusLine = false;
mReceivedData = false;
mSentData = false;
mHttpResponseMatched = false;
mResponseHead->Reset();
// wait to be called again...
return NS_OK;
}
bool responseChecked = false;
if (mIsForWebTransport) {
responseChecked = HandleWebTransportResponse(mResponseHead->Status());
LOG(("HandleWebTransportResponse res=%d", responseChecked));
if (responseChecked) {
mNoContent = true;
mPreserveStream = true;
}
}
if (!responseChecked) {
// check if this is a no-content response
switch (mResponseHead->Status()) {
case 101:
mPreserveStream = true;
[[fallthrough]]; // to other no content cases:
case 204:
case 205:
case 304:
mNoContent = true;
LOG(("this response should not contain a body.\n"));
break;
case 408:
LOG(("408 Server Timeouts"));
if (mConnection->Version() >= HttpVersion::v2_0) {
mForceRestart = true;
return NS_ERROR_NET_RESET;
}
// If this error could be due to a persistent connection
// reuse then we pass an error code of NS_ERROR_NET_RESET
// to trigger the transaction 'restart' mechanism. We
// tell it to reset its response headers so that it will
// be ready to receive the new response.
LOG(("408 Server Timeouts now=%d lastWrite=%d", PR_IntervalNow(),
mConnection->LastWriteTime()));
if ((PR_IntervalNow() - mConnection->LastWriteTime()) >=
PR_MillisecondsToInterval(1000)) {
mForceRestart = true;
return NS_ERROR_NET_RESET;
}
break;
case 421:
LOG(("Misdirected Request.\n"));
gHttpHandler->ClearHostMapping(mConnInfo);
m421Received = true;
mCaps |= NS_HTTP_REFRESH_DNS;
// retry on a new connection - just in case
// See bug 1609410, we can't restart the transaction when
// NS_HTTP_STICKY_CONNECTION is set. In the case that a connection
// already passed NTLM authentication, restarting the transaction will
// cause the connection to be closed.
if (!mRestartCount && !(mCaps & NS_HTTP_STICKY_CONNECTION)) {
mCaps &= ~NS_HTTP_ALLOW_KEEPALIVE;
mForceRestart = true; // force restart has built in loop protection
return NS_ERROR_NET_RESET;
}
break;
case 425:
LOG(("Too Early."));
if ((mEarlyDataDisposition == EARLY_425) && !mDoNotTryEarlyData) {
mDoNotTryEarlyData = true;
mForceRestart = true; // force restart has built in loop protection
if (mConnection->Version() >= HttpVersion::v2_0) {
mReuseOnRestart = true;
}
return NS_ERROR_NET_RESET;
}
break;
}
}
// Remember whether HTTP3 is supported
mSupportsHTTP3 = nsHttpHandler::IsHttp3SupportedByServer(mResponseHead);
CollectTelemetryForUploads();
// Report telemetry
if (mSupportsHTTP3) {
Accumulate(Telemetry::TRANSACTION_WAIT_TIME_HTTP2_SUP_HTTP3,
mPendingDurationTime.ToMilliseconds());
}
// If we're only connecting then we're going to be upgrading this
// connection since we were successful. Any data from now on belongs to
// the upgrade handler. If we're not successful the content body doesn't
// matter. Proxy http errors are treated as network errors. This
// connection won't be reused since it's marked sticky and no
// keep-alive.
if (mCaps & NS_HTTP_CONNECT_ONLY) {
MOZ_ASSERT(!(mCaps & NS_HTTP_ALLOW_KEEPALIVE) &&
(mCaps & NS_HTTP_STICKY_CONNECTION),
"connection should be sticky and no keep-alive");
// The transaction will expect the server to close the socket if
// there's no content length instead of doing the upgrade.
mNoContent = true;
}
// preserve connection for tunnel setup - h2 websocket upgrade only
if (mIsHttp2Websocket && mResponseHead->Status() == 200) {
LOG(("nsHttpTransaction::HandleContentStart websocket upgrade resp 200"));
mNoContent = true;
}
if (mResponseHead->Status() == 200 &&
mConnection->IsProxyConnectInProgress()) {
// successful CONNECTs do not have response bodies
mNoContent = true;
}
mConnection->SetLastTransactionExpectedNoContent(mNoContent);
if (mNoContent) {
mContentLength = 0;
} else {
// grab the content-length from the response headers
mContentLength = mResponseHead->ContentLength();
// handle chunked encoding here, so we'll know immediately when
// we're done with the socket. please note that _all_ other
// decoding is done when the channel receives the content data
// so as not to block the socket transport thread too much.
if (mResponseHead->Version() >= HttpVersion::v1_0 &&
mResponseHead->HasHeaderValue(nsHttp::Transfer_Encoding, "chunked")) {
// we only support the "chunked" transfer encoding right now.
mChunkedDecoder = new nsHttpChunkedDecoder();
LOG(("nsHttpTransaction %p chunked decoder created\n", this));
// Ignore server specified Content-Length.
if (mContentLength != int64_t(-1)) {
LOG(("nsHttpTransaction %p chunked with C-L ignores C-L\n", this));
mContentLength = -1;
if (mConnection) {
mConnection->DontReuse();
}
}
} else if (mContentLength == int64_t(-1)) {
LOG(("waiting for the server to close the connection.\n"));
}
}
}
mDidContentStart = true;
return NS_OK;
}
// called on the socket thread
nsresult nsHttpTransaction::HandleContent(char* buf, uint32_t count,
uint32_t* contentRead,
uint32_t* contentRemaining) {
nsresult rv;
LOG(("nsHttpTransaction::HandleContent [this=%p count=%u]\n", this, count));
*contentRead = 0;
*contentRemaining = 0;
MOZ_ASSERT(mConnection);
if (!mDidContentStart) {
rv = HandleContentStart();
if (NS_FAILED(rv)) return rv;
// Do not write content to the pipe if we haven't started streaming yet
if (!mDidContentStart) return NS_OK;
}
if (mChunkedDecoder) {
// give the buf over to the chunked decoder so it can reformat the
// data and tell us how much is really there.
rv = mChunkedDecoder->HandleChunkedContent(buf, count, contentRead,
contentRemaining);
if (NS_FAILED(rv)) return rv;
} else if (mContentLength >= int64_t(0)) {
// HTTP/1.0 servers have been known to send erroneous Content-Length
// headers. So, unless the connection is persistent, we must make
// allowances for a possibly invalid Content-Length header. Thus, if
// NOT persistent, we simply accept everything in |buf|.
if (mConnection->IsPersistent() || mPreserveStream ||
mHttpVersion >= HttpVersion::v1_1) {
int64_t remaining = mContentLength - mContentRead;
*contentRead = uint32_t(std::min<int64_t>(count, remaining));
*contentRemaining = count - *contentRead;
} else {
*contentRead = count;
// mContentLength might need to be increased...
int64_t position = mContentRead + int64_t(count);
if (position > mContentLength) {
mContentLength = position;
// mResponseHead->SetContentLength(mContentLength);
}
}
} else {
// when we are just waiting for the server to close the connection...
