Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VPX_VP9_ENCODER_VP9_ENCODER_H_
#define VPX_VP9_ENCODER_VP9_ENCODER_H_
#include <stdio.h>
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx/internal/vpx_codec_internal.h"
#include "vpx/vpx_ext_ratectrl.h"
#include "vpx/vp8cx.h"
#include "vpx/vpx_tpl.h"
#if CONFIG_INTERNAL_STATS
#include "vpx_dsp/ssim.h"
#endif
#include "vpx_dsp/variance.h"
#include "vpx_dsp/psnr.h"
#include "vpx_ports/system_state.h"
#include "vpx_util/vpx_pthread.h"
#include "vpx_util/vpx_thread.h"
#include "vpx_util/vpx_timestamp.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_ppflags.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_thread_common.h"
#include "vp9/common/vp9_onyxc_int.h"
#if !CONFIG_REALTIME_ONLY
#include "vp9/encoder/vp9_alt_ref_aq.h"
#endif
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_context_tree.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_ethread.h"
#include "vp9/encoder/vp9_ext_ratectrl.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_job_queue.h"
#include "vp9/encoder/vp9_lookahead.h"
#include "vp9/encoder/vp9_mbgraph.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_noise_estimate.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_speed_features.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vp9/encoder/vp9_tokenize.h"
#if CONFIG_VP9_TEMPORAL_DENOISING
#include "vp9/encoder/vp9_denoiser.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
// vp9 uses 10,000,000 ticks/second as time stamp
#define TICKS_PER_SEC 10000000
typedef struct {
int nmvjointcost[MV_JOINTS];
int nmvcosts[2][MV_VALS];
int nmvcosts_hp[2][MV_VALS];
vpx_prob segment_pred_probs[PREDICTION_PROBS];
unsigned char *last_frame_seg_map_copy;
// 0 = Intra, Last, GF, ARF
signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
// 0 = ZERO_MV, MV
signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
FRAME_CONTEXT fc;
} CODING_CONTEXT;
typedef enum {
// encode_breakout is disabled.
ENCODE_BREAKOUT_DISABLED = 0,
// encode_breakout is enabled.
ENCODE_BREAKOUT_ENABLED = 1,
// encode_breakout is enabled with small max_thresh limit.
ENCODE_BREAKOUT_LIMITED = 2
} ENCODE_BREAKOUT_TYPE;
typedef enum {
// Good Quality Fast Encoding. The encoder balances quality with the amount of
// time it takes to encode the output. Speed setting controls how fast.
GOOD,
// The encoder places priority on the quality of the output over encoding
// speed. The output is compressed at the highest possible quality. This
// option takes the longest amount of time to encode. Speed setting ignored.
BEST,
// Realtime/Live Encoding. This mode is optimized for realtime encoding (for
// example, capturing a television signal or feed from a live camera). Speed
// setting controls how fast.
REALTIME
} MODE;
typedef enum {
FRAMEFLAGS_KEY = 1 << 0,
FRAMEFLAGS_GOLDEN = 1 << 1,
FRAMEFLAGS_ALTREF = 1 << 2,
} FRAMETYPE_FLAGS;
typedef enum {
NO_AQ = 0,
VARIANCE_AQ = 1,
COMPLEXITY_AQ = 2,
CYCLIC_REFRESH_AQ = 3,
EQUATOR360_AQ = 4,
PERCEPTUAL_AQ = 5,
PSNR_AQ = 6,
// AQ based on lookahead temporal
// variance (only valid for altref frames)
LOOKAHEAD_AQ = 7,
AQ_MODE_COUNT // This should always be the last member of the enum
} AQ_MODE;
typedef enum {
RESIZE_NONE = 0, // No frame resizing allowed (except for SVC).
RESIZE_FIXED = 1, // All frames are coded at the specified dimension.
RESIZE_DYNAMIC = 2 // Coded size of each frame is determined by the codec.
} RESIZE_TYPE;
typedef enum {
kInvalid = 0,
kLowSadLowSumdiff = 1,
kLowSadHighSumdiff = 2,
kHighSadLowSumdiff = 3,
kHighSadHighSumdiff = 4,
kLowVarHighSumdiff = 5,
kVeryHighSad = 6,
} CONTENT_STATE_SB;
typedef enum {
LOOPFILTER_ALL = 0,
LOOPFILTER_REFERENCE = 1, // Disable loopfilter on non reference frames.
NO_LOOPFILTER = 2, // Disable loopfilter on all frames.
} LOOPFILTER_CONTROL;
typedef struct VP9EncoderConfig {
BITSTREAM_PROFILE profile;
vpx_bit_depth_t bit_depth; // Codec bit-depth.
int width; // width of data passed to the compressor
int height; // height of data passed to the compressor
unsigned int input_bit_depth; // Input bit depth.
double init_framerate; // set to passed in framerate
vpx_rational_t g_timebase; // equivalent to g_timebase in vpx_codec_enc_cfg_t
vpx_rational64_t g_timebase_in_ts; // g_timebase * TICKS_PER_SEC
int64_t target_bandwidth; // bandwidth to be used in bits per second
int noise_sensitivity; // pre processing blur: recommendation 0
int sharpness; // sharpening output: recommendation 0:
int speed;
// maximum allowed bitrate for any intra frame in % of bitrate target.
unsigned int rc_max_intra_bitrate_pct;
// maximum allowed bitrate for any inter frame in % of bitrate target.
unsigned int rc_max_inter_bitrate_pct;
// percent of rate boost for golden frame in CBR mode.
unsigned int gf_cbr_boost_pct;
MODE mode;
int pass;
// Key Framing Operations
int auto_key; // autodetect cut scenes and set the keyframes
int key_freq; // maximum distance to key frame.
int lag_in_frames; // how many frames lag before we start encoding
// ----------------------------------------------------------------
// DATARATE CONTROL OPTIONS
// vbr, cbr, constrained quality or constant quality
enum vpx_rc_mode rc_mode;
// buffer targeting aggressiveness
int under_shoot_pct;
int over_shoot_pct;
// buffering parameters
int64_t starting_buffer_level_ms;
int64_t optimal_buffer_level_ms;
int64_t maximum_buffer_size_ms;
// Frame drop threshold.
int drop_frames_water_mark;
// controlling quality
int fixed_q;
int worst_allowed_q;
int best_allowed_q;
int cq_level;
AQ_MODE aq_mode; // Adaptive Quantization mode
// Special handling of Adaptive Quantization for AltRef frames
int alt_ref_aq;
// Internal frame size scaling.
