Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=4 sw=2 sts=2 et cin: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// HttpLog.h should generally be included first
#include "HttpLog.h"
// Log on level :5, instead of default :4.
#undef LOG
#define LOG(args) LOG5(args)
#undef LOG_ENABLED
#define LOG_ENABLED() LOG5_ENABLED()
#include "ASpdySession.h"
#include "NSSErrorsService.h"
#include "TLSTransportLayer.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/StaticPrefs_network.h"
#include "mozilla/Telemetry.h"
#include "mozpkix/pkixnss.h"
#include "nsCRT.h"
#include "nsHttpConnection.h"
#include "nsHttpHandler.h"
#include "nsHttpRequestHead.h"
#include "nsHttpResponseHead.h"
#include "nsIClassOfService.h"
#include "nsIOService.h"
#include "nsISocketTransport.h"
#include "nsISupportsPriority.h"
#include "nsITLSSocketControl.h"
#include "nsITransportSecurityInfo.h"
#include "nsPreloadedStream.h"
#include "nsProxyRelease.h"
#include "nsQueryObject.h"
#include "nsSocketTransport2.h"
#include "nsSocketTransportService2.h"
#include "nsStringStream.h"
#include "sslerr.h"
#include "sslt.h"
namespace mozilla::net {
enum TlsHandshakeResult : uint32_t {
EchConfigSuccessful = 0,
EchConfigFailed,
NoEchConfigSuccessful,
NoEchConfigFailed,
};
//-----------------------------------------------------------------------------
// nsHttpConnection <public>
//-----------------------------------------------------------------------------
nsHttpConnection::nsHttpConnection() : mHttpHandler(gHttpHandler) {
LOG(("Creating nsHttpConnection @%p\n", this));
// the default timeout is for when this connection has not yet processed a
// transaction
static const PRIntervalTime k5Sec = PR_SecondsToInterval(5);
mIdleTimeout = (k5Sec < gHttpHandler->IdleTimeout())
? k5Sec
: gHttpHandler->IdleTimeout();
mThroughCaptivePortal = gHttpHandler->GetThroughCaptivePortal();
}
nsHttpConnection::~nsHttpConnection() {
LOG(("Destroying nsHttpConnection @%p\n", this));
if (!mEverUsedSpdy) {
LOG(("nsHttpConnection %p performed %d HTTP/1.x transactions\n", this,
mHttp1xTransactionCount));
Telemetry::Accumulate(Telemetry::HTTP_REQUEST_PER_CONN,
mHttp1xTransactionCount);
nsHttpConnectionInfo* ci = nullptr;
if (mTransaction) {
ci = mTransaction->ConnectionInfo();
}
if (!ci) {
ci = mConnInfo;
}
MOZ_ASSERT(ci);
if (ci->GetIsTrrServiceChannel()) {
Telemetry::Accumulate(Telemetry::DNS_TRR_REQUEST_PER_CONN,
mHttp1xTransactionCount);
}
}
if (mTotalBytesRead) {
uint32_t totalKBRead = static_cast<uint32_t>(mTotalBytesRead >> 10);
LOG(("nsHttpConnection %p read %dkb on connection spdy=%d\n", this,
totalKBRead, mEverUsedSpdy));
Telemetry::Accumulate(mEverUsedSpdy ? Telemetry::SPDY_KBREAD_PER_CONN2
: Telemetry::HTTP_KBREAD_PER_CONN2,
totalKBRead);
}
if (mThroughCaptivePortal) {
if (mTotalBytesRead || mTotalBytesWritten) {
auto total =
Clamp<uint32_t>((mTotalBytesRead >> 10) + (mTotalBytesWritten >> 10),
0, std::numeric_limits<uint32_t>::max());
Telemetry::ScalarAdd(
Telemetry::ScalarID::NETWORKING_DATA_TRANSFERRED_CAPTIVE_PORTAL,
total);
}
Telemetry::ScalarAdd(
Telemetry::ScalarID::NETWORKING_HTTP_CONNECTIONS_CAPTIVE_PORTAL, 1);
}
if (mForceSendTimer) {
mForceSendTimer->Cancel();
mForceSendTimer = nullptr;
}
auto ReleaseSocketTransport =
[socketTransport(std::move(mSocketTransport))]() mutable {
socketTransport = nullptr;
};
if (OnSocketThread()) {
ReleaseSocketTransport();
} else {
gSocketTransportService->Dispatch(NS_NewRunnableFunction(
"nsHttpConnection::~nsHttpConnection", ReleaseSocketTransport));
}
}
nsresult nsHttpConnection::Init(
nsHttpConnectionInfo* info, uint16_t maxHangTime,
nsISocketTransport* transport, nsIAsyncInputStream* instream,
nsIAsyncOutputStream* outstream, bool connectedTransport, nsresult status,
nsIInterfaceRequestor* callbacks, PRIntervalTime rtt, bool forWebSocket) {
LOG1(("nsHttpConnection::Init this=%p sockettransport=%p forWebSocket=%d",
this, transport, forWebSocket));
NS_ENSURE_ARG_POINTER(info);
NS_ENSURE_TRUE(!mConnInfo, NS_ERROR_ALREADY_INITIALIZED);
MOZ_ASSERT(NS_SUCCEEDED(status) || !connectedTransport);
mConnectedTransport = connectedTransport;
mConnInfo = info;
MOZ_ASSERT(mConnInfo);
mLastWriteTime = mLastReadTime = PR_IntervalNow();
mRtt = rtt;
mMaxHangTime = PR_SecondsToInterval(maxHangTime);
mSocketTransport = transport;
mSocketIn = instream;
mSocketOut = outstream;
mForWebSocket = forWebSocket;
// See explanation for non-strictness of this operation in
// SetSecurityCallbacks.
mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(
"nsHttpConnection::mCallbacks", callbacks, false);
mErrorBeforeConnect = status;
if (NS_SUCCEEDED(mErrorBeforeConnect)) {
mSocketTransport->SetEventSink(this, nullptr);
mSocketTransport->SetSecurityCallbacks(this);
ChangeConnectionState(ConnectionState::INITED);
} else {
SetCloseReason(ToCloseReason(mErrorBeforeConnect));
}
mTlsHandshaker = new TlsHandshaker(mConnInfo, this);
return NS_OK;
}
void nsHttpConnection::ChangeState(HttpConnectionState newState) {
LOG(("nsHttpConnection::ChangeState %d -> %d [this=%p]", mState, newState,
this));
mState = newState;
}
nsresult nsHttpConnection::TryTakeSubTransactions(
nsTArray<RefPtr<nsAHttpTransaction> >& list) {
nsresult rv = mTransaction->TakeSubTransactions(list);
if (rv == NS_ERROR_ALREADY_OPENED) {
// Has the interface for TakeSubTransactions() changed?
LOG(
("TakeSubTransactions somehow called after "
"nsAHttpTransaction began processing\n"));
MOZ_ASSERT(false,
"TakeSubTransactions somehow called after "
"nsAHttpTransaction began processing");
mTransaction->Close(NS_ERROR_ABORT);
return rv;
}
if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
// Has the interface for TakeSubTransactions() changed?
LOG(("unexpected rv from nnsAHttpTransaction::TakeSubTransactions()"));
MOZ_ASSERT(false,
"unexpected result from "
"nsAHttpTransaction::TakeSubTransactions()");
mTransaction->Close(NS_ERROR_ABORT);
return rv;
}
return rv;
}
void nsHttpConnection::ResetTransaction(RefPtr<nsAHttpTransaction>&& trans) {
MOZ_ASSERT(trans);
mSpdySession->SetConnection(trans->Connection());
trans->SetConnection(nullptr);
trans->DoNotRemoveAltSvc();
trans->Close(NS_ERROR_NET_RESET);
}
nsresult nsHttpConnection::MoveTransactionsToSpdy(
nsresult status, nsTArray<RefPtr<nsAHttpTransaction> >& list) {
if (NS_FAILED(status)) { // includes NS_ERROR_NOT_IMPLEMENTED
MOZ_ASSERT(list.IsEmpty(), "sub transaction list not empty");
// If this transaction is used to drive websocket, we reset it to put it in
// the pending queue. Once we know if the server supports websocket or not,
// the pending queue will be processed.
nsHttpTransaction* trans = mTransaction->QueryHttpTransaction();
if (trans && trans->IsWebsocketUpgrade()) {
LOG(("nsHttpConnection resetting transaction for websocket upgrade"));
// websocket upgrade needs NonSticky for transaction reset
mTransaction->MakeNonSticky();
ResetTransaction(std::move(mTransaction));
mTransaction = nullptr;
return NS_OK;
}
// This is ok - treat mTransaction as a single real request.
// Wrap the old http transaction into the new spdy session
// as the first stream.
LOG(
("nsHttpConnection::MoveTransactionsToSpdy moves single transaction %p "
"into SpdySession %p\n",
mTransaction.get(), mSpdySession.get()));
nsresult rv = AddTransaction(mTransaction, mPriority);
if (NS_FAILED(rv)) {
return rv;
}
} else {
int32_t count = list.Length();
LOG(
("nsHttpConnection::MoveTransactionsToSpdy moving transaction list "
"len=%d "
"into SpdySession %p\n",
count, mSpdySession.get()));
if (!count) {
mTransaction->Close(NS_ERROR_ABORT);
return NS_ERROR_ABORT;
}
for (int32_t index = 0; index < count; ++index) {
RefPtr<nsAHttpTransaction> transaction = list[index];
nsHttpTransaction* trans = transaction->QueryHttpTransaction();
if (trans && trans->IsWebsocketUpgrade()) {
LOG(("nsHttpConnection resetting a transaction for websocket upgrade"));
// websocket upgrade needs NonSticky for transaction reset
transaction->MakeNonSticky();
ResetTransaction(std::move(transaction));
transaction = nullptr;
continue;
}
nsresult rv = AddTransaction(list[index], mPriority);
if (NS_FAILED(rv)) {
return rv;
}
}
}
return NS_OK;
}
void nsHttpConnection::Start0RTTSpdy(SpdyVersion spdyVersion) {
LOG(("nsHttpConnection::Start0RTTSpdy [this=%p]", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
mDid0RTTSpdy = true;
mUsingSpdyVersion = spdyVersion;
mEverUsedSpdy = true;
mSpdySession =
ASpdySession::NewSpdySession(spdyVersion, mSocketTransport, true);
if (mTransaction) {
nsTArray<RefPtr<nsAHttpTransaction> > list;
nsresult rv = TryTakeSubTransactions(list);
if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
LOG(
("nsHttpConnection::Start0RTTSpdy [this=%p] failed taking "
"subtransactions rv=%" PRIx32,
this, static_cast<uint32_t>(rv)));
return;
}
rv = MoveTransactionsToSpdy(rv, list);
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::Start0RTTSpdy [this=%p] failed moving "
"transactions rv=%" PRIx32,
this, static_cast<uint32_t>(rv)));
return;
}
}
mTransaction = mSpdySession;
}
void nsHttpConnection::StartSpdy(nsITLSSocketControl* sslControl,
SpdyVersion spdyVersion) {
LOG(("nsHttpConnection::StartSpdy [this=%p, mDid0RTTSpdy=%d]\n", this,
mDid0RTTSpdy));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!mSpdySession || mDid0RTTSpdy);
mUsingSpdyVersion = spdyVersion;
mEverUsedSpdy = true;
if (sslControl) {
sslControl->SetDenyClientCert(true);
}
if (!mDid0RTTSpdy) {
mSpdySession =
ASpdySession::NewSpdySession(spdyVersion, mSocketTransport, false);
}
if (!mReportedSpdy) {
mReportedSpdy = true;
// See bug 1797729.