// (no explicit content-length given)
*contentRead = count;
}
if (*contentRead) {
// update count of content bytes read and report progress...
mContentRead += *contentRead;
}
LOG1(
("nsHttpTransaction::HandleContent [this=%p count=%u read=%u "
"mContentRead=%" PRId64 " mContentLength=%" PRId64 "]\n",
this, count, *contentRead, mContentRead, mContentLength));
// check for end-of-file
if ((mContentRead == mContentLength) ||
(mChunkedDecoder && mChunkedDecoder->ReachedEOF())) {
{
MutexAutoLock lock(mLock);
if (mChunkedDecoder) {
mForTakeResponseTrailers = mChunkedDecoder->TakeTrailers();
}
// the transaction is done with a complete response.
mTransactionDone = true;
mResponseIsComplete = true;
}
ReleaseBlockingTransaction();
if (TimingEnabled()) {
SetResponseEnd(TimeStamp::Now());
}
// report the entire response has arrived
gHttpHandler->ObserveHttpActivityWithArgs(
HttpActivityArgs(mChannelId), NS_HTTP_ACTIVITY_TYPE_HTTP_TRANSACTION,
NS_HTTP_ACTIVITY_SUBTYPE_RESPONSE_COMPLETE, PR_Now(),
static_cast<uint64_t>(mContentRead), ""_ns);
}
return NS_OK;
}
nsresult nsHttpTransaction::ProcessData(char* buf, uint32_t count,
uint32_t* countRead) {
nsresult rv;
LOG1(("nsHttpTransaction::ProcessData [this=%p count=%u]\n", this, count));
*countRead = 0;
// we may not have read all of the headers yet...
if (!mHaveAllHeaders) {
uint32_t bytesConsumed = 0;
do {
uint32_t localBytesConsumed = 0;
char* localBuf = buf + bytesConsumed;
uint32_t localCount = count - bytesConsumed;
rv = ParseHead(localBuf, localCount, &localBytesConsumed);
if (NS_FAILED(rv) && rv != NS_ERROR_NET_INTERRUPT) return rv;
bytesConsumed += localBytesConsumed;
} while (rv == NS_ERROR_NET_INTERRUPT);
mCurrentHttpResponseHeaderSize += bytesConsumed;
if (mCurrentHttpResponseHeaderSize >
StaticPrefs::network_http_max_response_header_size()) {
LOG(("nsHttpTransaction %p The response header exceeds the limit.\n",
this));
return NS_ERROR_FILE_TOO_BIG;
}
count -= bytesConsumed;
// if buf has some content in it, shift bytes to top of buf.
if (count && bytesConsumed) memmove(buf, buf + bytesConsumed, count);
if (mResponseHead && mHaveAllHeaders) {
auto reportResponseHeader = [&](uint32_t aSubType) {
nsAutoCString completeResponseHeaders;
mResponseHead->Flatten(completeResponseHeaders, false);
completeResponseHeaders.AppendLiteral("\r\n");
gHttpHandler->ObserveHttpActivityWithArgs(
HttpActivityArgs(mChannelId),
NS_HTTP_ACTIVITY_TYPE_HTTP_TRANSACTION, aSubType, PR_Now(), 0,
completeResponseHeaders);
};
if (mConnection->IsProxyConnectInProgress()) {
reportResponseHeader(NS_HTTP_ACTIVITY_SUBTYPE_PROXY_RESPONSE_HEADER);
} else if (!mReportedResponseHeader) {
mReportedResponseHeader = true;
reportResponseHeader(NS_HTTP_ACTIVITY_SUBTYPE_RESPONSE_HEADER);
}
}
}
// even though count may be 0, we still want to call HandleContent
// so it can complete the transaction if this is a "no-content" response.
if (mHaveAllHeaders) {
uint32_t countRemaining = 0;
//
// buf layout:
//
// +--------------------------------------+----------------+-----+
// | countRead | countRemaining | |
// +--------------------------------------+----------------+-----+
//
// count : bytes read from the socket
// countRead : bytes corresponding to this transaction
// countRemaining : bytes corresponding to next transaction on conn
//
// NOTE:
// count > countRead + countRemaining <==> chunked transfer encoding
//
rv = HandleContent(buf, count, countRead, &countRemaining);
if (NS_FAILED(rv)) return rv;
// we may have read more than our share, in which case we must give
// the excess bytes back to the connection
if (mResponseIsComplete && countRemaining &&
(mConnection->Version() != HttpVersion::v3_0)) {
MOZ_ASSERT(mConnection);
rv = mConnection->PushBack(buf + *countRead, countRemaining);
NS_ENSURE_SUCCESS(rv, rv);
}
if (!mContentDecodingCheck && mResponseHead) {
mContentDecoding = mResponseHead->HasHeader(nsHttp::Content_Encoding);
mContentDecodingCheck = true;
}
}
return NS_OK;
}
// Called when the transaction marked for blocking is associated with a
// connection (i.e. added to a new h1 conn, an idle http connection, etc..) It
// is safe to call this multiple times with it only having an effect once.