RESIZE_TYPE resize_mode;
int scaled_frame_width;
int scaled_frame_height;
// Enable feature to reduce the frame quantization every x frames.
int frame_periodic_boost;
// two pass datarate control
int two_pass_vbrbias; // two pass datarate control tweaks
int two_pass_vbrmin_section;
int two_pass_vbrmax_section;
int vbr_corpus_complexity; // 0 indicates corpus vbr disabled
// END DATARATE CONTROL OPTIONS
// ----------------------------------------------------------------
// Spatial and temporal scalability.
int ss_number_layers; // Number of spatial layers.
int ts_number_layers; // Number of temporal layers.
// Bitrate allocation for spatial layers.
int layer_target_bitrate[VPX_MAX_LAYERS];
int ss_target_bitrate[VPX_SS_MAX_LAYERS];
int ss_enable_auto_arf[VPX_SS_MAX_LAYERS];
// Bitrate allocation (CBR mode) and framerate factor, for temporal layers.
int ts_rate_decimator[VPX_TS_MAX_LAYERS];
int enable_auto_arf;
int encode_breakout; // early breakout : for video conf recommend 800
/* Bitfield defining the error resiliency features to enable.
* Can provide decodable frames after losses in previous
* frames and decodable partitions after losses in the same frame.
*/
unsigned int error_resilient_mode;
/* Bitfield defining the parallel decoding mode where the
* decoding in successive frames may be conducted in parallel
* just by decoding the frame headers.
*/
unsigned int frame_parallel_decoding_mode;
int arnr_max_frames;
int arnr_strength;
int min_gf_interval;
int max_gf_interval;
int tile_columns;
int tile_rows;
int enable_tpl_model;
int max_threads;
unsigned int target_level;
vpx_fixed_buf_t two_pass_stats_in;
vp8e_tuning tuning;
vp9e_tune_content content;
#if CONFIG_VP9_HIGHBITDEPTH
int use_highbitdepth;
#endif
vpx_color_space_t color_space;
vpx_color_range_t color_range;
int render_width;
int render_height;
VP9E_TEMPORAL_LAYERING_MODE temporal_layering_mode;
int row_mt;
unsigned int motion_vector_unit_test;
int delta_q_uv;
int use_simple_encode_api; // Use SimpleEncode APIs or not
} VP9EncoderConfig;
static INLINE int is_lossless_requested(const VP9EncoderConfig *cfg) {
return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0;
}
typedef struct TplDepStats {
int64_t intra_cost;
int64_t inter_cost;
int64_t mc_flow;
int64_t mc_dep_cost;
int64_t mc_ref_cost;
int ref_frame_index;
int_mv mv;
} TplDepStats;
#if CONFIG_NON_GREEDY_MV
#define ZERO_MV_MODE 0
#define NEW_MV_MODE 1
#define NEAREST_MV_MODE 2
#define NEAR_MV_MODE 3
#define MAX_MV_MODE 4
#endif
typedef struct TplDepFrame {
uint8_t is_valid;
TplDepStats *tpl_stats_ptr;
int stride;
int width;
int height;
int mi_rows;
int mi_cols;
int base_qindex;
#if CONFIG_NON_GREEDY_MV
int lambda;
int *mv_mode_arr[3];
double *rd_diff_arr[3];
#endif
} TplDepFrame;
#define TPL_DEP_COST_SCALE_LOG2 4
// TODO(jingning) All spatially adaptive variables should go to TileDataEnc.
typedef struct TileDataEnc {
TileInfo tile_info;
int thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
int thresh_freq_fact_prev[BLOCK_SIZES][MAX_MODES];
int8_t mode_map[BLOCK_SIZES][MAX_MODES];
FIRSTPASS_DATA fp_data;
VP9RowMTSync row_mt_sync;
// Used for adaptive_rd_thresh with row multithreading
int *row_base_thresh_freq_fact;
// The value of sb_rows when row_base_thresh_freq_fact is allocated.
// The row_base_thresh_freq_fact array has sb_rows * BLOCK_SIZES * MAX_MODES
// elements.
int sb_rows;
MV firstpass_top_mv;
} TileDataEnc;
typedef struct RowMTInfo {
JobQueueHandle job_queue_hdl;
#if CONFIG_MULTITHREAD
pthread_mutex_t job_mutex;
#endif
} RowMTInfo;
typedef struct {
TOKENEXTRA *start;
TOKENEXTRA *stop;
unsigned int count;
} TOKENLIST;
typedef struct MultiThreadHandle {
int allocated_tile_rows;
int allocated_tile_cols;
int allocated_vert_unit_rows;
// Frame level params
int num_tile_vert_sbs[MAX_NUM_TILE_ROWS];
// Job Queue structure and handles
JobQueue *job_queue;
int jobs_per_tile_col;
RowMTInfo row_mt_info[MAX_NUM_TILE_COLS];
int thread_id_to_tile_id[MAX_NUM_THREADS]; // Mapping of threads to tiles
} MultiThreadHandle;
typedef struct RD_COUNTS {
vp9_coeff_count coef_counts[TX_SIZES][PLANE_TYPES];
int64_t comp_pred_diff[REFERENCE_MODES];
int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS];
} RD_COUNTS;
typedef struct ThreadData {
MACROBLOCK mb;
RD_COUNTS rd_counts;
FRAME_COUNTS *counts;
PICK_MODE_CONTEXT *leaf_tree;
PC_TREE *pc_tree;
PC_TREE *pc_root;
} ThreadData;
struct EncWorkerData;
typedef struct ActiveMap {
int enabled;
int update;
unsigned char *map;
} ActiveMap;
typedef enum { Y, U, V, ALL } STAT_TYPE;
typedef struct IMAGE_STAT {
double stat[ALL + 1];
double worst;
} ImageStat;
// Kf noise filtering currently disabled by default in build.