// It's possible that we already have a HTTP/3 connection that can be
// coleased with this connection. We should avoid coalescing with the
// existing HTTP/3 connection if the transaction doesn't allow to use
// HTTP/3.
gHttpHandler->ConnMgr()->ReportSpdyConnection(this, true,
mTransactionDisallowHttp3);
}
// Setting the connection as reused allows some transactions that fail
// with NS_ERROR_NET_RESET to be restarted and SPDY uses that code
// to handle clean rejections (such as those that arrived after
// a server goaway was generated).
mIsReused = true;
// If mTransaction is a muxed object it might represent
// several requests. If so, we need to unpack that and
// pack them all into a new spdy session.
nsTArray<RefPtr<nsAHttpTransaction> > list;
nsresult status = NS_OK;
if (!mDid0RTTSpdy && mTransaction) {
status = TryTakeSubTransactions(list);
if (NS_FAILED(status) && status != NS_ERROR_NOT_IMPLEMENTED) {
return;
}
}
if (NeedSpdyTunnel()) {
LOG3(
("nsHttpConnection::StartSpdy %p Connecting To a HTTP/2 "
"Proxy and Need Connect",
this));
SetTunnelSetupDone();
}
nsresult rv = NS_OK;
bool spdyProxy = mConnInfo->UsingHttpsProxy() && mConnInfo->UsingConnect() &&
!mHasTLSTransportLayer;
if (spdyProxy) {
RefPtr<nsHttpConnectionInfo> wildCardProxyCi;
rv = mConnInfo->CreateWildCard(getter_AddRefs(wildCardProxyCi));
MOZ_ASSERT(NS_SUCCEEDED(rv));
gHttpHandler->ConnMgr()->MoveToWildCardConnEntry(mConnInfo, wildCardProxyCi,
this);
mConnInfo = wildCardProxyCi;
MOZ_ASSERT(mConnInfo);
}
if (!mDid0RTTSpdy && mTransaction) {
if (spdyProxy) {
if (NS_FAILED(status)) {
// proxy upgrade needs Restartable for transaction reset
// note that using NonSticky here won't work because it breaks
// netwerk/test/unit/test_websocket_server.js - h1 ws with h2 proxy
mTransaction->MakeRestartable();
ResetTransaction(std::move(mTransaction));
mTransaction = nullptr;
} else {
for (auto trans : list) {
if (!mSpdySession->Connection()) {
mSpdySession->SetConnection(trans->Connection());
}
trans->SetConnection(nullptr);
trans->DoNotRemoveAltSvc();
trans->Close(NS_ERROR_NET_RESET);
}
}
} else {
rv = MoveTransactionsToSpdy(status, list);
if (NS_FAILED(rv)) {
return;
}
}
}
// Disable TCP Keepalives - use SPDY ping instead.
rv = DisableTCPKeepalives();
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::StartSpdy [%p] DisableTCPKeepalives failed "
"rv[0x%" PRIx32 "]",
this, static_cast<uint32_t>(rv)));
}
mIdleTimeout = gHttpHandler->SpdyTimeout() * mDefaultTimeoutFactor;
mTransaction = mSpdySession;
if (mDontReuse) {
mSpdySession->DontReuse();
}
}
void nsHttpConnection::PostProcessNPNSetup(bool handshakeSucceeded,
bool hasSecurityInfo,
bool earlyDataUsed) {
if (mTransaction) {
mTransaction->OnTransportStatus(mSocketTransport,
NS_NET_STATUS_TLS_HANDSHAKE_ENDED, 0);
}
// this is happening after the bootstrap was originally written to. so update
// it.
if (mTransaction && mTransaction->QueryNullTransaction() &&
(mBootstrappedTimings.secureConnectionStart.IsNull() ||
mBootstrappedTimings.tcpConnectEnd.IsNull())) {
mBootstrappedTimings.secureConnectionStart =
mTransaction->QueryNullTransaction()->GetSecureConnectionStart();
mBootstrappedTimings.tcpConnectEnd =
mTransaction->QueryNullTransaction()->GetTcpConnectEnd();
}
if (hasSecurityInfo) {
mBootstrappedTimings.connectEnd = TimeStamp::Now();
}
if (earlyDataUsed) {
// Didn't get 0RTT OK, back out of the "attempting 0RTT" state
LOG(("nsHttpConnection::PostProcessNPNSetup [this=%p] 0rtt failed", this));
if (mTransaction && NS_FAILED(mTransaction->Finish0RTT(true, true))) {
mTransaction->Close(NS_ERROR_NET_RESET);
}
mContentBytesWritten0RTT = 0;
if (mDid0RTTSpdy) {
Reset0RttForSpdy();
}
}
if (hasSecurityInfo) {
// Telemetry for tls failure rate with and without esni;
bool echConfigUsed = false;
mSocketTransport->GetEchConfigUsed(&echConfigUsed);
TlsHandshakeResult result =
echConfigUsed
? (handshakeSucceeded ? TlsHandshakeResult::EchConfigSuccessful
: TlsHandshakeResult::EchConfigFailed)
: (handshakeSucceeded ? TlsHandshakeResult::NoEchConfigSuccessful
: TlsHandshakeResult::NoEchConfigFailed);
Telemetry::Accumulate(Telemetry::ECHCONFIG_SUCCESS_RATE, result);
}
}
void nsHttpConnection::Reset0RttForSpdy() {
// Reset the work done by Start0RTTSpdy
mUsingSpdyVersion = SpdyVersion::NONE;
mTransaction = nullptr;
mSpdySession = nullptr;
// We have to reset this here, just in case we end up starting spdy again,
// so it can actually do everything it needs to do.
mDid0RTTSpdy = false;
}
// called on the socket thread
nsresult nsHttpConnection::Activate(nsAHttpTransaction* trans, uint32_t caps,
int32_t pri) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
LOG1(("nsHttpConnection::Activate [this=%p trans=%p caps=%x]\n", this, trans,
caps));
if (!mExperienced && !trans->IsNullTransaction()) {
mHasFirstHttpTransaction = true;
if (mTlsHandshaker->NPNComplete()) {
mExperienced = true;
}
if (mBootstrappedTimingsSet) {
mBootstrappedTimingsSet = false;
nsHttpTransaction* hTrans = trans->QueryHttpTransaction();
if (hTrans) {
hTrans->BootstrapTimings(mBootstrappedTimings);
SetUrgentStartPreferred(hTrans->GetClassOfService().Flags() &
nsIClassOfService::UrgentStart);
}
}
mBootstrappedTimings = TimingStruct();
}
if (caps & NS_HTTP_LARGE_KEEPALIVE) {
mDefaultTimeoutFactor = StaticPrefs::network_http_largeKeepaliveFactor();
}
mTransactionCaps = caps;
mPriority = pri;
if (mHasFirstHttpTransaction && mExperienced) {
mHasFirstHttpTransaction = false;
mExperienceState |= ConnectionExperienceState::Experienced;
}
if (mTransaction && (mUsingSpdyVersion != SpdyVersion::NONE)) {
return AddTransaction(trans, pri);
}
NS_ENSURE_ARG_POINTER(trans);
NS_ENSURE_TRUE(!mTransaction, NS_ERROR_IN_PROGRESS);
// reset the read timers to wash away any idle time
mLastWriteTime = mLastReadTime = PR_IntervalNow();
// Connection failures are Activated() just like regular transacions.
// If we don't have a confirmation of a connected socket then test it
// with a write() to get relevant error code.
if (NS_FAILED(mErrorBeforeConnect)) {
mSocketOutCondition = mErrorBeforeConnect;
mTransaction = trans;
CloseTransaction(mTransaction, mSocketOutCondition);
return mSocketOutCondition;
}
if (!mConnectedTransport) {
uint32_t count;
mSocketOutCondition = NS_ERROR_FAILURE;
if (mSocketOut) {
mSocketOutCondition = mSocketOut->Write("", 0, &count);
}
if (NS_FAILED(mSocketOutCondition) &&
mSocketOutCondition != NS_BASE_STREAM_WOULD_BLOCK) {
LOG(("nsHttpConnection::Activate [this=%p] Bad Socket %" PRIx32 "\n",
this, static_cast<uint32_t>(mSocketOutCondition)));
mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
mTransaction = trans;
CloseTransaction(mTransaction, mSocketOutCondition);
return mSocketOutCondition;
}
}
// Update security callbacks
nsCOMPtr<nsIInterfaceRequestor> callbacks;
trans->GetSecurityCallbacks(getter_AddRefs(callbacks));
SetSecurityCallbacks(callbacks);
mTlsHandshaker->SetupSSL(mInSpdyTunnel, mForcePlainText);
if (mTlsHandshaker->NPNComplete()) {
// For non-HTTPS connection, change the state to TRANSFERING directly.
ChangeConnectionState(ConnectionState::TRANSFERING);
} else {
ChangeConnectionState(ConnectionState::TLS_HANDSHAKING);
}
// take ownership of the transaction
mTransaction = trans;
nsCOMPtr<nsITLSSocketControl> tlsSocketControl;
if (NS_SUCCEEDED(mSocketTransport->GetTlsSocketControl(
getter_AddRefs(tlsSocketControl))) &&
tlsSocketControl) {
tlsSocketControl->SetBrowserId(mTransaction->BrowserId());
}
MOZ_ASSERT(!mIdleMonitoring, "Activating a connection with an Idle Monitor");
mIdleMonitoring = false;
// set mKeepAlive according to what will be requested
mKeepAliveMask = mKeepAlive = (caps & NS_HTTP_ALLOW_KEEPALIVE);
mTransactionDisallowHttp3 |= (caps & NS_HTTP_DISALLOW_HTTP3);
// need to handle HTTP CONNECT tunnels if this is the first time if
// we are tunneling through a proxy
nsresult rv = CheckTunnelIsNeeded();
if (NS_FAILED(rv)) goto failed_activation;
// Clear the per activation counter
mCurrentBytesRead = 0;
// The overflow state is not needed between activations
mInputOverflow = nullptr;
mResponseTimeoutEnabled = gHttpHandler->ResponseTimeoutEnabled() &&
mTransaction->ResponseTimeout() > 0 &&
mTransaction->ResponseTimeoutEnabled();
rv = StartShortLivedTCPKeepalives();
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::Activate [%p] "
"StartShortLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
this, static_cast<uint32_t>(rv)));
}
trans->OnActivated();
rv = OnOutputStreamReady(mSocketOut);
if (NS_SUCCEEDED(rv) && mContinueHandshakeDone) {
mContinueHandshakeDone();
}
mContinueHandshakeDone = nullptr;
failed_activation:
if (NS_FAILED(rv)) {
mTransaction = nullptr;
}
return rv;
}
nsresult nsHttpConnection::AddTransaction(nsAHttpTransaction* httpTransaction,
int32_t priority) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(mSpdySession && (mUsingSpdyVersion != SpdyVersion::NONE),
"AddTransaction to live http connection without spdy/quic");
// If this is a wild card nshttpconnection (i.e. a spdy proxy) then
// it is important to start the stream using the specific connection
// info of the transaction to ensure it is routed on the right tunnel
nsHttpConnectionInfo* transCI = httpTransaction->ConnectionInfo();
bool needTunnel = transCI->UsingHttpsProxy();
needTunnel = needTunnel && !mHasTLSTransportLayer;
needTunnel = needTunnel && transCI->UsingConnect();
needTunnel = needTunnel && httpTransaction->QueryHttpTransaction();
// Let the transaction know that the tunnel is already established and we
// don't need to setup the tunnel again.