void nsHttpTransaction::DispatchedAsBlocking() {
if (mDispatchedAsBlocking) return;
LOG(("nsHttpTransaction %p dispatched as blocking\n", this));
if (!mRequestContext) return;
LOG(
("nsHttpTransaction adding blocking transaction %p from "
"request context %p\n",
this, mRequestContext.get()));
mRequestContext->AddBlockingTransaction();
mDispatchedAsBlocking = true;
}
void nsHttpTransaction::RemoveDispatchedAsBlocking() {
if (!mRequestContext || !mDispatchedAsBlocking) {
LOG(("nsHttpTransaction::RemoveDispatchedAsBlocking this=%p not blocking",
this));
return;
}
uint32_t blockers = 0;
nsresult rv = mRequestContext->RemoveBlockingTransaction(&blockers);
LOG(
("nsHttpTransaction removing blocking transaction %p from "
"request context %p. %d blockers remain.\n",
this, mRequestContext.get(), blockers));
if (NS_SUCCEEDED(rv) && !blockers) {
LOG(
("nsHttpTransaction %p triggering release of blocked channels "
" with request context=%p\n",
this, mRequestContext.get()));
rv = gHttpHandler->ConnMgr()->ProcessPendingQ();
if (NS_FAILED(rv)) {
LOG(
("nsHttpTransaction::RemoveDispatchedAsBlocking\n"
" failed to process pending queue\n"));
}
}
mDispatchedAsBlocking = false;
}
void nsHttpTransaction::ReleaseBlockingTransaction() {
RemoveDispatchedAsBlocking();
LOG(
("nsHttpTransaction %p request context set to null "
"in ReleaseBlockingTransaction() - was %p\n",
this, mRequestContext.get()));
mRequestContext = nullptr;
}
void nsHttpTransaction::DisableSpdy() {
mCaps |= NS_HTTP_DISALLOW_SPDY;
if (mConnInfo) {
// This is our clone of the connection info, not the persistent one that
// is owned by the connection manager, so we're safe to change this here
mConnInfo->SetNoSpdy(true);
}
}
void nsHttpTransaction::DisableHttp2ForProxy() {
mCaps |= NS_HTTP_DISALLOW_HTTP2_PROXY;
}
void nsHttpTransaction::DisableHttp3(bool aAllowRetryHTTPSRR) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// mOrigConnInfo is an indicator that HTTPS RR is used, so don't mess up the
// connection info.
// When HTTPS RR is used, PrepareConnInfoForRetry() could select other h3
// record to connect.
if (mOrigConnInfo) {
LOG(
("nsHttpTransaction::DisableHttp3 this=%p mOrigConnInfo=%s "
"aAllowRetryHTTPSRR=%d",
this, mOrigConnInfo->HashKey().get(), aAllowRetryHTTPSRR));
if (!aAllowRetryHTTPSRR) {
mCaps |= NS_HTTP_DISALLOW_HTTP3;
}
return;
}
mCaps |= NS_HTTP_DISALLOW_HTTP3;
MOZ_ASSERT(mConnInfo);
if (mConnInfo) {
// After CloneAsDirectRoute(), http3 will be disabled.
RefPtr<nsHttpConnectionInfo> connInfo;
mConnInfo->CloneAsDirectRoute(getter_AddRefs(connInfo));
RemoveAlternateServiceUsedHeader(mRequestHead);
MOZ_ASSERT(!connInfo->IsHttp3());
mConnInfo.swap(connInfo);
}
}
void nsHttpTransaction::CheckForStickyAuthScheme() {
LOG(("nsHttpTransaction::CheckForStickyAuthScheme this=%p", this));
MOZ_ASSERT(mHaveAllHeaders);
MOZ_ASSERT(mResponseHead);
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
CheckForStickyAuthSchemeAt(nsHttp::WWW_Authenticate);
CheckForStickyAuthSchemeAt(nsHttp::Proxy_Authenticate);
}
void nsHttpTransaction::CheckForStickyAuthSchemeAt(nsHttpAtom const& header) {
if (mCaps & NS_HTTP_STICKY_CONNECTION) {
LOG((" already sticky"));
return;
}
nsAutoCString auth;
if (NS_FAILED(mResponseHead->GetHeader(header, auth))) {
return;
}
if (IsStickyAuthSchemeAt(auth)) {
LOG((" connection made sticky"));
// This is enough to make this transaction keep it's current connection,
// prevents the connection from being released back to the pool.
mCaps |= NS_HTTP_STICKY_CONNECTION;
}
}
bool nsHttpTransaction::IsStickyAuthSchemeAt(nsACString const& auth) {
Tokenizer p(auth);
nsAutoCString schema;
while (p.ReadWord(schema)) {
ToLowerCase(schema);
// using a new instance because of thread safety of auth modules refcnt
nsCOMPtr<nsIHttpAuthenticator> authenticator;
if (schema.EqualsLiteral("negotiate")) {
#ifdef MOZ_AUTH_EXTENSION
authenticator = new nsHttpNegotiateAuth();
#endif
} else if (schema.EqualsLiteral("basic")) {
authenticator = new nsHttpBasicAuth();
} else if (schema.EqualsLiteral("digest")) {
authenticator = new nsHttpDigestAuth();
} else if (schema.EqualsLiteral("ntlm")) {
authenticator = new nsHttpNTLMAuth();
} else if (schema.EqualsLiteral("mock_auth") &&
PR_GetEnv("XPCSHELL_TEST_PROFILE_DIR")) {
authenticator = new MockHttpAuth();
}
if (authenticator) {
uint32_t flags;
nsresult rv = authenticator->GetAuthFlags(&flags);
if (NS_SUCCEEDED(rv) &&
(flags & nsIHttpAuthenticator::CONNECTION_BASED)) {
return true;
}
}
// schemes are separated with LFs, nsHttpHeaderArray::MergeHeader
p.SkipUntil(Tokenizer::Token::NewLine());
p.SkipWhites(Tokenizer::INCLUDE_NEW_LINE);
}
return false;
}
TimingStruct nsHttpTransaction::Timings() {
mozilla::MutexAutoLock lock(mLock);
TimingStruct timings = mTimings;
return timings;
}
void nsHttpTransaction::BootstrapTimings(TimingStruct times) {
mozilla::MutexAutoLock lock(mLock);
mTimings = times;
}
void nsHttpTransaction::SetDomainLookupStart(mozilla::TimeStamp timeStamp,
bool onlyIfNull) {
mozilla::MutexAutoLock lock(mLock);
if (onlyIfNull && !mTimings.domainLookupStart.IsNull()) {
return; // We only set the timestamp if it was previously null
}
mTimings.domainLookupStart = timeStamp;
}