// #define ENABLE_KF_DENOISE 1
#define CPB_WINDOW_SIZE 4
#define FRAME_WINDOW_SIZE 128
#define SAMPLE_RATE_GRACE_P 0.015
#define VP9_LEVELS 14
typedef enum {
LEVEL_UNKNOWN = 0,
LEVEL_AUTO = 1,
LEVEL_1 = 10,
LEVEL_1_1 = 11,
LEVEL_2 = 20,
LEVEL_2_1 = 21,
LEVEL_3 = 30,
LEVEL_3_1 = 31,
LEVEL_4 = 40,
LEVEL_4_1 = 41,
LEVEL_5 = 50,
LEVEL_5_1 = 51,
LEVEL_5_2 = 52,
LEVEL_6 = 60,
LEVEL_6_1 = 61,
LEVEL_6_2 = 62,
LEVEL_MAX = 255
} VP9_LEVEL;
typedef struct {
VP9_LEVEL level;
uint64_t max_luma_sample_rate;
uint32_t max_luma_picture_size;
uint32_t max_luma_picture_breadth;
double average_bitrate; // in kilobits per second
double max_cpb_size; // in kilobits
double compression_ratio;
uint8_t max_col_tiles;
uint32_t min_altref_distance;
uint8_t max_ref_frame_buffers;
} Vp9LevelSpec;
extern const Vp9LevelSpec vp9_level_defs[VP9_LEVELS];
typedef struct {
int64_t ts; // timestamp
uint32_t luma_samples;
uint32_t size; // in bytes
} FrameRecord;
typedef struct {
FrameRecord buf[FRAME_WINDOW_SIZE];
uint8_t start;
uint8_t len;
} FrameWindowBuffer;
typedef struct {
uint8_t seen_first_altref;
uint32_t frames_since_last_altref;
uint64_t total_compressed_size;
uint64_t total_uncompressed_size;
double time_encoded; // in seconds
FrameWindowBuffer frame_window_buffer;
int ref_refresh_map;
} Vp9LevelStats;
typedef struct {
Vp9LevelStats level_stats;
Vp9LevelSpec level_spec;
} Vp9LevelInfo;
typedef enum {
BITRATE_TOO_LARGE = 0,
LUMA_PIC_SIZE_TOO_LARGE,
LUMA_PIC_BREADTH_TOO_LARGE,
LUMA_SAMPLE_RATE_TOO_LARGE,
CPB_TOO_LARGE,
COMPRESSION_RATIO_TOO_SMALL,
TOO_MANY_COLUMN_TILE,
ALTREF_DIST_TOO_SMALL,
TOO_MANY_REF_BUFFER,
TARGET_LEVEL_FAIL_IDS
} TARGET_LEVEL_FAIL_ID;
typedef struct {
int8_t level_index;
uint8_t fail_flag;
int max_frame_size; // in bits
double max_cpb_size; // in bits
} LevelConstraint;
typedef struct ARNRFilterData {
YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS];
int strength;
int frame_count;
int alt_ref_index;
struct scale_factors sf;
} ARNRFilterData;
typedef struct EncFrameBuf {
int mem_valid;
int released;
YV12_BUFFER_CONFIG frame;
} EncFrameBuf;
// Maximum operating frame buffer size needed for a GOP using ARF reference.
// This is used to allocate the memory for TPL stats for a GOP.
#define MAX_ARF_GOP_SIZE (2 * MAX_LAG_BUFFERS)
#define MAX_KMEANS_GROUPS 8
typedef struct KMEANS_DATA {
double value;
int pos;
int group_idx;
} KMEANS_DATA;
#if CONFIG_RATE_CTRL
typedef struct PARTITION_INFO {
int row; // row pixel offset of current 4x4 block
int column; // column pixel offset of current 4x4 block
int row_start; // row pixel offset of the start of the prediction block
int column_start; // column pixel offset of the start of the prediction block
int width; // prediction block width
int height; // prediction block height
} PARTITION_INFO;
typedef struct MOTION_VECTOR_INFO {
MV_REFERENCE_FRAME ref_frame[2];
int_mv mv[2];
} MOTION_VECTOR_INFO;
typedef struct GOP_COMMAND {
int use; // use this command to set gop or not. If not, use vp9's decision.
int show_frame_count;
int use_alt_ref;
} GOP_COMMAND;
static INLINE void gop_command_on(GOP_COMMAND *gop_command,
int show_frame_count, int use_alt_ref) {
gop_command->use = 1;
gop_command->show_frame_count = show_frame_count;
gop_command->use_alt_ref = use_alt_ref;
}
static INLINE void gop_command_off(GOP_COMMAND *gop_command) {
gop_command->use = 0;
gop_command->show_frame_count = 0;
gop_command->use_alt_ref = 0;
}
static INLINE int gop_command_coding_frame_count(
const GOP_COMMAND *gop_command) {
if (gop_command->use == 0) {
assert(0);
return -1;
}
return gop_command->show_frame_count + gop_command->use_alt_ref;
}
// TODO(angiebird): See if we can merge this one with FrameType in
// simple_encode.h
typedef enum ENCODE_FRAME_TYPE {
ENCODE_FRAME_TYPE_KEY,
ENCODE_FRAME_TYPE_INTER,
ENCODE_FRAME_TYPE_ALTREF,
ENCODE_FRAME_TYPE_OVERLAY,
ENCODE_FRAME_TYPE_GOLDEN,
ENCODE_FRAME_TYPES,
} ENCODE_FRAME_TYPE;
// TODO(angiebird): Merge this function with get_frame_type_from_update_type()
static INLINE ENCODE_FRAME_TYPE
get_encode_frame_type(FRAME_UPDATE_TYPE update_type) {
switch (update_type) {
case KF_UPDATE: return ENCODE_FRAME_TYPE_KEY;
case ARF_UPDATE: return ENCODE_FRAME_TYPE_ALTREF;
case GF_UPDATE: return ENCODE_FRAME_TYPE_GOLDEN;
case OVERLAY_UPDATE: return ENCODE_FRAME_TYPE_OVERLAY;
case LF_UPDATE: return ENCODE_FRAME_TYPE_INTER;
default:
fprintf(stderr, "Unsupported update_type %d\n", update_type);
abort();
return ENCODE_FRAME_TYPE_INTER;
}
}
typedef struct RATE_QSTEP_MODEL {
// The rq model predicts the bit usage as follows.