if (transCI->UsingConnect() && mEverUsedSpdy && mHasTLSTransportLayer) {
httpTransaction->OnProxyConnectComplete(200);
}
LOG(("nsHttpConnection::AddTransaction [this=%p] for %s%s", this,
mSpdySession ? "SPDY" : "QUIC", needTunnel ? " over tunnel" : ""));
if (mSpdySession) {
if (!mSpdySession->AddStream(httpTransaction, priority, mCallbacks)) {
MOZ_ASSERT(false); // this cannot happen!
httpTransaction->Close(NS_ERROR_ABORT);
return NS_ERROR_FAILURE;
}
}
Unused << ResumeSend();
return NS_OK;
}
nsresult nsHttpConnection::CreateTunnelStream(
nsAHttpTransaction* httpTransaction, nsHttpConnection** aHttpConnection,
bool aIsWebSocket) {
if (!mSpdySession) {
return NS_ERROR_UNEXPECTED;
}
RefPtr<nsHttpConnection> conn = mSpdySession->CreateTunnelStream(
httpTransaction, mCallbacks, mRtt, aIsWebSocket);
// We need to store the refrence of the Http2Session in the tunneled
// connection, so when nsHttpConnection::DontReuse is called the Http2Session
// can't be reused.
if (aIsWebSocket) {
LOG(
("nsHttpConnection::CreateTunnelStream %p Set h2 session %p to "
"tunneled conn %p",
this, mSpdySession.get(), conn.get()));
conn->mWebSocketHttp2Session = mSpdySession;
}
conn.forget(aHttpConnection);
return NS_OK;
}
void nsHttpConnection::Close(nsresult reason, bool aIsShutdown) {
LOG(("nsHttpConnection::Close [this=%p reason=%" PRIx32
" mExperienceState=%x]\n",
this, static_cast<uint32_t>(reason),
static_cast<uint32_t>(mExperienceState)));
if (mConnectionState != ConnectionState::CLOSED) {
RecordConnectionCloseTelemetry(reason);
ChangeConnectionState(ConnectionState::CLOSED);
}
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
mTlsHandshaker->NotifyClose();
mContinueHandshakeDone = nullptr;
mWebSocketHttp2Session = nullptr;
// Ensure TCP keepalive timer is stopped.
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
if (mForceSendTimer) {
mForceSendTimer->Cancel();
mForceSendTimer = nullptr;
}
if (!mTrafficCategory.IsEmpty()) {
HttpTrafficAnalyzer* hta = gHttpHandler->GetHttpTrafficAnalyzer();
if (hta) {
hta->IncrementHttpConnection(std::move(mTrafficCategory));
MOZ_ASSERT(mTrafficCategory.IsEmpty());
}
}
nsCOMPtr<nsITLSSocketControl> tlsSocketControl;
GetTLSSocketControl(getter_AddRefs(tlsSocketControl));
if (tlsSocketControl) {
tlsSocketControl->SetHandshakeCallbackListener(nullptr);
}
if (NS_FAILED(reason)) {
if (mIdleMonitoring) EndIdleMonitoring();
// The connection and security errors clear out alt-svc mappings
// in case any previously validated ones are now invalid
if (((reason == NS_ERROR_NET_RESET) ||
(NS_ERROR_GET_MODULE(reason) == NS_ERROR_MODULE_SECURITY)) &&
mConnInfo && !(mTransactionCaps & NS_HTTP_ERROR_SOFTLY)) {
gHttpHandler->ClearHostMapping(mConnInfo);
}
if (mTlsHandshaker->EarlyDataWasAvailable() &&
PossibleZeroRTTRetryError(reason)) {
gHttpHandler->Exclude0RttTcp(mConnInfo);
}
if (mSocketTransport) {
mSocketTransport->SetEventSink(nullptr, nullptr);
// If there are bytes sitting in the input queue then read them
// into a junk buffer to avoid generating a tcp rst by closing a
// socket with data pending. TLS is a classic case of this where
// a Alert record might be superfulous to a clean HTTP/SPDY shutdown.
// Never block to do this and limit it to a small amount of data.
// During shutdown just be fast!
if (mSocketIn && !aIsShutdown && !mInSpdyTunnel) {
char buffer[4000];
uint32_t count, total = 0;
nsresult rv;
do {
rv = mSocketIn->Read(buffer, 4000, &count);
if (NS_SUCCEEDED(rv)) total += count;
} while (NS_SUCCEEDED(rv) && count > 0 && total < 64000);
LOG(("nsHttpConnection::Close drained %d bytes\n", total));
}
mSocketTransport->SetSecurityCallbacks(nullptr);
mSocketTransport->Close(reason);
if (mSocketOut) mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
}
mKeepAlive = false;
}
}
void nsHttpConnection::MarkAsDontReuse() {
LOG(("nsHttpConnection::MarkAsDontReuse %p\n", this));
mKeepAliveMask = false;
mKeepAlive = false;
mDontReuse = true;
mIdleTimeout = 0;
}
void nsHttpConnection::DontReuse() {
LOG(("nsHttpConnection::DontReuse %p spdysession=%p\n", this,
mSpdySession.get()));
MarkAsDontReuse();
if (mSpdySession) {
mSpdySession->DontReuse();
} else if (mWebSocketHttp2Session) {
LOG(("nsHttpConnection::DontReuse %p mWebSocketHttp2Session=%p\n", this,
mWebSocketHttp2Session.get()));
mWebSocketHttp2Session->DontReuse();
}
}
bool nsHttpConnection::TestJoinConnection(const nsACString& hostname,
int32_t port) {
if (mSpdySession && CanDirectlyActivate()) {
return mSpdySession->TestJoinConnection(hostname, port);
}
return false;
}
bool nsHttpConnection::JoinConnection(const nsACString& hostname,
int32_t port) {
if (mSpdySession && CanDirectlyActivate()) {
return mSpdySession->JoinConnection(hostname, port);
}
return false;
}
bool nsHttpConnection::CanReuse() {
if (mDontReuse || !mRemainingConnectionUses) {
return false;
}
if ((mTransaction ? (mTransaction->IsDone() ? 0U : 1U) : 0U) >=
mRemainingConnectionUses) {
return false;
}
bool canReuse;
if (mSpdySession) {
canReuse = mSpdySession->CanReuse();
} else {
canReuse = IsKeepAlive();
}
canReuse = canReuse && (IdleTime() < mIdleTimeout) && IsAlive();
// An idle persistent connection should not have data waiting to be read
// before a request is sent. Data here is likely a 408 timeout response
// which we would deal with later on through the restart logic, but that
// path is more expensive than just closing the socket now.
uint64_t dataSize;
if (canReuse && mSocketIn && (mUsingSpdyVersion == SpdyVersion::NONE) &&
mHttp1xTransactionCount &&
NS_SUCCEEDED(mSocketIn->Available(&dataSize)) && dataSize) {
LOG(
("nsHttpConnection::CanReuse %p %s"
"Socket not reusable because read data pending (%" PRIu64 ") on it.\n",
this, mConnInfo->Origin(), dataSize));
canReuse = false;
}
return canReuse;
}
bool nsHttpConnection::CanDirectlyActivate() {
// return true if a new transaction can be addded to ths connection at any
// time through Activate(). In practice this means this is a healthy SPDY
// connection with room for more concurrent streams.
return UsingSpdy() && CanReuse() && mSpdySession &&
mSpdySession->RoomForMoreStreams();
}
PRIntervalTime nsHttpConnection::IdleTime() {
return mSpdySession ? mSpdySession->IdleTime()
: (PR_IntervalNow() - mLastReadTime);
}
// returns the number of seconds left before the allowable idle period
// expires, or 0 if the period has already expied.
uint32_t nsHttpConnection::TimeToLive() {
LOG(("nsHttpConnection::TTL: %p %s idle %d timeout %d\n", this,
mConnInfo->Origin(), IdleTime(), mIdleTimeout));
if (IdleTime() >= mIdleTimeout) {
return 0;
}
uint32_t timeToLive = PR_IntervalToSeconds(mIdleTimeout - IdleTime());
// a positive amount of time can be rounded to 0. Because 0 is used
// as the expiration signal, round all values from 0 to 1 up to 1.
if (!timeToLive) {
timeToLive = 1;
}
return timeToLive;
}
bool nsHttpConnection::IsAlive() {
if (!mSocketTransport || !mConnectedTransport) return false;
// SocketTransport::IsAlive can run the SSL state machine, so make sure
// the NPN options are set before that happens.
mTlsHandshaker->SetupSSL(mInSpdyTunnel, mForcePlainText);
bool alive;
nsresult rv = mSocketTransport->IsAlive(&alive);
if (NS_FAILED(rv)) alive = false;
// #define TEST_RESTART_LOGIC
#ifdef TEST_RESTART_LOGIC
if (!alive) {
LOG(("pretending socket is still alive to test restart logic\n"));
alive = true;
}
#endif
return alive;
}
void nsHttpConnection::SetUrgentStartPreferred(bool urgent) {
if (mExperienced && !mUrgentStartPreferredKnown) {
// Set only according the first ever dispatched non-null transaction
mUrgentStartPreferredKnown = true;
mUrgentStartPreferred = urgent;
LOG(("nsHttpConnection::SetUrgentStartPreferred [this=%p urgent=%d]", this,
urgent));
}
}
//----------------------------------------------------------------------------
// nsHttpConnection::nsAHttpConnection compatible methods
//----------------------------------------------------------------------------
nsresult nsHttpConnection::OnHeadersAvailable(nsAHttpTransaction* trans,
nsHttpRequestHead* requestHead,
nsHttpResponseHead* responseHead,
bool* reset) {
LOG(
("nsHttpConnection::OnHeadersAvailable [this=%p trans=%p "
"response-head=%p]\n",
this, trans, responseHead));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
NS_ENSURE_ARG_POINTER(trans);
MOZ_ASSERT(responseHead, "No response head?");
if (mInSpdyTunnel) {
DebugOnly<nsresult> rv =
responseHead->SetHeader(nsHttp::X_Firefox_Spdy_Proxy, "true"_ns);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
// we won't change our keep-alive policy unless the server has explicitly
// told us to do so.