void nsHttpTransaction::SetDomainLookupEnd(mozilla::TimeStamp timeStamp,
bool onlyIfNull) {
mozilla::MutexAutoLock lock(mLock);
if (onlyIfNull && !mTimings.domainLookupEnd.IsNull()) {
return; // We only set the timestamp if it was previously null
}
mTimings.domainLookupEnd = timeStamp;
}
void nsHttpTransaction::SetConnectStart(mozilla::TimeStamp timeStamp,
bool onlyIfNull) {
mozilla::MutexAutoLock lock(mLock);
if (onlyIfNull && !mTimings.connectStart.IsNull()) {
return; // We only set the timestamp if it was previously null
}
mTimings.connectStart = timeStamp;
}
void nsHttpTransaction::SetConnectEnd(mozilla::TimeStamp timeStamp,
bool onlyIfNull) {
mozilla::MutexAutoLock lock(mLock);
if (onlyIfNull && !mTimings.connectEnd.IsNull()) {
return; // We only set the timestamp if it was previously null
}
mTimings.connectEnd = timeStamp;
}
void nsHttpTransaction::SetRequestStart(mozilla::TimeStamp timeStamp,
bool onlyIfNull) {
mozilla::MutexAutoLock lock(mLock);
if (onlyIfNull && !mTimings.requestStart.IsNull()) {
return; // We only set the timestamp if it was previously null
}
mTimings.requestStart = timeStamp;
}
void nsHttpTransaction::SetResponseStart(mozilla::TimeStamp timeStamp,
bool onlyIfNull) {
mozilla::MutexAutoLock lock(mLock);
if (onlyIfNull && !mTimings.responseStart.IsNull()) {
return; // We only set the timestamp if it was previously null
}
mTimings.responseStart = timeStamp;
}
void nsHttpTransaction::SetResponseEnd(mozilla::TimeStamp timeStamp,
bool onlyIfNull) {
mozilla::MutexAutoLock lock(mLock);
if (onlyIfNull && !mTimings.responseEnd.IsNull()) {
return; // We only set the timestamp if it was previously null
}
mTimings.responseEnd = timeStamp;
}
mozilla::TimeStamp nsHttpTransaction::GetDomainLookupStart() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.domainLookupStart;
}
mozilla::TimeStamp nsHttpTransaction::GetDomainLookupEnd() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.domainLookupEnd;
}
mozilla::TimeStamp nsHttpTransaction::GetConnectStart() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.connectStart;
}
mozilla::TimeStamp nsHttpTransaction::GetTcpConnectEnd() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.tcpConnectEnd;
}
mozilla::TimeStamp nsHttpTransaction::GetSecureConnectionStart() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.secureConnectionStart;
}
mozilla::TimeStamp nsHttpTransaction::GetConnectEnd() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.connectEnd;
}
mozilla::TimeStamp nsHttpTransaction::GetRequestStart() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.requestStart;
}
mozilla::TimeStamp nsHttpTransaction::GetResponseStart() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.responseStart;
}
mozilla::TimeStamp nsHttpTransaction::GetResponseEnd() {
mozilla::MutexAutoLock lock(mLock);
return mTimings.responseEnd;
}
//-----------------------------------------------------------------------------
// nsHttpTransaction deletion event
//-----------------------------------------------------------------------------
class DeleteHttpTransaction : public Runnable {
public:
explicit DeleteHttpTransaction(nsHttpTransaction* trans)
: Runnable("net::DeleteHttpTransaction"), mTrans(trans) {}
NS_IMETHOD Run() override {
delete mTrans;
return NS_OK;
}
private:
nsHttpTransaction* mTrans;
};
void nsHttpTransaction::DeleteSelfOnConsumerThread() {
LOG(("nsHttpTransaction::DeleteSelfOnConsumerThread [this=%p]\n", this));
bool val;
if (!mConsumerTarget ||
(NS_SUCCEEDED(mConsumerTarget->IsOnCurrentThread(&val)) && val)) {
delete this;
} else {
LOG(("proxying delete to consumer thread...\n"));
nsCOMPtr<nsIRunnable> event = new DeleteHttpTransaction(this);
if (NS_FAILED(mConsumerTarget->Dispatch(event, NS_DISPATCH_NORMAL))) {
NS_WARNING("failed to dispatch nsHttpDeleteTransaction event");
}
}
}
bool nsHttpTransaction::TryToRunPacedRequest() {
if (mSubmittedRatePacing) return mPassedRatePacing;
mSubmittedRatePacing = true;
mSynchronousRatePaceRequest = true;
Unused << gHttpHandler->SubmitPacedRequest(
this, getter_AddRefs(mTokenBucketCancel));
mSynchronousRatePaceRequest = false;
return mPassedRatePacing;
}
void nsHttpTransaction::OnTokenBucketAdmitted() {
mPassedRatePacing = true;
mTokenBucketCancel = nullptr;
if (!mSynchronousRatePaceRequest) {
nsresult rv = gHttpHandler->ConnMgr()->ProcessPendingQ(mConnInfo);
if (NS_FAILED(rv)) {
LOG(
("nsHttpTransaction::OnTokenBucketAdmitted\n"
" failed to process pending queue\n"));
}
}
}
void nsHttpTransaction::CancelPacing(nsresult reason) {
if (mTokenBucketCancel) {
mTokenBucketCancel->Cancel(reason);
mTokenBucketCancel = nullptr;
}
}
//-----------------------------------------------------------------------------
// nsHttpTransaction::nsISupports
//-----------------------------------------------------------------------------
NS_IMPL_ADDREF(nsHttpTransaction)
NS_IMETHODIMP_(MozExternalRefCountType)
nsHttpTransaction::Release() {
nsrefcnt count;
MOZ_ASSERT(0 != mRefCnt, "dup release");
count = --mRefCnt;
NS_LOG_RELEASE(this, count, "nsHttpTransaction");
if (0 == count) {
mRefCnt = 1; /* stablize */
// it is essential that the transaction be destroyed on the consumer
// thread (we could be holding the last reference to our consumer).