// rate = bias - ratio * log2(q_step)
int ready;
double bias;
double ratio;
} RATE_QSTEP_MODEL;
typedef struct ENCODE_COMMAND {
int use_external_quantize_index;
int external_quantize_index;
int use_external_target_frame_bits;
int target_frame_bits;
double target_frame_bits_error_percent;
GOP_COMMAND gop_command;
} ENCODE_COMMAND;
static INLINE void encode_command_set_gop_command(
ENCODE_COMMAND *encode_command, GOP_COMMAND gop_command) {
encode_command->gop_command = gop_command;
}
static INLINE void encode_command_set_external_quantize_index(
ENCODE_COMMAND *encode_command, int quantize_index) {
encode_command->use_external_quantize_index = 1;
encode_command->external_quantize_index = quantize_index;
}
static INLINE void encode_command_reset_external_quantize_index(
ENCODE_COMMAND *encode_command) {
encode_command->use_external_quantize_index = 0;
encode_command->external_quantize_index = -1;
}
static INLINE void encode_command_set_target_frame_bits(
ENCODE_COMMAND *encode_command, int target_frame_bits,
double target_frame_bits_error_percent) {
encode_command->use_external_target_frame_bits = 1;
encode_command->target_frame_bits = target_frame_bits;
encode_command->target_frame_bits_error_percent =
target_frame_bits_error_percent;
}
static INLINE void encode_command_reset_target_frame_bits(
ENCODE_COMMAND *encode_command) {
encode_command->use_external_target_frame_bits = 0;
encode_command->target_frame_bits = -1;
encode_command->target_frame_bits_error_percent = 0;
}
static INLINE void encode_command_init(ENCODE_COMMAND *encode_command) {
vp9_zero(*encode_command);
encode_command_reset_external_quantize_index(encode_command);
encode_command_reset_target_frame_bits(encode_command);
gop_command_off(&encode_command->gop_command);
}
// Returns number of units in size of 4, if not multiple not a multiple of 4,
// round it up. For example, size is 7, return 2.
static INLINE int get_num_unit_4x4(int size) { return (size + 3) >> 2; }
// Returns number of units in size of 16, if not multiple not a multiple of 16,
// round it up. For example, size is 17, return 2.
static INLINE int get_num_unit_16x16(int size) { return (size + 15) >> 4; }
#endif // CONFIG_RATE_CTRL
#if CONFIG_COLLECT_COMPONENT_TIMING
#include "vpx_ports/vpx_timer.h"
// Adjust the following to add new components.
typedef enum {
vp9_get_compressed_data_time,
vp9_temporal_filter_time,
vp9_rc_get_second_pass_params_time,
setup_tpl_stats_time,
Pass2Encode_time,
encode_with_recode_loop_time,
loopfilter_frame_time,
vp9_pack_bitstream_time,
encode_frame_internal_time,
rd_pick_partition_time,
rd_pick_sb_modes_time,
encode_sb_time,
vp9_rd_pick_inter_mode_sb_time,
vp9_rd_pick_inter_mode_sub8x8_time,
intra_mode_search_time,
handle_inter_mode_time,
single_motion_search_time,
joint_motion_search_time,
interp_filter_time,
kTimingComponents,
} TIMING_COMPONENT;
static INLINE char const *get_component_name(int index) {
switch (index) {
case vp9_get_compressed_data_time: return "vp9_get_compressed_data_time";
case vp9_temporal_filter_time: return "vp9_temporal_filter_time";
case vp9_rc_get_second_pass_params_time:
return "vp9_rc_get_second_pass_params_time";
case setup_tpl_stats_time: return "setup_tpl_stats_time";
case Pass2Encode_time: return "Pass2Encode_time";
case encode_with_recode_loop_time: return "encode_with_recode_loop_time";
case loopfilter_frame_time: return "loopfilter_frame_time";
case vp9_pack_bitstream_time: return "vp9_pack_bitstream_time";
case encode_frame_internal_time: return "encode_frame_internal_time";
case rd_pick_partition_time: return "rd_pick_partition_time";
case rd_pick_sb_modes_time: return "rd_pick_sb_modes_time";
case encode_sb_time: return "encode_sb_time";
case vp9_rd_pick_inter_mode_sb_time:
return "vp9_rd_pick_inter_mode_sb_time";
case vp9_rd_pick_inter_mode_sub8x8_time:
return "vp9_rd_pick_inter_mode_sub8x8_time";
case intra_mode_search_time: return "intra_mode_search_time";
case handle_inter_mode_time: return "handle_inter_mode_time";
case single_motion_search_time: return "single_motion_search_time";
case joint_motion_search_time: return "joint_motion_search_time";
case interp_filter_time: return "interp_filter_time";
default: assert(0);
}
return "error";
}
#endif
typedef struct VP9_COMP {
FRAME_INFO frame_info;
QUANTS quants;
ThreadData td;
MB_MODE_INFO_EXT *mbmi_ext_base;
DECLARE_ALIGNED(16, int16_t, y_dequant[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, uv_dequant[QINDEX_RANGE][8]);
VP9_COMMON common;
VP9EncoderConfig oxcf;
struct lookahead_ctx *lookahead;
struct lookahead_entry *alt_ref_source;
YV12_BUFFER_CONFIG *Source;
YV12_BUFFER_CONFIG *Last_Source; // NULL for first frame and alt_ref frames
YV12_BUFFER_CONFIG *un_scaled_source;
YV12_BUFFER_CONFIG scaled_source;
YV12_BUFFER_CONFIG *unscaled_last_source;
YV12_BUFFER_CONFIG scaled_last_source;
#ifdef ENABLE_KF_DENOISE
YV12_BUFFER_CONFIG raw_unscaled_source;
YV12_BUFFER_CONFIG raw_scaled_source;
#endif
YV12_BUFFER_CONFIG *raw_source_frame;
BLOCK_SIZE tpl_bsize;
TplDepFrame tpl_stats[MAX_ARF_GOP_SIZE];
// Used to store TPL stats before propagation
VpxTplGopStats tpl_gop_stats;
YV12_BUFFER_CONFIG *tpl_recon_frames[REF_FRAMES];
EncFrameBuf enc_frame_buf[REF_FRAMES];
#if CONFIG_MULTITHREAD
pthread_mutex_t kmeans_mutex;
#endif
int kmeans_data_arr_alloc;
KMEANS_DATA *kmeans_data_arr;
int kmeans_data_size;
int kmeans_data_stride;
double kmeans_ctr_ls[MAX_KMEANS_GROUPS];
double kmeans_boundary_ls[MAX_KMEANS_GROUPS];
int kmeans_count_ls[MAX_KMEANS_GROUPS];
int kmeans_ctr_num;
#if CONFIG_NON_GREEDY_MV
MotionFieldInfo motion_field_info;
int tpl_ready;
int_mv *select_mv_arr;
#endif
TileDataEnc *tile_data;
int allocated_tiles; // Keep track of memory allocated for tiles.