// inspect the connection headers for keep-alive info provided the
// transaction completed successfully. In the case of a non-sensical close
// and keep-alive favor the close out of conservatism.
bool explicitKeepAlive = false;
bool explicitClose =
responseHead->HasHeaderValue(nsHttp::Connection, "close") ||
responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "close");
if (!explicitClose) {
explicitKeepAlive =
responseHead->HasHeaderValue(nsHttp::Connection, "keep-alive") ||
responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "keep-alive");
}
// deal with 408 Server Timeouts
uint16_t responseStatus = responseHead->Status();
if (responseStatus == 408) {
// timeouts that are not caused by persistent connection reuse should
// not be retried for browser compatibility reasons. bug 907800. The
// server driven close is implicit in the 408.
explicitClose = true;
explicitKeepAlive = false;
}
if ((responseHead->Version() < HttpVersion::v1_1) ||
(requestHead->Version() < HttpVersion::v1_1)) {
// HTTP/1.0 connections are by default NOT persistent
mKeepAlive = explicitKeepAlive;
} else {
// HTTP/1.1 connections are by default persistent
mKeepAlive = !explicitClose;
}
mKeepAliveMask = mKeepAlive;
// if this connection is persistent, then the server may send a "Keep-Alive"
// header specifying the maximum number of times the connection can be
// reused as well as the maximum amount of time the connection can be idle
// before the server will close it. we ignore the max reuse count, because
// a "keep-alive" connection is by definition capable of being reused, and
// we only care about being able to reuse it once. if a timeout is not
// specified then we use our advertized timeout value.
bool foundKeepAliveMax = false;
if (mKeepAlive) {
nsAutoCString keepAlive;
Unused << responseHead->GetHeader(nsHttp::Keep_Alive, keepAlive);
if (mUsingSpdyVersion == SpdyVersion::NONE) {
const char* cp = nsCRT::strcasestr(keepAlive.get(), "timeout=");
if (cp) {
mIdleTimeout = PR_SecondsToInterval((uint32_t)atoi(cp + 8));
} else {
mIdleTimeout = gHttpHandler->IdleTimeout() * mDefaultTimeoutFactor;
}
cp = nsCRT::strcasestr(keepAlive.get(), "max=");
if (cp) {
int maxUses = atoi(cp + 4);
if (maxUses > 0) {
foundKeepAliveMax = true;
mRemainingConnectionUses = static_cast<uint32_t>(maxUses);
}
}
}
LOG(("Connection can be reused [this=%p idle-timeout=%usec]\n", this,
PR_IntervalToSeconds(mIdleTimeout)));
}
if (!foundKeepAliveMax && mRemainingConnectionUses &&
(mUsingSpdyVersion == SpdyVersion::NONE)) {
--mRemainingConnectionUses;
}
switch (mState) {
case HttpConnectionState::SETTING_UP_TUNNEL: {
nsHttpTransaction* trans = mTransaction->QueryHttpTransaction();
// Distinguish SETTING_UP_TUNNEL for proxy or websocket via proxy
// See bug 1848013. Do not call HandleTunnelResponse for a tunnel
// connection created for WebSocket.
if (trans && trans->IsWebsocketUpgrade() &&
(trans->GetProxyConnectResponseCode() == 200 ||
(mForWebSocket && mInSpdyTunnel))) {
HandleWebSocketResponse(requestHead, responseHead, responseStatus);
} else {
HandleTunnelResponse(responseStatus, reset);
}
break;
}
default:
if (requestHead->HasHeader(nsHttp::Upgrade)) {
HandleWebSocketResponse(requestHead, responseHead, responseStatus);
} else if (responseStatus == 101) {
// We got an 101 but we are not asking of a WebSsocket?
Close(NS_ERROR_ABORT);
}
}
mLastHttpResponseVersion = responseHead->Version();
return NS_OK;
}
void nsHttpConnection::HandleTunnelResponse(uint16_t responseStatus,
bool* reset) {
LOG(("nsHttpConnection::HandleTunnelResponse()"));
MOZ_ASSERT(TunnelSetupInProgress());
MOZ_ASSERT(mProxyConnectStream);
MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
"SPDY NPN Complete while using proxy connect stream");
// If we're doing a proxy connect, we need to check whether or not
// it was successful. If so, we have to reset the transaction and step-up
// the socket connection if using SSL. Finally, we have to wake up the
// socket write request.
if (responseStatus == 200) {
ChangeState(HttpConnectionState::REQUEST);
}
mProxyConnectStream = nullptr;
bool isHttps = mTransaction ? mTransaction->ConnectionInfo()->EndToEndSSL()
: mConnInfo->EndToEndSSL();
bool onlyConnect = mTransactionCaps & NS_HTTP_CONNECT_ONLY;
mTransaction->OnProxyConnectComplete(responseStatus);
if (responseStatus == 200) {
LOG(("proxy CONNECT succeeded! endtoendssl=%d onlyconnect=%d\n", isHttps,
onlyConnect));
// If we're only connecting, we don't need to reset the transaction
// state. We need to upgrade the socket now without doing the actual
// http request.
if (!onlyConnect) {
*reset = true;
}
nsresult rv;
// CONNECT only flag doesn't do the tls setup. https here only
// ensures a proxy tunnel was used not that tls is setup.
if (isHttps) {
if (!onlyConnect) {
if (mConnInfo->UsingHttpsProxy()) {
LOG(("%p new TLSFilterTransaction %s %d\n", this, mConnInfo->Origin(),
mConnInfo->OriginPort()));
SetupSecondaryTLS();
}
rv = mTlsHandshaker->InitSSLParams(false, true);
LOG(("InitSSLParams [rv=%" PRIx32 "]\n", static_cast<uint32_t>(rv)));
} else {
// We have an https protocol but the CONNECT only flag was
// specified. The consumer only wants a raw socket to the
// proxy. We have to mark this as complete to finish the
// transaction and be upgraded. OnSocketReadable() uses this
// to detect an inactive tunnel and blocks completion.
mTlsHandshaker->SetNPNComplete();
}
}
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
// XXX what if this fails -- need to handle this error
MOZ_ASSERT(NS_SUCCEEDED(rv), "mSocketOut->AsyncWait failed");
} else {
LOG(("proxy CONNECT failed! endtoendssl=%d onlyconnect=%d\n", isHttps,
onlyConnect));
mTransaction->SetProxyConnectFailed();
}
}
void nsHttpConnection::HandleWebSocketResponse(nsHttpRequestHead* requestHead,
nsHttpResponseHead* responseHead,
uint16_t responseStatus) {
LOG(("nsHttpConnection::HandleWebSocketResponse()"));
// Don't use persistent connection for Upgrade unless there's an auth failure:
// some proxies expect to see auth response on persistent connection.
// Also allow persistent conn for h2, as we don't want to waste connections
// for multiplexed upgrades.
if (responseStatus != 401 && responseStatus != 407 && !mSpdySession) {
LOG(("HTTP Upgrade in play - disable keepalive for http/1.x\n"));
MarkAsDontReuse();
}
// the new Http2StreamWebSocket breaks wpt on
// h2 basic authentication 401, due to MakeSticky() work around
// so we DontReuse() in this circumstance
if (mInSpdyTunnel && (responseStatus == 401 || responseStatus == 407)) {
MarkAsDontReuse();
return;
}
if (responseStatus == 101) {
nsAutoCString upgradeReq;
bool hasUpgradeReq =
NS_SUCCEEDED(requestHead->GetHeader(nsHttp::Upgrade, upgradeReq));
nsAutoCString upgradeResp;
bool hasUpgradeResp =
NS_SUCCEEDED(responseHead->GetHeader(nsHttp::Upgrade, upgradeResp));
if (!hasUpgradeReq || !hasUpgradeResp ||
!nsHttp::FindToken(upgradeResp.get(), upgradeReq.get(),
HTTP_HEADER_VALUE_SEPS)) {
LOG(("HTTP 101 Upgrade header mismatch req = %s, resp = %s\n",
upgradeReq.get(),
!upgradeResp.IsEmpty() ? upgradeResp.get()
: "RESPONSE's nsHttp::Upgrade is empty"));
Close(NS_ERROR_ABORT);
} else {
LOG(("HTTP Upgrade Response to %s\n", upgradeResp.get()));
}
}
}
bool nsHttpConnection::IsReused() {
if (mIsReused) return true;
if (!mConsiderReusedAfterInterval) return false;
// ReusedAfter allows a socket to be consider reused only after a certain
// interval of time has passed
return (PR_IntervalNow() - mConsiderReusedAfterEpoch) >=
mConsiderReusedAfterInterval;
}
void nsHttpConnection::SetIsReusedAfter(uint32_t afterMilliseconds) {
mConsiderReusedAfterEpoch = PR_IntervalNow();
mConsiderReusedAfterInterval = PR_MillisecondsToInterval(afterMilliseconds);
}
nsresult nsHttpConnection::TakeTransport(nsISocketTransport** aTransport,
nsIAsyncInputStream** aInputStream,
nsIAsyncOutputStream** aOutputStream) {
if (mUsingSpdyVersion != SpdyVersion::NONE) return NS_ERROR_FAILURE;
if (mTransaction && !mTransaction->IsDone()) return NS_ERROR_IN_PROGRESS;
if (!(mSocketTransport && mSocketIn && mSocketOut)) {
return NS_ERROR_NOT_INITIALIZED;
}
if (mInputOverflow) mSocketIn = mInputOverflow.forget();
// Change TCP Keepalive frequency to long-lived if currently short-lived.
if (mTCPKeepaliveConfig == kTCPKeepaliveShortLivedConfig) {
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
nsresult rv = StartLongLivedTCPKeepalives();
LOG(
("nsHttpConnection::TakeTransport [%p] calling "
"StartLongLivedTCPKeepalives",
this));
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::TakeTransport [%p] "
"StartLongLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
this, static_cast<uint32_t>(rv)));
}
}
if (mHasTLSTransportLayer) {
RefPtr<TLSTransportLayer> tlsTransportLayer =
do_QueryObject(mSocketTransport);
if (tlsTransportLayer) {
// This transport layer is no longer owned by this connection.
tlsTransportLayer->ReleaseOwner();
}
}
mSocketTransport->SetSecurityCallbacks(nullptr);
mSocketTransport->SetEventSink(nullptr, nullptr);
mSocketTransport.forget(aTransport);
mSocketIn.forget(aInputStream);
mSocketOut.forget(aOutputStream);
return NS_OK;
}
uint32_t nsHttpConnection::ReadTimeoutTick(PRIntervalTime now) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// make sure timer didn't tick before Activate()
if (!mTransaction) return UINT32_MAX;
// Spdy implements some timeout handling using the SPDY ping frame.
if (mSpdySession) {
return mSpdySession->ReadTimeoutTick(now);
}
uint32_t nextTickAfter = UINT32_MAX;
// Timeout if the response is taking too long to arrive.
if (mResponseTimeoutEnabled) {
NS_WARNING_ASSERTION(
gHttpHandler->ResponseTimeoutEnabled(),
"Timing out a response, but response timeout is disabled!");
PRIntervalTime initialResponseDelta = now - mLastWriteTime;
if (initialResponseDelta > mTransaction->ResponseTimeout()) {
LOG(("canceling transaction: no response for %ums: timeout is %dms\n",
PR_IntervalToMilliseconds(initialResponseDelta),
PR_IntervalToMilliseconds(mTransaction->ResponseTimeout())));
mResponseTimeoutEnabled = false;
SetCloseReason(ConnectionCloseReason::IDLE_TIMEOUT);
// This will also close the connection
CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
return UINT32_MAX;
}
nextTickAfter = PR_IntervalToSeconds(mTransaction->ResponseTimeout()) -
PR_IntervalToSeconds(initialResponseDelta);
nextTickAfter = std::max(nextTickAfter, 1U);
}
if (!mTlsHandshaker->NPNComplete()) {
// We can reuse mLastWriteTime here, because it is set when the
// connection is activated and only change when a transaction
// succesfullu write to the socket and this can only happen after
// the TLS handshake is done.