DeleteSelfOnConsumerThread();
return 0;
}
return count;
}
NS_IMPL_QUERY_INTERFACE(nsHttpTransaction, nsIInputStreamCallback,
nsIOutputStreamCallback, nsITimerCallback, nsINamed)
//-----------------------------------------------------------------------------
// nsHttpTransaction::nsIInputStreamCallback
//-----------------------------------------------------------------------------
// called on the socket thread
NS_IMETHODIMP
nsHttpTransaction::OnInputStreamReady(nsIAsyncInputStream* out) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mConnection) {
mConnection->TransactionHasDataToWrite(this);
nsresult rv = mConnection->ResumeSend();
if (NS_FAILED(rv)) NS_ERROR("ResumeSend failed");
}
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpTransaction::nsIOutputStreamCallback
//-----------------------------------------------------------------------------
// called on the socket thread
NS_IMETHODIMP
nsHttpTransaction::OnOutputStreamReady(nsIAsyncOutputStream* out) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
mWaitingOnPipeOut = false;
if (mConnection) {
mConnection->TransactionHasDataToRecv(this);
nsresult rv = mConnection->ResumeRecv();
if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) {
NS_ERROR("ResumeRecv failed");
}
}
return NS_OK;
}
void nsHttpTransaction::GetNetworkAddresses(
NetAddr& self, NetAddr& peer, bool& aResolvedByTRR,
nsIRequest::TRRMode& aEffectiveTRRMode, TRRSkippedReason& aSkipReason,
bool& aEchConfigUsed) {
MutexAutoLock lock(mLock);
self = mSelfAddr;
peer = mPeerAddr;
aResolvedByTRR = mResolvedByTRR;
aEffectiveTRRMode = mEffectiveTRRMode;
aSkipReason = mTRRSkipReason;
aEchConfigUsed = mEchConfigUsed;
}
bool nsHttpTransaction::Do0RTT() {
LOG(("nsHttpTransaction::Do0RTT"));
mEarlyDataWasAvailable = true;
if (mRequestHead->IsSafeMethod() && !mDoNotTryEarlyData &&
(!mConnection || !mConnection->IsProxyConnectInProgress())) {
m0RTTInProgress = true;
}
return m0RTTInProgress;
}
nsresult nsHttpTransaction::Finish0RTT(bool aRestart,
bool aAlpnChanged /* ignored */) {
LOG(("nsHttpTransaction::Finish0RTT %p %d %d\n", this, aRestart,
aAlpnChanged));
MOZ_ASSERT(m0RTTInProgress);
m0RTTInProgress = false;
MaybeCancelFallbackTimer();
if (!aRestart && (mEarlyDataDisposition == EARLY_SENT)) {
// note that if this is invoked by a 3 param version of finish0rtt this
// disposition might be reverted
mEarlyDataDisposition = EARLY_ACCEPTED;
}
if (aRestart) {
// Not to use 0RTT when this transaction is restarted next time.
mDoNotTryEarlyData = true;
// Reset request headers to be sent again.
nsCOMPtr<nsISeekableStream> seekable = do_QueryInterface(mRequestStream);
if (seekable) {
seekable->Seek(nsISeekableStream::NS_SEEK_SET, 0);
} else {
return NS_ERROR_FAILURE;
}
} else if (!mConnected) {
// this is code that was skipped in ::ReadSegments while in 0RTT
mConnected = true;
MaybeRefreshSecurityInfo();
}
return NS_OK;
}
void nsHttpTransaction::Refused0RTT() {
LOG(("nsHttpTransaction::Refused0RTT %p\n", this));
if (mEarlyDataDisposition == EARLY_ACCEPTED) {
mEarlyDataDisposition = EARLY_SENT; // undo accepted state
}
}
void nsHttpTransaction::SetHttpTrailers(nsCString& aTrailers) {
LOG(("nsHttpTransaction::SetHttpTrailers %p", this));
LOG(("[\n %s\n]", aTrailers.BeginReading()));
// Introduce a local variable to minimize the critical section.
UniquePtr<nsHttpHeaderArray> httpTrailers(new nsHttpHeaderArray());
// Given it's usually null, use double-check locking for performance.
if (mForTakeResponseTrailers) {
MutexAutoLock lock(mLock);
if (mForTakeResponseTrailers) {
// Copy the trailer. |TakeResponseTrailers| gets the original trailer
// until the final swap.
*httpTrailers = *mForTakeResponseTrailers;
}
}
int32_t cur = 0;
int32_t len = aTrailers.Length();
while (cur < len) {
int32_t newline = aTrailers.FindCharInSet("\n", cur);
if (newline == -1) {
newline = len;
}
int32_t end =
(newline && aTrailers[newline - 1] == '\r') ? newline - 1 : newline;
nsDependentCSubstring line(aTrailers, cur, end);
nsHttpAtom hdr;
nsAutoCString hdrNameOriginal;
nsAutoCString val;
if (NS_SUCCEEDED(httpTrailers->ParseHeaderLine(line, &hdr, &hdrNameOriginal,
&val))) {
if (hdr == nsHttp::Server_Timing) {
Unused << httpTrailers->SetHeaderFromNet(hdr, hdrNameOriginal, val,
true);
}
}
cur = newline + 1;
}
if (httpTrailers->Count() == 0) {
// Didn't find a Server-Timing header, so get rid of this.