int scaled_ref_idx[REFS_PER_FRAME];
int lst_fb_idx;
int gld_fb_idx;
int alt_fb_idx;
int ref_fb_idx[REF_FRAMES];
int refresh_last_frame;
int refresh_golden_frame;
int refresh_alt_ref_frame;
int ext_refresh_frame_flags_pending;
int ext_refresh_last_frame;
int ext_refresh_golden_frame;
int ext_refresh_alt_ref_frame;
int ext_refresh_frame_context_pending;
int ext_refresh_frame_context;
int64_t norm_wiener_variance;
int64_t *mb_wiener_variance;
int mb_wiener_var_rows;
int mb_wiener_var_cols;
double *mi_ssim_rdmult_scaling_factors;
YV12_BUFFER_CONFIG last_frame_uf;
TOKENEXTRA *tile_tok[4][1 << 6];
TOKENLIST *tplist[4][1 << 6];
// Ambient reconstruction err target for force key frames
int64_t ambient_err;
RD_CONTROL rd_ctrl;
RD_OPT rd;
CODING_CONTEXT coding_context;
int *nmvcosts[2];
int *nmvcosts_hp[2];
int *nmvsadcosts[2];
int *nmvsadcosts_hp[2];
int64_t last_time_stamp_seen;
int64_t last_end_time_stamp_seen;
int64_t first_time_stamp_ever;
RATE_CONTROL rc;
double framerate;
int interp_filter_selected[REF_FRAMES][SWITCHABLE];
struct vpx_codec_pkt_list *output_pkt_list;
MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];
int mbgraph_n_frames; // number of frames filled in the above
int static_mb_pct; // % forced skip mbs by segmentation
int ref_frame_flags;
SPEED_FEATURES sf;
uint32_t max_mv_magnitude;
int mv_step_param;
int allow_comp_inter_inter;
// Default value is 1. From first pass stats, encode_breakout may be disabled.
ENCODE_BREAKOUT_TYPE allow_encode_breakout;
// Get threshold from external input. A suggested threshold is 800 for HD
// clips, and 300 for < HD clips.
int encode_breakout;
uint8_t *segmentation_map;
uint8_t *skin_map;
// segment threshold for encode breakout
int segment_encode_breakout[MAX_SEGMENTS];
CYCLIC_REFRESH *cyclic_refresh;
ActiveMap active_map;
fractional_mv_step_fp *find_fractional_mv_step;
struct scale_factors me_sf;
vp9_diamond_search_fn_t diamond_search_sad;
vp9_variance_fn_ptr_t fn_ptr[BLOCK_SIZES];
uint64_t time_receive_data;
uint64_t time_compress_data;
uint64_t time_pick_lpf;
uint64_t time_encode_sb_row;
TWO_PASS twopass;
// Force recalculation of segment_ids for each mode info
uint8_t force_update_segmentation;
YV12_BUFFER_CONFIG alt_ref_buffer;
// class responsible for adaptive
// quantization of altref frames
struct ALT_REF_AQ *alt_ref_aq;
#if CONFIG_INTERNAL_STATS
unsigned int mode_chosen_counts[MAX_MODES];
int count;
uint64_t total_sq_error;
uint64_t total_samples;
ImageStat psnr;
uint64_t totalp_sq_error;
uint64_t totalp_samples;
ImageStat psnrp;
double total_blockiness;
double worst_blockiness;
int bytes;
double summed_quality;
double summed_weights;
double summedp_quality;
double summedp_weights;
unsigned int tot_recode_hits;
double worst_ssim;
ImageStat ssimg;
ImageStat fastssim;
ImageStat psnrhvs;
int b_calculate_ssimg;
int b_calculate_blockiness;
int b_calculate_consistency;
double total_inconsistency;
double worst_consistency;
Ssimv *ssim_vars;
Metrics metrics;
#endif
int b_calculate_psnr;
int droppable;
int initial_width;
int initial_height;
int initial_mbs; // Number of MBs in the full-size frame; to be used to
// normalize the firstpass stats. This will differ from the
// number of MBs in the current frame when the frame is
// scaled.
int last_coded_width;
int last_coded_height;
int use_svc;
SVC svc;
// Store frame variance info in SOURCE_VAR_BASED_PARTITION search type.
Diff *source_diff_var;
// The threshold used in SOURCE_VAR_BASED_PARTITION search type.
unsigned int source_var_thresh;
int frames_till_next_var_check;
int frame_flags;
search_site_config ss_cfg;
int mbmode_cost[INTRA_MODES];
unsigned int inter_mode_cost[INTER_MODE_CONTEXTS][INTER_MODES];
int intra_uv_mode_cost[FRAME_TYPES][INTRA_MODES][INTRA_MODES];
int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES];
int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES];
// Indices are: max_tx_size-1, tx_size_ctx, tx_size
int tx_size_cost[TX_SIZES - 1][TX_SIZE_CONTEXTS][TX_SIZES];
#if CONFIG_VP9_TEMPORAL_DENOISING
VP9_DENOISER denoiser;
#endif
int resize_pending;
RESIZE_STATE resize_state;
int external_resize;
int resize_scale_num;
int resize_scale_den;
int resize_avg_qp;
int resize_buffer_underflow;
int resize_count;
int use_skin_detection;
int target_level;
NOISE_ESTIMATE noise_estimate;
// Count on how many consecutive times a block uses small/zeromv for encoding.