PRIntervalTime initialTLSDelta = now - mLastWriteTime;
if (initialTLSDelta >
PR_MillisecondsToInterval(gHttpHandler->TLSHandshakeTimeout())) {
LOG(
("canceling transaction: tls handshake takes too long: tls handshake "
"last %ums, timeout is %dms.",
PR_IntervalToMilliseconds(initialTLSDelta),
gHttpHandler->TLSHandshakeTimeout()));
// This will also close the connection
SetCloseReason(ConnectionCloseReason::TLS_TIMEOUT);
CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
return UINT32_MAX;
}
}
return nextTickAfter;
}
void nsHttpConnection::UpdateTCPKeepalive(nsITimer* aTimer, void* aClosure) {
MOZ_ASSERT(aTimer);
MOZ_ASSERT(aClosure);
nsHttpConnection* self = static_cast<nsHttpConnection*>(aClosure);
if (NS_WARN_IF(self->mUsingSpdyVersion != SpdyVersion::NONE)) {
return;
}
// Do not reduce keepalive probe frequency for idle connections.
if (self->mIdleMonitoring) {
return;
}
nsresult rv = self->StartLongLivedTCPKeepalives();
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::UpdateTCPKeepalive [%p] "
"StartLongLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
self, static_cast<uint32_t>(rv)));
}
}
void nsHttpConnection::GetTLSSocketControl(
nsITLSSocketControl** tlsSocketControl) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
LOG(("nsHttpConnection::GetTLSSocketControl trans=%p socket=%p\n",
mTransaction.get(), mSocketTransport.get()));
*tlsSocketControl = nullptr;
if (mTransaction && NS_SUCCEEDED(mTransaction->GetTransactionTLSSocketControl(
tlsSocketControl))) {
return;
}
if (mSocketTransport &&
NS_SUCCEEDED(mSocketTransport->GetTlsSocketControl(tlsSocketControl))) {
return;
}
}
nsresult nsHttpConnection::PushBack(const char* data, uint32_t length) {
LOG(("nsHttpConnection::PushBack [this=%p, length=%d]\n", this, length));
if (mInputOverflow) {
NS_ERROR("nsHttpConnection::PushBack only one buffer supported");
return NS_ERROR_UNEXPECTED;
}
mInputOverflow = new nsPreloadedStream(mSocketIn, data, length);
return NS_OK;
}
class HttpConnectionForceIO : public Runnable {
public:
HttpConnectionForceIO(nsHttpConnection* aConn, bool doRecv)
: Runnable("net::HttpConnectionForceIO"), mConn(aConn), mDoRecv(doRecv) {}
NS_IMETHOD Run() override {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mDoRecv) {
if (!mConn->mSocketIn) return NS_OK;
return mConn->OnInputStreamReady(mConn->mSocketIn);
}
MOZ_ASSERT(mConn->mForceSendPending);
mConn->mForceSendPending = false;
if (!mConn->mSocketOut) {
return NS_OK;
}
return mConn->OnOutputStreamReady(mConn->mSocketOut);
}
private:
RefPtr<nsHttpConnection> mConn;
bool mDoRecv;
};
nsresult nsHttpConnection::ResumeSend() {
LOG(("nsHttpConnection::ResumeSend [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mSocketOut) {
return mSocketOut->AsyncWait(this, 0, 0, nullptr);
}
MOZ_ASSERT_UNREACHABLE("no socket output stream");
return NS_ERROR_UNEXPECTED;
}
nsresult nsHttpConnection::ResumeRecv() {
LOG(("nsHttpConnection::ResumeRecv [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// the mLastReadTime timestamp is used for finding slowish readers
// and can be pretty sensitive. For that reason we actually reset it
// when we ask to read (resume recv()) so that when we get called back
// with actual read data in OnSocketReadable() we are only measuring
// the latency between those two acts and not all the processing that
// may get done before the ResumeRecv() call
mLastReadTime = PR_IntervalNow();
if (mSocketIn) {
if (mHasTLSTransportLayer) {
RefPtr<TLSTransportLayer> tlsTransportLayer =
do_QueryObject(mSocketTransport);
if (tlsTransportLayer) {
bool hasDataToRecv = tlsTransportLayer->HasDataToRecv();
if (hasDataToRecv && NS_SUCCEEDED(ForceRecv())) {
return NS_OK;
}
Unused << mSocketIn->AsyncWait(this, 0, 0, nullptr);
// We have to return an error here to let the underlying layer know this
// connection doesn't read any data.
return NS_BASE_STREAM_WOULD_BLOCK;
}
}
return mSocketIn->AsyncWait(this, 0, 0, nullptr);
}
MOZ_ASSERT_UNREACHABLE("no socket input stream");
return NS_ERROR_UNEXPECTED;
}
void nsHttpConnection::ForceSendIO(nsITimer* aTimer, void* aClosure) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
nsHttpConnection* self = static_cast<nsHttpConnection*>(aClosure);
MOZ_ASSERT(aTimer == self->mForceSendTimer);
self->mForceSendTimer = nullptr;
NS_DispatchToCurrentThread(new HttpConnectionForceIO(self, false));
}
nsresult nsHttpConnection::MaybeForceSendIO() {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// due to bug 1213084 sometimes real I/O events do not get serviced when
// NSPR derived I/O events are ready and this can cause a deadlock with
// https over https proxying. Normally we would expect the write callback to
// be invoked before this timer goes off, but set it at the old windows
// tick interval (kForceDelay) as a backup for those circumstances.
static const uint32_t kForceDelay = 17; // ms
if (mForceSendPending) {
return NS_OK;
}
MOZ_ASSERT(!mForceSendTimer);
mForceSendPending = true;
return NS_NewTimerWithFuncCallback(getter_AddRefs(mForceSendTimer),
nsHttpConnection::ForceSendIO, this,
kForceDelay, nsITimer::TYPE_ONE_SHOT,
"net::nsHttpConnection::MaybeForceSendIO");
}
// trigger an asynchronous read
nsresult nsHttpConnection::ForceRecv() {
LOG(("nsHttpConnection::ForceRecv [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
return NS_DispatchToCurrentThread(new HttpConnectionForceIO(this, true));
}
// trigger an asynchronous write
nsresult nsHttpConnection::ForceSend() {
LOG(("nsHttpConnection::ForceSend [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
return MaybeForceSendIO();
}
void nsHttpConnection::BeginIdleMonitoring() {
LOG(("nsHttpConnection::BeginIdleMonitoring [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!mTransaction, "BeginIdleMonitoring() while active");
MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
"Idle monitoring of spdy not allowed");
LOG(("Entering Idle Monitoring Mode [this=%p]", this));
mIdleMonitoring = true;
if (mSocketIn) mSocketIn->AsyncWait(this, 0, 0, nullptr);
}
void nsHttpConnection::EndIdleMonitoring() {
LOG(("nsHttpConnection::EndIdleMonitoring [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!mTransaction, "EndIdleMonitoring() while active");
if (mIdleMonitoring) {
LOG(("Leaving Idle Monitoring Mode [this=%p]", this));
mIdleMonitoring = false;
if (mSocketIn) mSocketIn->AsyncWait(nullptr, 0, 0, nullptr);
}
}
HttpVersion nsHttpConnection::Version() {
if (mUsingSpdyVersion != SpdyVersion::NONE) {
return HttpVersion::v2_0;
}
return mLastHttpResponseVersion;
}
PRIntervalTime nsHttpConnection::LastWriteTime() { return mLastWriteTime; }
//-----------------------------------------------------------------------------
// nsHttpConnection <private>
//-----------------------------------------------------------------------------
void nsHttpConnection::CloseTransaction(nsAHttpTransaction* trans,
nsresult reason, bool aIsShutdown) {
LOG(("nsHttpConnection::CloseTransaction[this=%p trans=%p reason=%" PRIx32
"]\n",
this, trans, static_cast<uint32_t>(reason)));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mCurrentBytesRead > mMaxBytesRead) mMaxBytesRead = mCurrentBytesRead;
// mask this error code because its not a real error.
if (reason == NS_BASE_STREAM_CLOSED) reason = NS_OK;
if (mUsingSpdyVersion != SpdyVersion::NONE) {
DontReuse();
// if !mSpdySession then mUsingSpdyVersion must be false for canreuse()
mSpdySession->SetCleanShutdown(aIsShutdown);
mUsingSpdyVersion = SpdyVersion::NONE;
mSpdySession = nullptr;
}
if (mTransaction) {
LOG((" closing associated mTransaction"));
mHttp1xTransactionCount += mTransaction->Http1xTransactionCount();
mTransaction->Close(reason);
mTransaction = nullptr;
}
{
MutexAutoLock lock(mCallbacksLock);
mCallbacks = nullptr;
}
if (NS_FAILED(reason) && (reason != NS_BINDING_RETARGETED)) {
Close(reason, aIsShutdown);
}
// flag the connection as reused here for convenience sake. certainly
// it might be going away instead ;-)
mIsReused = true;
}
bool nsHttpConnection::CheckCanWrite0RTTData() {
MOZ_ASSERT(mTlsHandshaker->EarlyDataAvailable());
nsCOMPtr<nsITLSSocketControl> tlsSocketControl;
GetTLSSocketControl(getter_AddRefs(tlsSocketControl));
if (!tlsSocketControl) {
return false;
}
nsCOMPtr<nsITransportSecurityInfo> securityInfo;
if (NS_FAILED(
tlsSocketControl->GetSecurityInfo(getter_AddRefs(securityInfo)))) {
return false;
}
if (!securityInfo) {
return false;
}
nsAutoCString negotiatedNPN;
// If the following code fails means that the handshake is not done
// yet, so continue writing 0RTT data.
nsresult rv = securityInfo->GetNegotiatedNPN(negotiatedNPN);
if (NS_FAILED(rv)) {
return true;
}
bool earlyDataAccepted = false;
rv = tlsSocketControl->GetEarlyDataAccepted(&earlyDataAccepted);
// If 0RTT data is accepted we can continue writing data,
// if it is reject stop writing more data.
return NS_SUCCEEDED(rv) && earlyDataAccepted;
}
nsresult nsHttpConnection::OnReadSegment(const char* buf, uint32_t count,
uint32_t* countRead) {
LOG(("nsHttpConnection::OnReadSegment [this=%p]\n", this));
if (count == 0) {
// some ReadSegments implementations will erroneously call the writer
// to consume 0 bytes worth of data. we must protect against this case
// or else we'd end up closing the socket prematurely.
NS_ERROR("bad ReadSegments implementation");
return NS_ERROR_FAILURE; // stop iterating
}
// If we are waiting for 0RTT Response, check maybe nss has finished
// handshake already.
// IsAlive() calls drive the handshake and that may cause nss and necko
// to be out of sync.
if (mTlsHandshaker->EarlyDataAvailable() && !CheckCanWrite0RTTData()) {
MOZ_DIAGNOSTIC_ASSERT(mTlsHandshaker->TlsHandshakeComplitionPending());
LOG(
("nsHttpConnection::OnReadSegment Do not write any data, wait"
" for EnsureNPNComplete to be called [this=%p]",
this));
*countRead = 0;
return NS_BASE_STREAM_WOULD_BLOCK;
}
nsresult rv = mSocketOut->Write(buf, count, countRead);
if (NS_FAILED(rv)) {
mSocketOutCondition = rv;
} else if (*countRead == 0) {
mSocketOutCondition = NS_BASE_STREAM_CLOSED;
} else {
mLastWriteTime = PR_IntervalNow();
mSocketOutCondition = NS_OK; // reset condition
if (!TunnelSetupInProgress()) {
mTotalBytesWritten += *countRead;
mExperienceState |= ConnectionExperienceState::First_Request_Sent;
}
}
return mSocketOutCondition;
}
nsresult nsHttpConnection::OnSocketWritable() {
LOG(("nsHttpConnection::OnSocketWritable [this=%p] host=%s\n", this,
mConnInfo->Origin()));
nsresult rv;
uint32_t transactionBytes;
bool again = true;
// Prevent STS thread from being blocked by single OnOutputStreamReady
// callback.
const uint32_t maxWriteAttempts = 128;
uint32_t writeAttempts = 0;
if (mTransactionCaps & NS_HTTP_CONNECT_ONLY) {
if (!mConnInfo->UsingConnect()) {
// A CONNECT has been requested for this connection but will never
// be performed. This should never happen.