httpTrailers = nullptr;
}
MutexAutoLock lock(mLock);
std::swap(mForTakeResponseTrailers, httpTrailers);
}
bool nsHttpTransaction::IsWebsocketUpgrade() {
if (mRequestHead) {
nsAutoCString upgradeHeader;
if (NS_SUCCEEDED(mRequestHead->GetHeader(nsHttp::Upgrade, upgradeHeader)) &&
upgradeHeader.LowerCaseEqualsLiteral("websocket")) {
return true;
}
}
return false;
}
void nsHttpTransaction::OnProxyConnectComplete(int32_t aResponseCode) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(mConnInfo->UsingConnect());
LOG(("nsHttpTransaction::OnProxyConnectComplete %p aResponseCode=%d", this,
aResponseCode));
mProxyConnectResponseCode = aResponseCode;
}
int32_t nsHttpTransaction::GetProxyConnectResponseCode() {
return mProxyConnectResponseCode;
}
void nsHttpTransaction::SetFlat407Headers(const nsACString& aHeaders) {
MOZ_ASSERT(mProxyConnectResponseCode == 407);
MOZ_ASSERT(!mResponseHead);
LOG(("nsHttpTransaction::SetFlat407Headers %p", this));
mFlat407Headers = aHeaders;
}
void nsHttpTransaction::NotifyTransactionObserver(nsresult reason) {
MOZ_ASSERT(OnSocketThread());
if (!mTransactionObserver) {
return;
}
bool versionOk = false;
bool authOk = false;
LOG(("nsHttpTransaction::NotifyTransactionObserver %p reason %" PRIx32
" conn %p\n",
this, static_cast<uint32_t>(reason), mConnection.get()));
if (mConnection) {
HttpVersion version = mConnection->Version();
versionOk = (((reason == NS_BASE_STREAM_CLOSED) || (reason == NS_OK)) &&
((mConnection->Version() == HttpVersion::v2_0) ||
(mConnection->Version() == HttpVersion::v3_0)));
nsCOMPtr<nsITLSSocketControl> socketControl;
mConnection->GetTLSSocketControl(getter_AddRefs(socketControl));
LOG(
("nsHttpTransaction::NotifyTransactionObserver"
" version %u socketControl %p\n",
static_cast<int32_t>(version), socketControl.get()));
if (socketControl) {
authOk = !socketControl->GetFailedVerification();
}
}
TransactionObserverResult result;
result.versionOk() = versionOk;
result.authOk() = authOk;
result.closeReason() = reason;
TransactionObserverFunc obs = nullptr;
std::swap(obs, mTransactionObserver);
obs(std::move(result));
}
void nsHttpTransaction::UpdateConnectionInfo(nsHttpConnectionInfo* aConnInfo) {
MOZ_ASSERT(aConnInfo);
if (mActivated) {
MOZ_ASSERT(false, "Should not update conn info after activated");
return;
}
mOrigConnInfo = mConnInfo->Clone();
mConnInfo = aConnInfo;
}
nsresult nsHttpTransaction::OnHTTPSRRAvailable(
nsIDNSHTTPSSVCRecord* aHTTPSSVCRecord,
nsISVCBRecord* aHighestPriorityRecord) {
LOG(("nsHttpTransaction::OnHTTPSRRAvailable [this=%p] mActivated=%d", this,
mActivated));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
{
MutexAutoLock lock(mLock);
MakeDontWaitHTTPSRR();
mDNSRequest = nullptr;
}
if (!mResolver) {
LOG(("The transaction is not interested in HTTPS record anymore."));
return NS_OK;
}
RefPtr<nsHttpTransaction> deleteProtector(this);
uint32_t receivedStage = HTTPSSVC_NO_USABLE_RECORD;
// Make sure we set the correct value to |mHTTPSSVCReceivedStage|, since we
// also use this value to indicate whether HTTPS RR is used or not.
auto updateHTTPSSVCReceivedStage = MakeScopeExit([&] {
mHTTPSSVCReceivedStage = receivedStage;
// In the case that an HTTPS RR is unavailable, we should call
// ProcessPendingQ to make sure this transition to be processed soon.
if (!mHTTPSSVCRecord) {
gHttpHandler->ConnMgr()->ProcessPendingQ(mConnInfo);
}
});
nsCOMPtr<nsIDNSHTTPSSVCRecord> record = aHTTPSSVCRecord;
if (!record) {
return NS_ERROR_FAILURE;
}
bool hasIPAddress = false;
Unused << record->GetHasIPAddresses(&hasIPAddress);
if (mActivated) {
receivedStage = hasIPAddress ? HTTPSSVC_WITH_IPHINT_RECEIVED_STAGE_2
: HTTPSSVC_WITHOUT_IPHINT_RECEIVED_STAGE_2;
return NS_OK;
}
receivedStage = hasIPAddress ? HTTPSSVC_WITH_IPHINT_RECEIVED_STAGE_1
: HTTPSSVC_WITHOUT_IPHINT_RECEIVED_STAGE_1;
nsCOMPtr<nsISVCBRecord> svcbRecord = aHighestPriorityRecord;
if (!svcbRecord) {
LOG((" no usable record!"));
nsCOMPtr<nsIDNSService> dns = do_GetService(NS_DNSSERVICE_CONTRACTID);
bool allRecordsExcluded = false;
Unused << record->GetAllRecordsExcluded(&allRecordsExcluded);
Telemetry::Accumulate(Telemetry::DNS_HTTPSSVC_CONNECTION_FAILED_REASON,
allRecordsExcluded
? HTTPSSVC_CONNECTION_ALL_RECORDS_EXCLUDED
: HTTPSSVC_CONNECTION_NO_USABLE_RECORD);
if (allRecordsExcluded &&
StaticPrefs::network_dns_httpssvc_reset_exclustion_list() && dns) {
Unused << dns->ResetExcludedSVCDomainName(mConnInfo->GetOrigin());
if (NS_FAILED(record->GetServiceModeRecord(mCaps & NS_HTTP_DISALLOW_SPDY,
mCaps & NS_HTTP_DISALLOW_HTTP3,
getter_AddRefs(svcbRecord)))) {
return NS_ERROR_FAILURE;
}
} else {
return NS_ERROR_FAILURE;
}
}
// Remember this RR set. In the case that the connection establishment failed,
// we will use other records to retry.
mHTTPSSVCRecord = record;
RefPtr<nsHttpConnectionInfo> newInfo =
mConnInfo->CloneAndAdoptHTTPSSVCRecord(svcbRecord);
bool needFastFallback = newInfo->IsHttp3();
bool foundInPendingQ = gHttpHandler->ConnMgr()->RemoveTransFromConnEntry(
this, mHashKeyOfConnectionEntry);
// Adopt the new connection info, so this transaction will be added into the
// new connection entry.
UpdateConnectionInfo(newInfo);
// If this transaction is sucessfully removed from a connection entry, we call
// ProcessNewTransaction to process it immediately.
// If not, this means that nsHttpTransaction::OnHTTPSRRAvailable happens
// before ProcessNewTransaction and this transaction will be processed later.
if (foundInPendingQ) {
if (NS_FAILED(gHttpHandler->ConnMgr()->ProcessNewTransaction(this))) {
LOG(("Failed to process this transaction."));
return NS_ERROR_FAILURE;
}
}
// In case we already have mHttp3BackupTimer, cancel it.