uint8_t *consec_zero_mv;
// VAR_BASED_PARTITION thresholds
// 0 - threshold_64x64; 1 - threshold_32x32;
// 2 - threshold_16x16; 3 - vbp_threshold_8x8;
int64_t vbp_thresholds[4];
int64_t vbp_threshold_minmax;
int64_t vbp_threshold_sad;
// Threshold used for partition copy
int64_t vbp_threshold_copy;
BLOCK_SIZE vbp_bsize_min;
// Multi-threading
int num_workers;
VPxWorker *workers;
struct EncWorkerData *tile_thr_data;
VP9LfSync lf_row_sync;
struct VP9BitstreamWorkerData *vp9_bitstream_worker_data;
int keep_level_stats;
Vp9LevelInfo level_info;
MultiThreadHandle multi_thread_ctxt;
void (*row_mt_sync_read_ptr)(VP9RowMTSync *const, int, int);
void (*row_mt_sync_write_ptr)(VP9RowMTSync *const, int, int, const int);
ARNRFilterData arnr_filter_data;
int row_mt;
unsigned int row_mt_bit_exact;
// Previous Partition Info
BLOCK_SIZE *prev_partition;
int8_t *prev_segment_id;
// Used to save the status of whether a block has a low variance in
// choose_partitioning. 0 for 64x64, 1~2 for 64x32, 3~4 for 32x64, 5~8 for
// 32x32, 9~24 for 16x16.
// This is for the last frame and is copied to the current frame
// when partition copy happens.
uint8_t *prev_variance_low;
uint8_t *copied_frame_cnt;
uint8_t max_copied_frame;
// If the last frame is dropped, we don't copy partition.
uint8_t last_frame_dropped;
// For each superblock: keeps track of the last time (in frame distance) the
// the superblock did not have low source sad.
uint8_t *content_state_sb_fd;
int compute_source_sad_onepass;
int compute_frame_low_motion_onepass;
LevelConstraint level_constraint;
uint8_t *count_arf_frame_usage;
uint8_t *count_lastgolden_frame_usage;
int multi_layer_arf;
vpx_roi_map_t roi;
LOOPFILTER_CONTROL loopfilter_ctrl;
#if CONFIG_RATE_CTRL
ENCODE_COMMAND encode_command;
PARTITION_INFO *partition_info;
MOTION_VECTOR_INFO *motion_vector_info;
MOTION_VECTOR_INFO *fp_motion_vector_info;
TplDepStats *tpl_stats_info;
RATE_QSTEP_MODEL rq_model[ENCODE_FRAME_TYPES];
#endif
EXT_RATECTRL ext_ratectrl;
int fixed_qp_onepass;
// Flag to keep track of dynamic change in deadline mode
// (good/best/realtime).
MODE deadline_mode_previous_frame;
// Flag to disable scene detection when rtc rate control library is used.
int disable_scene_detection_rtc_ratectrl;
#if CONFIG_COLLECT_COMPONENT_TIMING
/*!
* component_time[] are initialized to zero while encoder starts.
*/
uint64_t component_time[kTimingComponents];
/*!
* Stores timing for individual components between calls of start_timing()
* and end_timing().
*/
struct vpx_usec_timer component_timer[kTimingComponents];
/*!
* frame_component_time[] are initialized to zero at beginning of each frame.
*/
uint64_t frame_component_time[kTimingComponents];
#endif
// Flag to indicate if QP and GOP for TPL are controlled by external RC.
int tpl_with_external_rc;
} VP9_COMP;
#if CONFIG_RATE_CTRL
// Allocates memory for the partition information.
// The unit size is each 4x4 block.
// Only called once in vp9_create_compressor().
static INLINE void partition_info_init(struct VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int unit_width = get_num_unit_4x4(cpi->frame_info.frame_width);
const int unit_height = get_num_unit_4x4(cpi->frame_info.frame_height);
CHECK_MEM_ERROR(&cm->error, cpi->partition_info,
(PARTITION_INFO *)vpx_calloc(unit_width * unit_height,
sizeof(PARTITION_INFO)));
memset(cpi->partition_info, 0,
unit_width * unit_height * sizeof(PARTITION_INFO));
}
// Frees memory of the partition information.
// Only called once in dealloc_compressor_data().
static INLINE void free_partition_info(struct VP9_COMP *cpi) {
vpx_free(cpi->partition_info);
cpi->partition_info = NULL;
}
static INLINE void reset_mv_info(MOTION_VECTOR_INFO *mv_info) {
mv_info->ref_frame[0] = NO_REF_FRAME;
mv_info->ref_frame[1] = NO_REF_FRAME;
mv_info->mv[0].as_int = INVALID_MV;
mv_info->mv[1].as_int = INVALID_MV;
}
// Allocates memory for the motion vector information.
// The unit size is each 4x4 block.
// Only called once in vp9_create_compressor().
static INLINE void motion_vector_info_init(struct VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int unit_width = get_num_unit_4x4(cpi->frame_info.frame_width);
const int unit_height = get_num_unit_4x4(cpi->frame_info.frame_height);
CHECK_MEM_ERROR(&cm->error, cpi->motion_vector_info,
(MOTION_VECTOR_INFO *)vpx_calloc(unit_width * unit_height,
sizeof(MOTION_VECTOR_INFO)));
memset(cpi->motion_vector_info, 0,
unit_width * unit_height * sizeof(MOTION_VECTOR_INFO));
}
// Frees memory of the motion vector information.
// Only called once in dealloc_compressor_data().
static INLINE void free_motion_vector_info(struct VP9_COMP *cpi) {
vpx_free(cpi->motion_vector_info);
cpi->motion_vector_info = NULL;
}
// Allocates memory for the tpl stats information.
// Only called once in vp9_create_compressor().
static INLINE void tpl_stats_info_init(struct VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
CHECK_MEM_ERROR(
&cm->error, cpi->tpl_stats_info,
(TplDepStats *)vpx_calloc(MAX_LAG_BUFFERS, sizeof(TplDepStats)));
memset(cpi->tpl_stats_info, 0, MAX_LAG_BUFFERS * sizeof(TplDepStats));
}
// Frees memory of the tpl stats information.