MOZ_ASSERT(false, "proxy connect will never happen");
LOG(("return failure because proxy connect will never happen\n"));
return NS_ERROR_FAILURE;
}
if (mState == HttpConnectionState::REQUEST) {
// Don't need to check this each write attempt since it is only
// updated after OnSocketWritable completes.
// We've already done primary tls (if needed) and sent our CONNECT.
// If we're doing a CONNECT only request there's no need to write
// the http transaction or do the SSL handshake here.
LOG(("return ok because proxy connect successful\n"));
return NS_OK;
}
}
do {
++writeAttempts;
rv = mSocketOutCondition = NS_OK;
transactionBytes = 0;
switch (mState) {
case HttpConnectionState::SETTING_UP_TUNNEL:
if (mConnInfo->UsingHttpsProxy() &&
!mTlsHandshaker->EnsureNPNComplete()) {
MOZ_DIAGNOSTIC_ASSERT(!mTlsHandshaker->EarlyDataAvailable());
mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
} else {
rv = SendConnectRequest(this, &transactionBytes);
}
break;
default: {
// The SSL handshake must be completed before the
// transaction->readsegments() processing can proceed because we need to
// know how to format the request differently for http/1, http/2, spdy,
// etc.. and that is negotiated with NPN/ALPN in the SSL handshake.
if (!mTlsHandshaker->EnsureNPNComplete() &&
(!mTlsHandshaker->EarlyDataUsed() ||
mTlsHandshaker->TlsHandshakeComplitionPending())) {
// The handshake is not done and we cannot write 0RTT data or nss has
// already finished 0RTT data.
mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
} else if (!mTransaction) {
rv = NS_ERROR_FAILURE;
LOG((" No Transaction In OnSocketWritable\n"));
} else if (NS_SUCCEEDED(rv)) {
// for non spdy sessions let the connection manager know
if (!mReportedSpdy && mTlsHandshaker->NPNComplete()) {
mReportedSpdy = true;
MOZ_ASSERT(!mEverUsedSpdy);
gHttpHandler->ConnMgr()->ReportSpdyConnection(this, false, false);
}
LOG((" writing transaction request stream\n"));
rv = mTransaction->ReadSegmentsAgain(this,
nsIOService::gDefaultSegmentSize,
&transactionBytes, &again);
if (mTlsHandshaker->EarlyDataUsed()) {
mContentBytesWritten0RTT += transactionBytes;
if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) {
// If an error happens while writting 0RTT data, restart
// the transactiions without 0RTT.
mTlsHandshaker->FinishNPNSetup(false, true);
}
} else {
mContentBytesWritten += transactionBytes;
}
}
}
}
LOG(
("nsHttpConnection::OnSocketWritable %p "
"ReadSegments returned [rv=%" PRIx32 " read=%u "
"sock-cond=%" PRIx32 " again=%d]\n",
this, static_cast<uint32_t>(rv), transactionBytes,
static_cast<uint32_t>(mSocketOutCondition), again));
// XXX some streams return NS_BASE_STREAM_CLOSED to indicate EOF.
if (rv == NS_BASE_STREAM_CLOSED && !mTransaction->IsDone()) {
rv = NS_OK;
transactionBytes = 0;
}
if (NS_FAILED(rv)) {
// if the transaction didn't want to write any more data, then
// wait for the transaction to call ResumeSend.
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
rv = NS_OK;
}
again = false;
} else if (NS_FAILED(mSocketOutCondition)) {
if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK) {
if (!mTlsHandshaker->EarlyDataCanNotBeUsed()) {
// continue writing
// We are not going to poll for write if the handshake is in progress,
// but early data cannot be used.
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
}
} else {
rv = mSocketOutCondition;
}
again = false;
} else if (!transactionBytes) {
rv = NS_OK;
if (mTransaction) { // in case the ReadSegments stack called
// CloseTransaction()
//
// at this point we've written out the entire transaction, and now we
// must wait for the server's response. we manufacture a status message
// here to reflect the fact that we are waiting. this message will be
// trumped (overwritten) if the server responds quickly.
//
mTransaction->OnTransportStatus(mSocketTransport,
NS_NET_STATUS_WAITING_FOR, 0);
rv = ResumeRecv(); // start reading
}
// When Spdy tunnel is used we need to explicitly set when a request is
// done.
if ((mState != HttpConnectionState::SETTING_UP_TUNNEL) && !mSpdySession) {
nsHttpTransaction* trans = mTransaction->QueryHttpTransaction();
// needed for websocket over h2 (direct)
if (!trans || !trans->IsWebsocketUpgrade()) {
mRequestDone = true;
}
}
again = false;
} else if (writeAttempts >= maxWriteAttempts) {
LOG((" yield for other transactions\n"));
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing
again = false;
}
// write more to the socket until error or end-of-request...
} while (again && gHttpHandler->Active());
return rv;
}
nsresult nsHttpConnection::OnWriteSegment(char* buf, uint32_t count,
uint32_t* countWritten) {
if (count == 0) {
// some WriteSegments implementations will erroneously call the reader
// to provide 0 bytes worth of data. we must protect against this case
// or else we'd end up closing the socket prematurely.
NS_ERROR("bad WriteSegments implementation");
return NS_ERROR_FAILURE; // stop iterating
}
if (ChaosMode::isActive(ChaosFeature::IOAmounts) &&
ChaosMode::randomUint32LessThan(2)) {
// read 1...count bytes
count = ChaosMode::randomUint32LessThan(count) + 1;
}
nsresult rv = mSocketIn->Read(buf, count, countWritten);
if (NS_FAILED(rv)) {
mSocketInCondition = rv;
} else if (*countWritten == 0) {
mSocketInCondition = NS_BASE_STREAM_CLOSED;
} else {
mSocketInCondition = NS_OK; // reset condition
mExperienceState |= ConnectionExperienceState::First_Response_Received;
}
return mSocketInCondition;
}
nsresult nsHttpConnection::OnSocketReadable() {
LOG(("nsHttpConnection::OnSocketReadable [this=%p]\n", this));
PRIntervalTime now = PR_IntervalNow();
PRIntervalTime delta = now - mLastReadTime;
// Reset mResponseTimeoutEnabled to stop response timeout checks.
mResponseTimeoutEnabled = false;
if ((mTransactionCaps & NS_HTTP_CONNECT_ONLY) && !mConnInfo->UsingConnect()) {
// A CONNECT has been requested for this connection but will never
// be performed. This should never happen.
MOZ_ASSERT(false, "proxy connect will never happen");
LOG(("return failure because proxy connect will never happen\n"));
return NS_ERROR_FAILURE;
}
if (mKeepAliveMask && (delta >= mMaxHangTime)) {
LOG(("max hang time exceeded!\n"));
// give the handler a chance to create a new persistent connection to
// this host if we've been busy for too long.
mKeepAliveMask = false;
Unused << gHttpHandler->ProcessPendingQ(mConnInfo);
}
// Reduce the estimate of the time since last read by up to 1 RTT to
// accommodate exhausted sender TCP congestion windows or minor I/O delays.
mLastReadTime = now;
nsresult rv = NS_OK;
uint32_t n;
bool again = true;
do {
if (!TunnelSetupInProgress() && !mTlsHandshaker->EnsureNPNComplete()) {
// Unless we are setting up a tunnel via CONNECT, prevent reading
// from the socket until the results of NPN
// negotiation are known (which is determined from the write path).
// If the server speaks SPDY it is likely the readable data here is
// a spdy settings frame and without NPN it would be misinterpreted
// as HTTP/*
LOG(
("nsHttpConnection::OnSocketReadable %p return due to inactive "
"tunnel setup but incomplete NPN state\n",
this));
if (mTlsHandshaker->EarlyDataAvailable() || mHasTLSTransportLayer) {
rv = ResumeRecv();
}
break;
}
mSocketInCondition = NS_OK;
if (!mTransaction) {
rv = NS_ERROR_FAILURE;
LOG((" No Transaction In OnSocketWritable\n"));
} else {
rv = mTransaction->WriteSegmentsAgain(
this, nsIOService::gDefaultSegmentSize, &n, &again);
}
LOG(("nsHttpConnection::OnSocketReadable %p trans->ws rv=%" PRIx32
" n=%d socketin=%" PRIx32 "\n",
this, static_cast<uint32_t>(rv), n,
static_cast<uint32_t>(mSocketInCondition)));
if (NS_FAILED(rv)) {
// if the transaction didn't want to take any more data, then
// wait for the transaction to call ResumeRecv.
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
rv = NS_OK;
}
again = false;
} else {
mCurrentBytesRead += n;
mTotalBytesRead += n;
if (NS_FAILED(mSocketInCondition)) {
// continue waiting for the socket if necessary...
if (mSocketInCondition == NS_BASE_STREAM_WOULD_BLOCK) {
rv = ResumeRecv();
} else {
rv = mSocketInCondition;
}
again = false;
}
}
// read more from the socket until error...
} while (again && gHttpHandler->Active());
return rv;
}
void nsHttpConnection::SetupSecondaryTLS() {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!mHasTLSTransportLayer);
LOG(("nsHttpConnection %p SetupSecondaryTLS %s %d\n", this,
mConnInfo->Origin(), mConnInfo->OriginPort()));
nsHttpConnectionInfo* ci = nullptr;
if (mTransaction) {
ci = mTransaction->ConnectionInfo();
}
if (!ci) {
ci = mConnInfo;
}
MOZ_ASSERT(ci);
RefPtr<TLSTransportLayer> transportLayer =
new TLSTransportLayer(mSocketTransport, mSocketIn, mSocketOut, this);
if (transportLayer->Init(ci->Origin(), ci->OriginPort())) {
mSocketIn = transportLayer->GetInputStreamWrapper();
mSocketOut = transportLayer->GetOutputStreamWrapper();
mSocketTransport = transportLayer;
mHasTLSTransportLayer = true;
LOG(("Create mTLSTransportLayer %p", this));
}
}
void nsHttpConnection::SetInSpdyTunnel() {
mInSpdyTunnel = true;
mForcePlainText = true;
}
// static
nsresult nsHttpConnection::MakeConnectString(nsAHttpTransaction* trans,
nsHttpRequestHead* request,
nsACString& result, bool h2ws,
bool aShouldResistFingerprinting) {
result.Truncate();
if (!trans->ConnectionInfo()) {
return NS_ERROR_NOT_INITIALIZED;
}
DebugOnly<nsresult> rv{};
rv = nsHttpHandler::GenerateHostPort(
nsDependentCString(trans->ConnectionInfo()->Origin()),
trans->ConnectionInfo()->OriginPort(), result);
MOZ_ASSERT(NS_SUCCEEDED(rv));
// CONNECT host:port HTTP/1.1
request->SetMethod("CONNECT"_ns);
request->SetVersion(gHttpHandler->HttpVersion());
if (h2ws) {
// HTTP/2 websocket CONNECT forms need the full request URI
nsAutoCString requestURI;
trans->RequestHead()->RequestURI(requestURI);
request->SetRequestURI(requestURI);
request->SetHTTPS(trans->RequestHead()->IsHTTPS());
nsAutoCString val;
if (NS_SUCCEEDED(trans->RequestHead()->GetHeader(
nsHttp::Sec_WebSocket_Extensions, val))) {
rv = request->SetHeader(nsHttp::Sec_WebSocket_Extensions, val);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
if (NS_SUCCEEDED(trans->RequestHead()->GetHeader(
nsHttp::Sec_WebSocket_Protocol, val))) {
rv = request->SetHeader(nsHttp::Sec_WebSocket_Protocol, val);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
if (NS_SUCCEEDED(trans->RequestHead()->GetHeader(
nsHttp::Sec_WebSocket_Version, val))) {
rv = request->SetHeader(nsHttp::Sec_WebSocket_Version, val);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
} else {
request->SetRequestURI(result);
}
rv = request->SetHeader(nsHttp::User_Agent,
gHttpHandler->UserAgent(aShouldResistFingerprinting));
MOZ_ASSERT(NS_SUCCEEDED(rv));
// a CONNECT is always persistent
rv = request->SetHeader(nsHttp::Proxy_Connection, "keep-alive"_ns);
MOZ_ASSERT(NS_SUCCEEDED(rv));
rv = request->SetHeader(nsHttp::Connection, "keep-alive"_ns);
MOZ_ASSERT(NS_SUCCEEDED(rv));
// all HTTP/1.1 requests must include a Host header (even though it
// may seem redundant in this case; see bug 82388).