MaybeCancelFallbackTimer();
if (needFastFallback) {
CreateAndStartTimer(
mFastFallbackTimer, this,
StaticPrefs::network_dns_httpssvc_http3_fast_fallback_timeout());
}
// Prefetch the A/AAAA records of the target name.
nsAutoCString targetName;
Unused << svcbRecord->GetName(targetName);
if (mResolver) {
mResolver->PrefetchAddrRecord(targetName, mCaps & NS_HTTP_REFRESH_DNS);
}
// echConfig is used, so initialize the retry counters to 0.
if (!mConnInfo->GetEchConfig().IsEmpty()) {
mEchRetryCounterMap.InsertOrUpdate(
Telemetry::TRANSACTION_ECH_RETRY_WITH_ECH_COUNT, 0);
mEchRetryCounterMap.InsertOrUpdate(
Telemetry::TRANSACTION_ECH_RETRY_WITHOUT_ECH_COUNT, 0);
mEchRetryCounterMap.InsertOrUpdate(
Telemetry::TRANSACTION_ECH_RETRY_ECH_FAILED_COUNT, 0);
mEchRetryCounterMap.InsertOrUpdate(
Telemetry::TRANSACTION_ECH_RETRY_OTHERS_COUNT, 0);
}
return NS_OK;
}
uint32_t nsHttpTransaction::HTTPSSVCReceivedStage() {
return mHTTPSSVCReceivedStage;
}
void nsHttpTransaction::MaybeCancelFallbackTimer() {
MOZ_DIAGNOSTIC_ASSERT(OnSocketThread(), "not on socket thread");
if (mFastFallbackTimer) {
mFastFallbackTimer->Cancel();
mFastFallbackTimer = nullptr;
}
if (mHttp3BackupTimer) {
mHttp3BackupTimer->Cancel();
mHttp3BackupTimer = nullptr;
}
}
void nsHttpTransaction::OnBackupConnectionReady(bool aTriggeredByHTTPSRR) {
LOG(
("nsHttpTransaction::OnBackupConnectionReady [%p] mConnected=%d "
"aTriggeredByHTTPSRR=%d",
this, mConnected, aTriggeredByHTTPSRR));
if (mConnected || mClosed || mRestarted) {
return;
}
// If HTTPS RR is in play, don't mess up the fallback mechansim of HTTPS RR.
if (!aTriggeredByHTTPSRR && mOrigConnInfo) {
return;
}
if (mConnection) {
// The transaction will only be restarted when we already have a connection.
// When there is no connection, this transaction will be moved to another
// connection entry.
SetRestartReason(aTriggeredByHTTPSRR
? TRANSACTION_RESTART_HTTPS_RR_FAST_FALLBACK
: TRANSACTION_RESTART_HTTP3_FAST_FALLBACK);
}
mCaps |= NS_HTTP_DISALLOW_HTTP3;
// Need to backup the origin conn info, since UpdateConnectionInfo() will be
// called in HandleFallback() and mOrigConnInfo will be
// replaced.
RefPtr<nsHttpConnectionInfo> backup = mOrigConnInfo;
HandleFallback(mBackupConnInfo);
mOrigConnInfo.swap(backup);
RemoveAlternateServiceUsedHeader(mRequestHead);
if (mResolver) {
if (mBackupConnInfo) {
const nsCString& host = mBackupConnInfo->GetRoutedHost().IsEmpty()
? mBackupConnInfo->GetOrigin()
: mBackupConnInfo->GetRoutedHost();
mResolver->PrefetchAddrRecord(host, Caps() & NS_HTTP_REFRESH_DNS);
}
if (!aTriggeredByHTTPSRR) {
// We are about to use this backup connection. We shoud not try to use
// HTTPS RR at this point.
mResolver->Close();
mResolver = nullptr;
}
}
}
static void CreateBackupConnection(
nsHttpConnectionInfo* aBackupConnInfo, nsIInterfaceRequestor* aCallbacks,
uint32_t aCaps, std::function<void(bool)>&& aResultCallback) {
aBackupConnInfo->SetFallbackConnection(true);
RefPtr<SpeculativeTransaction> trans = new SpeculativeTransaction(
aBackupConnInfo, aCallbacks, aCaps | NS_HTTP_DISALLOW_HTTP3,
std::move(aResultCallback));
uint32_t limit =
StaticPrefs::network_http_http3_parallel_fallback_conn_limit();
if (limit) {
trans->SetParallelSpeculativeConnectLimit(limit);
trans->SetIgnoreIdle(true);
}
gHttpHandler->ConnMgr()->DoFallbackConnection(trans, false);
}
void nsHttpTransaction::OnHttp3BackupTimer() {
LOG(("nsHttpTransaction::OnHttp3BackupTimer [%p]", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(mConnInfo->IsHttp3());
mHttp3BackupTimer = nullptr;
mConnInfo->CloneAsDirectRoute(getter_AddRefs(mBackupConnInfo));
MOZ_ASSERT(!mBackupConnInfo->IsHttp3());
RefPtr<nsHttpTransaction> self = this;
auto callback = [self](bool aSucceded) {
if (aSucceded) {
self->OnBackupConnectionReady(false);
}
};
nsCOMPtr<nsIInterfaceRequestor> callbacks;
{
MutexAutoLock lock(mLock);
callbacks = mCallbacks;
}
CreateBackupConnection(mBackupConnInfo, callbacks, mCaps,
std::move(callback));
}
void nsHttpTransaction::OnFastFallbackTimer() {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
LOG(("nsHttpTransaction::OnFastFallbackTimer [%p] mConnected=%d", this,
mConnected));
mFastFallbackTimer = nullptr;
MOZ_ASSERT(mHTTPSSVCRecord && mOrigConnInfo);
if (!mHTTPSSVCRecord || !mOrigConnInfo) {
return;
}
bool echConfigUsed = gHttpHandler->EchConfigEnabled(mConnInfo->IsHttp3()) &&
!mConnInfo->GetEchConfig().IsEmpty();
mBackupConnInfo = PrepareFastFallbackConnInfo(echConfigUsed);
if (!mBackupConnInfo) {
return;
}
MOZ_ASSERT(!mBackupConnInfo->IsHttp3());
RefPtr<nsHttpTransaction> self = this;
auto callback = [self](bool aSucceded) {
if (!aSucceded) {
return;
}
self->mFastFallbackTriggered = true;
self->OnBackupConnectionReady(true);
};
nsCOMPtr<nsIInterfaceRequestor> callbacks;
{
MutexAutoLock lock(mLock);
callbacks = mCallbacks;
}
CreateBackupConnection(mBackupConnInfo, callbacks, mCaps,
std::move(callback));
}
void nsHttpTransaction::HandleFallback(
nsHttpConnectionInfo* aFallbackConnInfo) {
if (mConnection) {
MOZ_ASSERT(mActivated);
// Close the transaction with NS_ERROR_NET_RESET, since we know doing this
// will make transaction to be restarted.