// Only called once in dealloc_compressor_data().
static INLINE void free_tpl_stats_info(struct VP9_COMP *cpi) {
vpx_free(cpi->tpl_stats_info);
cpi->tpl_stats_info = NULL;
}
// Allocates memory for the first pass motion vector information.
// The unit size is each 16x16 block.
// Only called once in vp9_create_compressor().
static INLINE void fp_motion_vector_info_init(struct VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int unit_width = get_num_unit_16x16(cpi->frame_info.frame_width);
const int unit_height = get_num_unit_16x16(cpi->frame_info.frame_height);
CHECK_MEM_ERROR(&cm->error, cpi->fp_motion_vector_info,
(MOTION_VECTOR_INFO *)vpx_calloc(unit_width * unit_height,
sizeof(MOTION_VECTOR_INFO)));
}
static INLINE void fp_motion_vector_info_reset(
int frame_width, int frame_height,
MOTION_VECTOR_INFO *fp_motion_vector_info) {
const int unit_width = get_num_unit_16x16(frame_width);
const int unit_height = get_num_unit_16x16(frame_height);
int i;
for (i = 0; i < unit_width * unit_height; ++i) {
reset_mv_info(fp_motion_vector_info + i);
}
}
// Frees memory of the first pass motion vector information.
// Only called once in dealloc_compressor_data().
static INLINE void free_fp_motion_vector_info(struct VP9_COMP *cpi) {
vpx_free(cpi->fp_motion_vector_info);
cpi->fp_motion_vector_info = NULL;
}
// This is the c-version counter part of ImageBuffer
typedef struct IMAGE_BUFFER {
int allocated;
int plane_width[3];
int plane_height[3];
uint8_t *plane_buffer[3];
} IMAGE_BUFFER;
#define RATE_CTRL_MAX_RECODE_NUM 7
typedef struct RATE_QINDEX_HISTORY {
int recode_count;
int q_index_history[RATE_CTRL_MAX_RECODE_NUM];
int rate_history[RATE_CTRL_MAX_RECODE_NUM];
int q_index_high;
int q_index_low;
} RATE_QINDEX_HISTORY;
#endif // CONFIG_RATE_CTRL
typedef struct ENCODE_FRAME_RESULT {
int show_idx;
FRAME_UPDATE_TYPE update_type;
#if CONFIG_RATE_CTRL
int frame_coding_index;
int ref_frame_coding_indexes[MAX_INTER_REF_FRAMES];
int ref_frame_valid_list[MAX_INTER_REF_FRAMES];
double psnr;
uint64_t sse;
FRAME_COUNTS frame_counts;
const PARTITION_INFO *partition_info;
const MOTION_VECTOR_INFO *motion_vector_info;
const TplDepStats *tpl_stats_info;
IMAGE_BUFFER coded_frame;
RATE_QINDEX_HISTORY rq_history;
#endif // CONFIG_RATE_CTRL
int quantize_index;
} ENCODE_FRAME_RESULT;
void vp9_init_encode_frame_result(ENCODE_FRAME_RESULT *encode_frame_result);
void vp9_initialize_enc(void);
void vp9_update_compressor_with_img_fmt(VP9_COMP *cpi, vpx_img_fmt_t img_fmt);
struct VP9_COMP *vp9_create_compressor(const VP9EncoderConfig *oxcf,
BufferPool *const pool);
void vp9_remove_compressor(VP9_COMP *cpi);
void vp9_change_config(VP9_COMP *cpi, const VP9EncoderConfig *oxcf);
// receive a frames worth of data. caller can assume that a copy of this
// frame is made and not just a copy of the pointer..
int vp9_receive_raw_frame(VP9_COMP *cpi, vpx_enc_frame_flags_t frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time);
int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest, size_t dest_size,
int64_t *time_stamp, int64_t *time_end, int flush,
ENCODE_FRAME_RESULT *encode_frame_result);
int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
vp9_ppflags_t *flags);
int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags);
void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags);
int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd);
int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd);
int vp9_update_entropy(VP9_COMP *cpi, int update);
int vp9_set_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows,
int cols);
int vp9_get_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows,
int cols);
int vp9_set_internal_size(VP9_COMP *cpi, VPX_SCALING_MODE horiz_mode,
VPX_SCALING_MODE vert_mode);
int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
unsigned int height);
void vp9_set_svc(VP9_COMP *cpi, int use_svc);
// Check for resetting the rc flags (rc_1_frame, rc_2_frame) if the
// configuration change has a large change in avg_frame_bandwidth.
// For SVC check for resetting based on spatial layer average bandwidth.
// Also reset buffer level to optimal level.