rv = request->SetHeader(nsHttp::Host, result);
MOZ_ASSERT(NS_SUCCEEDED(rv));
nsAutoCString val;
if (NS_SUCCEEDED(
trans->RequestHead()->GetHeader(nsHttp::Proxy_Authorization, val))) {
// we don't know for sure if this authorization is intended for the
// SSL proxy, so we add it just in case.
rv = request->SetHeader(nsHttp::Proxy_Authorization, val);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
if ((trans->Caps() & NS_HTTP_CONNECT_ONLY) &&
NS_SUCCEEDED(trans->RequestHead()->GetHeader(nsHttp::Upgrade, val))) {
// rfc7639 proposes using the ALPN header to indicate the protocol used
// in CONNECT when not used for TLS. The protocol is stored in Upgrade.
// We have to copy this header here since a new HEAD request is created
// for the CONNECT.
rv = request->SetHeader("ALPN"_ns, val);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
result.Truncate();
request->Flatten(result, false);
if (LOG1_ENABLED()) {
LOG(("nsHttpConnection::MakeConnectString for transaction=%p h2ws=%d[",
trans->QueryHttpTransaction(), h2ws));
LogHeaders(result.BeginReading());
LOG(("]"));
}
result.AppendLiteral("\r\n");
return NS_OK;
}
nsresult nsHttpConnection::StartShortLivedTCPKeepalives() {
if (mUsingSpdyVersion != SpdyVersion::NONE) {
return NS_OK;
}
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = NS_OK;
int32_t idleTimeS = -1;
int32_t retryIntervalS = -1;
if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
// Set the idle time.
idleTimeS = gHttpHandler->GetTCPKeepaliveShortLivedIdleTime();
LOG(
("nsHttpConnection::StartShortLivedTCPKeepalives[%p] "
"idle time[%ds].",
this, idleTimeS));
retryIntervalS = std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
if (NS_FAILED(rv)) {
return rv;
}
rv = mSocketTransport->SetKeepaliveEnabled(true);
mTCPKeepaliveConfig = kTCPKeepaliveShortLivedConfig;
} else {
rv = mSocketTransport->SetKeepaliveEnabled(false);
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (NS_FAILED(rv)) {
return rv;
}
// Start a timer to move to long-lived keepalive config.
if (!mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer = NS_NewTimer();
}
if (mTCPKeepaliveTransitionTimer) {
int32_t time = gHttpHandler->GetTCPKeepaliveShortLivedTime();
// Adjust |time| to ensure a full set of keepalive probes can be sent
// at the end of the short-lived phase.
if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
if (NS_WARN_IF(!gSocketTransportService)) {
return NS_ERROR_NOT_INITIALIZED;
}
int32_t probeCount = -1;
rv = gSocketTransportService->GetKeepaliveProbeCount(&probeCount);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
if (NS_WARN_IF(probeCount <= 0)) {
return NS_ERROR_UNEXPECTED;
}
// Add time for final keepalive probes, and 2 seconds for a buffer.
time += ((probeCount)*retryIntervalS) - (time % idleTimeS) + 2;
}
mTCPKeepaliveTransitionTimer->InitWithNamedFuncCallback(
nsHttpConnection::UpdateTCPKeepalive, this, (uint32_t)time * 1000,
nsITimer::TYPE_ONE_SHOT,
"net::nsHttpConnection::StartShortLivedTCPKeepalives");
} else {
NS_WARNING(
"nsHttpConnection::StartShortLivedTCPKeepalives failed to "
"create timer.");
}
return NS_OK;
}
nsresult nsHttpConnection::StartLongLivedTCPKeepalives() {
MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
"Don't use TCP Keepalive with SPDY!");
if (NS_WARN_IF(mUsingSpdyVersion != SpdyVersion::NONE)) {
return NS_OK;
}
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = NS_OK;
if (gHttpHandler->TCPKeepaliveEnabledForLongLivedConns()) {
// Increase the idle time.
int32_t idleTimeS = gHttpHandler->GetTCPKeepaliveLongLivedIdleTime();
LOG(("nsHttpConnection::StartLongLivedTCPKeepalives[%p] idle time[%ds]",
this, idleTimeS));
int32_t retryIntervalS =
std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
if (NS_FAILED(rv)) {
return rv;
}
// Ensure keepalive is enabled, if current status is disabled.
if (mTCPKeepaliveConfig == kTCPKeepaliveDisabled) {
rv = mSocketTransport->SetKeepaliveEnabled(true);
if (NS_FAILED(rv)) {
return rv;
}
}
mTCPKeepaliveConfig = kTCPKeepaliveLongLivedConfig;
} else {
rv = mSocketTransport->SetKeepaliveEnabled(false);
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (NS_FAILED(rv)) {
return rv;
}
return NS_OK;
}
nsresult nsHttpConnection::DisableTCPKeepalives() {
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
LOG(("nsHttpConnection::DisableTCPKeepalives [%p]", this));
if (mTCPKeepaliveConfig != kTCPKeepaliveDisabled) {
nsresult rv = mSocketTransport->SetKeepaliveEnabled(false);
if (NS_FAILED(rv)) {
return rv;
}
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsISupports
//-----------------------------------------------------------------------------
NS_IMPL_ADDREF(nsHttpConnection)
NS_IMPL_RELEASE(nsHttpConnection)
NS_INTERFACE_MAP_BEGIN(nsHttpConnection)
NS_INTERFACE_MAP_ENTRY(nsISupportsWeakReference)
NS_INTERFACE_MAP_ENTRY(nsIInputStreamCallback)
NS_INTERFACE_MAP_ENTRY(nsIOutputStreamCallback)
NS_INTERFACE_MAP_ENTRY(nsITransportEventSink)
NS_INTERFACE_MAP_ENTRY(nsIInterfaceRequestor)
NS_INTERFACE_MAP_ENTRY(HttpConnectionBase)
NS_INTERFACE_MAP_ENTRY_CONCRETE(nsHttpConnection)
NS_INTERFACE_MAP_END
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIInputStreamCallback
//-----------------------------------------------------------------------------
// called on the socket transport thread
NS_IMETHODIMP
nsHttpConnection::OnInputStreamReady(nsIAsyncInputStream* in) {
MOZ_ASSERT(in == mSocketIn, "unexpected stream");
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mIdleMonitoring) {
MOZ_ASSERT(!mTransaction, "Idle Input Event While Active");
// The only read event that is protocol compliant for an idle connection
// is an EOF, which we check for with CanReuse(). If the data is
// something else then just ignore it and suspend checking for EOF -
// our normal timers or protocol stack are the place to deal with
// any exception logic.
if (!CanReuse()) {
LOG(("Server initiated close of idle conn %p\n", this));
Unused << gHttpHandler->ConnMgr()->CloseIdleConnection(this);
return NS_OK;
}
LOG(("Input data on idle conn %p, but not closing yet\n", this));
return NS_OK;
}
// if the transaction was dropped...
if (!mTransaction) {
LOG((" no transaction; ignoring event\n"));
return NS_OK;
}
nsresult rv = OnSocketReadable();
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
return rv;
}
if (NS_FAILED(rv)) {
CloseTransaction(mTransaction, rv);
}
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIOutputStreamCallback
//-----------------------------------------------------------------------------
NS_IMETHODIMP
nsHttpConnection::OnOutputStreamReady(nsIAsyncOutputStream* out) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(out == mSocketOut, "unexpected socket");
// if the transaction was dropped...
if (!mTransaction) {
LOG((" no transaction; ignoring event\n"));
return NS_OK;
}
nsresult rv = OnSocketWritable();
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
return NS_OK;
}
if (NS_FAILED(rv)) CloseTransaction(mTransaction, rv);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsITransportEventSink
//-----------------------------------------------------------------------------
NS_IMETHODIMP
nsHttpConnection::OnTransportStatus(nsITransport* trans, nsresult status,
int64_t progress, int64_t progressMax) {
if (mTransaction) mTransaction->OnTransportStatus(trans, status, progress);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIInterfaceRequestor
//-----------------------------------------------------------------------------
// not called on the socket transport thread
NS_IMETHODIMP
nsHttpConnection::GetInterface(const nsIID& iid, void** result) {
// NOTE: This function is only called on the UI thread via sync proxy from
// the socket transport thread. If that weren't the case, then we'd
// have to worry about the possibility of mTransaction going away
// part-way through this function call. See CloseTransaction.
// NOTE - there is a bug here, the call to getinterface is proxied off the
// nss thread, not the ui thread as the above comment says. So there is
// indeed a chance of mTransaction going away. bug 615342
MOZ_ASSERT(!OnSocketThread(), "on socket thread");
nsCOMPtr<nsIInterfaceRequestor> callbacks;
{
MutexAutoLock lock(mCallbacksLock);
callbacks = mCallbacks;
}
if (callbacks) return callbacks->GetInterface(iid, result);
return NS_ERROR_NO_INTERFACE;
}
void nsHttpConnection::CheckForTraffic(bool check) {
if (check) {
LOG((" CheckForTraffic conn %p\n", this));
if (mSpdySession) {
if (PR_IntervalToMilliseconds(IdleTime()) >= 500) {
// Send a ping to verify it is still alive if it has been idle
// more than half a second, the network changed events are
// rate-limited to one per 1000 ms.