mConnection->CloseTransaction(this, NS_ERROR_NET_RESET);
return;
}
if (!aFallbackConnInfo) {
// Nothing to do here.
return;
}
LOG(("nsHttpTransaction %p HandleFallback to connInfo[%s]", this,
aFallbackConnInfo->HashKey().get()));
bool foundInPendingQ = gHttpHandler->ConnMgr()->RemoveTransFromConnEntry(
this, mHashKeyOfConnectionEntry);
if (!foundInPendingQ) {
MOZ_ASSERT(false, "transaction not in entry");
return;
}
// rewind streams in case we already wrote out the request
nsCOMPtr<nsISeekableStream> seekable = do_QueryInterface(mRequestStream);
if (seekable) {
seekable->Seek(nsISeekableStream::NS_SEEK_SET, 0);
}
UpdateConnectionInfo(aFallbackConnInfo);
Unused << gHttpHandler->ConnMgr()->ProcessNewTransaction(this);
}
NS_IMETHODIMP
nsHttpTransaction::Notify(nsITimer* aTimer) {
MOZ_DIAGNOSTIC_ASSERT(OnSocketThread(), "not on socket thread");
if (!gHttpHandler || !gHttpHandler->ConnMgr()) {
return NS_OK;
}
if (aTimer == mFastFallbackTimer) {
OnFastFallbackTimer();
} else if (aTimer == mHttp3BackupTimer) {
OnHttp3BackupTimer();
}
return NS_OK;
}
NS_IMETHODIMP
nsHttpTransaction::GetName(nsACString& aName) {
aName.AssignLiteral("nsHttpTransaction");
return NS_OK;
}
bool nsHttpTransaction::GetSupportsHTTP3() { return mSupportsHTTP3; }
const int64_t TELEMETRY_REQUEST_SIZE_10M = (int64_t)10 * (int64_t)(1 << 20);
const int64_t TELEMETRY_REQUEST_SIZE_50M = (int64_t)50 * (int64_t)(1 << 20);
const int64_t TELEMETRY_REQUEST_SIZE_100M = (int64_t)100 * (int64_t)(1 << 20);
void nsHttpTransaction::CollectTelemetryForUploads() {
if ((mRequestSize < TELEMETRY_REQUEST_SIZE_10M) ||
mTimings.requestStart.IsNull() || mTimings.responseStart.IsNull()) {
return;
}
// We will briefly continue to collect HTTP_UPLOAD_BANDWIDTH_MBPS
// (a keyed histogram) while live experiments depend on it.
// Once complete, we can remove and use the glean probes,
// http_1/2/3_upload_throughput.
nsAutoCString protocolVersion(nsHttp::GetProtocolVersion(mHttpVersion));
TimeDuration sendTime = mTimings.responseStart - mTimings.requestStart;
double megabits = static_cast<double>(mRequestSize) * 8.0 / 1000000.0;
uint32_t mpbs = static_cast<uint32_t>(megabits / sendTime.ToSeconds());
Telemetry::Accumulate(Telemetry::HTTP_UPLOAD_BANDWIDTH_MBPS, protocolVersion,
mpbs);
switch (mHttpVersion) {
case HttpVersion::v1_0:
case HttpVersion::v1_1:
glean::networking::http_1_upload_throughput.AccumulateSingleSample(mpbs);
if (mRequestSize <= TELEMETRY_REQUEST_SIZE_50M) {
glean::networking::http_1_upload_throughput_10_50
.AccumulateSingleSample(mpbs);
} else if (mRequestSize <= TELEMETRY_REQUEST_SIZE_100M) {
glean::networking::http_1_upload_throughput_50_100
.AccumulateSingleSample(mpbs);
} else {
glean::networking::http_1_upload_throughput_100.AccumulateSingleSample(
mpbs);
}
break;
case HttpVersion::v2_0:
glean::networking::http_2_upload_throughput.AccumulateSingleSample(mpbs);
if (mRequestSize <= TELEMETRY_REQUEST_SIZE_50M) {
glean::networking::http_2_upload_throughput_10_50
.AccumulateSingleSample(mpbs);
} else if (mRequestSize <= TELEMETRY_REQUEST_SIZE_100M) {
glean::networking::http_2_upload_throughput_50_100
.AccumulateSingleSample(mpbs);
} else {
glean::networking::http_2_upload_throughput_100.AccumulateSingleSample(
mpbs);
}
break;
case HttpVersion::v3_0:
glean::networking::http_3_upload_throughput.AccumulateSingleSample(mpbs);
if (mRequestSize <= TELEMETRY_REQUEST_SIZE_50M) {
glean::networking::http_3_upload_throughput_10_50
.AccumulateSingleSample(mpbs);
} else if (mRequestSize <= TELEMETRY_REQUEST_SIZE_100M) {
glean::networking::http_3_upload_throughput_50_100
.AccumulateSingleSample(mpbs);
} else {
glean::networking::http_3_upload_throughput_100.AccumulateSingleSample(
mpbs);
}
break;
default:
break;
}
}
void nsHttpTransaction::GetHashKeyOfConnectionEntry(nsACString& aResult) {
MutexAutoLock lock(mLock);
aResult.Assign(mHashKeyOfConnectionEntry);
}
void nsHttpTransaction::SetIsForWebTransport(bool aIsForWebTransport) {
mIsForWebTransport = aIsForWebTransport;
}
void nsHttpTransaction::RemoveConnection() {
MutexAutoLock lock(mLock);
mConnection = nullptr;
}
} // namespace mozilla::net