LOG((" SendPing\n"));
mSpdySession->SendPing();
} else {
LOG((" SendPing skipped due to network activity\n"));
}
} else {
// If not SPDY, Store snapshot amount of data right now
mTrafficCount = mTotalBytesWritten + mTotalBytesRead;
mTrafficStamp = true;
}
} else {
// mark it as not checked
mTrafficStamp = false;
}
}
void nsHttpConnection::SetEvent(nsresult aStatus) {
switch (aStatus) {
case NS_NET_STATUS_RESOLVING_HOST:
mBootstrappedTimings.domainLookupStart = TimeStamp::Now();
break;
case NS_NET_STATUS_RESOLVED_HOST:
mBootstrappedTimings.domainLookupEnd = TimeStamp::Now();
break;
case NS_NET_STATUS_CONNECTING_TO:
mBootstrappedTimings.connectStart = TimeStamp::Now();
break;
case NS_NET_STATUS_CONNECTED_TO: {
TimeStamp tnow = TimeStamp::Now();
mBootstrappedTimings.tcpConnectEnd = tnow;
mBootstrappedTimings.connectEnd = tnow;
mBootstrappedTimings.secureConnectionStart = tnow;
break;
}
case NS_NET_STATUS_TLS_HANDSHAKE_STARTING:
mBootstrappedTimings.secureConnectionStart = TimeStamp::Now();
break;
case NS_NET_STATUS_TLS_HANDSHAKE_ENDED:
mBootstrappedTimings.connectEnd = TimeStamp::Now();
break;
default:
break;
}
}
bool nsHttpConnection::NoClientCertAuth() const {
if (!mSocketTransport) {
return false;
}
nsCOMPtr<nsITLSSocketControl> tlsSocketControl;
mSocketTransport->GetTlsSocketControl(getter_AddRefs(tlsSocketControl));
if (!tlsSocketControl) {
return false;
}
return !tlsSocketControl->GetClientCertSent();
}
WebSocketSupport nsHttpConnection::GetWebSocketSupport() {
LOG3(("nsHttpConnection::GetWebSocketSupport"));
if (!UsingSpdy()) {
return WebSocketSupport::SUPPORTED;
}
LOG3(("nsHttpConnection::GetWebSocketSupport checking spdy session"));
if (mSpdySession) {
return mSpdySession->GetWebSocketSupport();
}
return WebSocketSupport::NO_SUPPORT;
}
bool nsHttpConnection::IsProxyConnectInProgress() {
return mState == SETTING_UP_TUNNEL;
}
bool nsHttpConnection::LastTransactionExpectedNoContent() {
return mLastTransactionExpectedNoContent;
}
void nsHttpConnection::SetLastTransactionExpectedNoContent(bool val) {
mLastTransactionExpectedNoContent = val;
}
bool nsHttpConnection::IsPersistent() { return IsKeepAlive() && !mDontReuse; }
nsAHttpTransaction* nsHttpConnection::Transaction() { return mTransaction; }
nsresult nsHttpConnection::GetSelfAddr(NetAddr* addr) {
if (!mSocketTransport) {
return NS_ERROR_FAILURE;
}
return mSocketTransport->GetSelfAddr(addr);
}
nsresult nsHttpConnection::GetPeerAddr(NetAddr* addr) {
if (!mSocketTransport) {
return NS_ERROR_FAILURE;
}
return mSocketTransport->GetPeerAddr(addr);
}
bool nsHttpConnection::ResolvedByTRR() {
bool val = false;
if (mSocketTransport) {
mSocketTransport->ResolvedByTRR(&val);
}
return val;
}
nsIRequest::TRRMode nsHttpConnection::EffectiveTRRMode() {
nsIRequest::TRRMode mode = nsIRequest::TRR_DEFAULT_MODE;
if (mSocketTransport) {
mSocketTransport->GetEffectiveTRRMode(&mode);
}
return mode;
}
TRRSkippedReason nsHttpConnection::TRRSkipReason() {
TRRSkippedReason reason = nsITRRSkipReason::TRR_UNSET;
if (mSocketTransport) {
mSocketTransport->GetTrrSkipReason(&reason);
}
return reason;
}
bool nsHttpConnection::GetEchConfigUsed() {
bool val = false;
if (mSocketTransport) {
mSocketTransport->GetEchConfigUsed(&val);
}
return val;
}
void nsHttpConnection::HandshakeDoneInternal() {
LOG(("nsHttpConnection::HandshakeDoneInternal [this=%p]\n", this));
if (mTlsHandshaker->NPNComplete()) {
return;
}
ChangeConnectionState(ConnectionState::TRANSFERING);
nsCOMPtr<nsITLSSocketControl> tlsSocketControl;
GetTLSSocketControl(getter_AddRefs(tlsSocketControl));
if (!tlsSocketControl) {
mTlsHandshaker->FinishNPNSetup(false, false);
return;
}
nsCOMPtr<nsITransportSecurityInfo> securityInfo;
if (NS_FAILED(
tlsSocketControl->GetSecurityInfo(getter_AddRefs(securityInfo)))) {
mTlsHandshaker->FinishNPNSetup(false, false);
return;
}
if (!securityInfo) {
mTlsHandshaker->FinishNPNSetup(false, false);
return;
}
nsAutoCString negotiatedNPN;
DebugOnly<nsresult> rvDebug = securityInfo->GetNegotiatedNPN(negotiatedNPN);
MOZ_ASSERT(NS_SUCCEEDED(rvDebug));
bool earlyDataAccepted = false;
if (mTlsHandshaker->EarlyDataUsed()) {
// Check if early data has been accepted.
nsresult rvEarlyData =
tlsSocketControl->GetEarlyDataAccepted(&earlyDataAccepted);
LOG(
("nsHttpConnection::HandshakeDone [this=%p] - early data "
"that was sent during 0RTT %s been accepted [rv=%" PRIx32 "].",
this, earlyDataAccepted ? "has" : "has not",
static_cast<uint32_t>(rvEarlyData)));
if (NS_FAILED(rvEarlyData) ||
(mTransaction &&
NS_FAILED(mTransaction->Finish0RTT(
!earlyDataAccepted,
negotiatedNPN != mTlsHandshaker->EarlyNegotiatedALPN())))) {
LOG(
("nsHttpConection::HandshakeDone [this=%p] closing transaction "
"%p",
this, mTransaction.get()));
if (mTransaction) {
mTransaction->Close(NS_ERROR_NET_RESET);
}
mTlsHandshaker->FinishNPNSetup(false, true);
return;
}
if (mDid0RTTSpdy &&
(negotiatedNPN != mTlsHandshaker->EarlyNegotiatedALPN())) {
Reset0RttForSpdy();
}
}
if (mTlsHandshaker->EarlyDataAvailable() && !earlyDataAccepted) {
// When the early-data were used but not accepted, we need to start
// from the begining here and start writing the request again.
// The same is true if 0RTT was available but not used.
if (mSocketIn) {
mSocketIn->AsyncWait(nullptr, 0, 0, nullptr);
}
Unused << ResumeSend();
}
int16_t tlsVersion;
tlsSocketControl->GetSSLVersionUsed(&tlsVersion);
mConnInfo->SetLessThanTls13(
(tlsVersion < nsITLSSocketControl::TLS_VERSION_1_3) &&
(tlsVersion != nsITLSSocketControl::SSL_VERSION_UNKNOWN));
mTlsHandshaker->EarlyDataTelemetry(tlsVersion, earlyDataAccepted,
mContentBytesWritten0RTT);
mTlsHandshaker->EarlyDataDone();
if (!earlyDataAccepted) {
LOG(
("nsHttpConnection::HandshakeDone [this=%p] early data not "
"accepted or early data were not used",
this));
const SpdyInformation* info = gHttpHandler->SpdyInfo();
if (negotiatedNPN.Equals(info->VersionString)) {
if (mTransaction) {
StartSpdy(tlsSocketControl, info->Version);
} else {
LOG(
("nsHttpConnection::HandshakeDone [this=%p] set "
"mContinueHandshakeDone",
this));
RefPtr<nsHttpConnection> self = this;
mContinueHandshakeDone = [self = RefPtr{this},
tlsSocketControl(tlsSocketControl),
info(info->Version)]() {
LOG(("nsHttpConnection do mContinueHandshakeDone [this=%p]",
self.get()));
self->StartSpdy(tlsSocketControl, info);
self->mTlsHandshaker->FinishNPNSetup(true, true);
};
return;
}
}
} else {
LOG(("nsHttpConnection::HandshakeDone [this=%p] - %" PRId64 " bytes "
"has been sent during 0RTT.",
this, mContentBytesWritten0RTT));
mContentBytesWritten = mContentBytesWritten0RTT;
if (mSpdySession) {
// We had already started 0RTT-spdy, now we need to fully set up
// spdy, since we know we're sticking with it.
LOG(
("nsHttpConnection::HandshakeDone [this=%p] - finishing "
"StartSpdy for 0rtt spdy session %p",
this, mSpdySession.get()));
StartSpdy(tlsSocketControl, mSpdySession->SpdyVersion());
}
}
Telemetry::Accumulate(Telemetry::SPDY_NPN_CONNECT, UsingSpdy());
mTlsHandshaker->FinishNPNSetup(true, true);
Unused << ResumeSend();
}
void nsHttpConnection::SetTunnelSetupDone() {
MOZ_ASSERT(mProxyConnectStream);
MOZ_ASSERT(mState == HttpConnectionState::SETTING_UP_TUNNEL);
ChangeState(HttpConnectionState::REQUEST);
mProxyConnectStream = nullptr;
}
nsresult nsHttpConnection::CheckTunnelIsNeeded() {
switch (mState) {
case HttpConnectionState::UNINITIALIZED: {
// This is is called first time. Check if we need a tunnel.
if (!mTransaction->ConnectionInfo()->UsingConnect()) {
ChangeState(HttpConnectionState::REQUEST);
return NS_OK;
}
ChangeState(HttpConnectionState::SETTING_UP_TUNNEL);
}
[[fallthrough]];
case HttpConnectionState::SETTING_UP_TUNNEL: {
// When a nsHttpConnection is in this state that means that an
// authentication was needed and we are resending a CONNECT
// request. This request will include authentication headers.
nsresult rv = SetupProxyConnectStream();
if (NS_FAILED(rv)) {
ChangeState(HttpConnectionState::UNINITIALIZED);
}
return rv;
}
case HttpConnectionState::REQUEST:
return NS_OK;
}
return NS_OK;
}
nsresult nsHttpConnection::SetupProxyConnectStream() {
LOG(("nsHttpConnection::SetupStream\n"));
NS_ENSURE_TRUE(!mProxyConnectStream, NS_ERROR_ALREADY_INITIALIZED);
MOZ_ASSERT(mState == HttpConnectionState::SETTING_UP_TUNNEL);
nsAutoCString buf;
nsHttpRequestHead request;
nsresult rv = MakeConnectString(mTransaction, &request, buf,
mForWebSocket && mInSpdyTunnel,
mTransactionCaps & NS_HTTP_USE_RFP);
if (NS_FAILED(rv)) {
return rv;
}
rv = NS_NewCStringInputStream(getter_AddRefs(mProxyConnectStream),
std::move(buf));
return rv;
}
nsresult nsHttpConnection::ReadFromStream(nsIInputStream* input, void* closure,
const char* buf, uint32_t offset,
uint32_t count, uint32_t* countRead) {
// thunk for nsIInputStream instance
nsHttpConnection* conn = (nsHttpConnection*)closure;
return conn->OnReadSegment(buf, count, countRead);
}
nsresult nsHttpConnection::SendConnectRequest(void* closure,
uint32_t* transactionBytes) {
LOG((" writing CONNECT request stream\n"));
return mProxyConnectStream->ReadSegments(ReadFromStream, closure,
nsIOService::gDefaultSegmentSize,
transactionBytes);
}
} // namespace mozilla::net