void vp9_check_reset_rc_flag(VP9_COMP *cpi);
void vp9_set_rc_buffer_sizes(VP9_COMP *cpi);
static INLINE int stack_pop(int *stack, int stack_size) {
int idx;
const int r = stack[0];
for (idx = 1; idx < stack_size; ++idx) stack[idx - 1] = stack[idx];
return r;
}
static INLINE int stack_top(const int *stack) { return stack[0]; }
static INLINE void stack_push(int *stack, int new_item, int stack_size) {
int idx;
for (idx = stack_size; idx > 0; --idx) stack[idx] = stack[idx - 1];
stack[0] = new_item;
}
static INLINE void stack_init(int *stack, int length) {
int idx;
for (idx = 0; idx < length; ++idx) stack[idx] = -1;
}
int vp9_get_quantizer(const VP9_COMP *cpi);
static INLINE int frame_is_kf_gf_arf(const VP9_COMP *cpi) {
return frame_is_intra_only(&cpi->common) || cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref);
}
static INLINE int ref_frame_to_flag(int8_t ref_frame) {
static const int kVp9RefFlagList[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME);
return kVp9RefFlagList[ref_frame];
}
static INLINE int get_ref_frame_map_idx(const VP9_COMP *cpi,
MV_REFERENCE_FRAME ref_frame) {
if (ref_frame == LAST_FRAME) {
return cpi->lst_fb_idx;
} else if (ref_frame == GOLDEN_FRAME) {
return cpi->gld_fb_idx;
} else {
return cpi->alt_fb_idx;
}
}
static INLINE int get_ref_frame_buf_idx(const VP9_COMP *const cpi,
int ref_frame) {
const VP9_COMMON *const cm = &cpi->common;
const int map_idx = get_ref_frame_map_idx(cpi, ref_frame);
return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : INVALID_IDX;
}
static INLINE RefCntBuffer *get_ref_cnt_buffer(const VP9_COMMON *cm,
int fb_idx) {
return fb_idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[fb_idx] : NULL;
}
static INLINE void get_ref_frame_bufs(
const VP9_COMP *cpi, RefCntBuffer *ref_frame_bufs[MAX_INTER_REF_FRAMES]) {
const VP9_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame < MAX_REF_FRAMES; ++ref_frame) {
int ref_frame_buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
int inter_ref_idx = mv_ref_frame_to_inter_ref_idx(ref_frame);
ref_frame_bufs[inter_ref_idx] = get_ref_cnt_buffer(cm, ref_frame_buf_idx);
}
}
static INLINE YV12_BUFFER_CONFIG *get_ref_frame_buffer(
const VP9_COMP *const cpi, MV_REFERENCE_FRAME ref_frame) {
const VP9_COMMON *const cm = &cpi->common;
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
return buf_idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[buf_idx].buf
: NULL;
}
static INLINE int get_token_alloc(int mb_rows, int mb_cols) {
// TODO(JBB): double check we can't exceed this token count if we have a
// 32x32 transform crossing a boundary at a multiple of 16.
// mb_rows, cols are in units of 16 pixels. We assume 3 planes all at full
// resolution. We assume up to 1 token per pixel, and then allow
// a head room of 4.
return mb_rows * mb_cols * (16 * 16 * 3 + 4);
}
// Get the allocated token size for a tile. It does the same calculation as in
// the frame token allocation.
static INLINE int allocated_tokens(TileInfo tile) {
int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 1) >> 1;
int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 1) >> 1;
return get_token_alloc(tile_mb_rows, tile_mb_cols);
}
static INLINE void get_start_tok(VP9_COMP *cpi, int tile_row, int tile_col,
int mi_row, TOKENEXTRA **tok) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1;
const int mb_row = (mi_row - tile_info->mi_row_start) >> 1;
*tok =
cpi->tile_tok[tile_row][tile_col] + get_token_alloc(mb_row, tile_mb_cols);
}
int64_t vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b);
#if CONFIG_VP9_HIGHBITDEPTH
int64_t vp9_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b);
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp9_scale_references(VP9_COMP *cpi);
void vp9_update_reference_frames(VP9_COMP *cpi);
void vp9_get_ref_frame_info(FRAME_UPDATE_TYPE update_type, int ref_frame_flags,
RefCntBuffer *ref_frame_bufs[MAX_INTER_REF_FRAMES],
int *ref_frame_coding_indexes,
int *ref_frame_valid_list);
void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv);
#if CONFIG_VP9_HIGHBITDEPTH
void vp9_scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int bd);
#else
void vp9_scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst);
#endif // CONFIG_VP9_HIGHBITDEPTH
YV12_BUFFER_CONFIG *vp9_scale_if_required(
VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled,
int use_normative_scaler, INTERP_FILTER filter_type, int phase_scaler);
void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags);
static INLINE int is_one_pass_svc(const struct VP9_COMP *const cpi) {
return (cpi->use_svc && cpi->oxcf.pass == 0);
}
#if CONFIG_VP9_TEMPORAL_DENOISING
static INLINE int denoise_svc(const struct VP9_COMP *const cpi) {
return (!cpi->use_svc || (cpi->use_svc && cpi->svc.spatial_layer_id >=
cpi->svc.first_layer_denoise));
}
#endif
#define MIN_LOOKAHEAD_FOR_ARFS 4
static INLINE int is_altref_enabled(const VP9_COMP *const cpi) {
return !(cpi->oxcf.mode == REALTIME && cpi->oxcf.rc_mode == VPX_CBR) &&
cpi->oxcf.lag_in_frames >= MIN_LOOKAHEAD_FOR_ARFS &&
cpi->oxcf.enable_auto_arf;
}
static INLINE void set_ref_ptrs(const VP9_COMMON *const cm, MACROBLOCKD *xd,
MV_REFERENCE_FRAME ref0,
MV_REFERENCE_FRAME ref1) {
xd->block_refs[0] =
&cm->frame_refs[ref0 >= LAST_FRAME ? ref0 - LAST_FRAME : 0];
xd->block_refs[1] =
&cm->frame_refs[ref1 >= LAST_FRAME ? ref1 - LAST_FRAME : 0];
}
static INLINE int get_chessboard_index(const int frame_index) {
return frame_index & 0x1;
}
static INLINE int *cond_cost_list(const struct VP9_COMP *cpi, int *cost_list) {
return cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL;
}
static INLINE int get_num_vert_units(TileInfo tile, int shift) {
int num_vert_units =
(tile.mi_row_end - tile.mi_row_start + (1 << shift) - 1) >> shift;
return num_vert_units;
}
static INLINE int get_num_cols(TileInfo tile, int shift) {
int num_cols =
(tile.mi_col_end - tile.mi_col_start + (1 << shift) - 1) >> shift;
return num_cols;
}
static INLINE int get_level_index(VP9_LEVEL level) {
int i;
for (i = 0; i < VP9_LEVELS; ++i) {
if (level == vp9_level_defs[i].level) return i;
}
return -1;
}
// Return the log2 value of max column tiles corresponding to the level that
// the picture size fits into.
static INLINE int log_tile_cols_from_picsize_level(uint32_t width,
uint32_t height) {
int i;
const uint32_t pic_size = width * height;
const uint32_t pic_breadth = VPXMAX(width, height);
for (i = LEVEL_1; i < LEVEL_MAX; ++i) {
if (vp9_level_defs[i].max_luma_picture_size >= pic_size &&
vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) {
return get_msb(vp9_level_defs[i].max_col_tiles);
}
}
return INT_MAX;
}
VP9_LEVEL vp9_get_level(const Vp9LevelSpec *const level_spec);
vpx_codec_err_t vp9_set_roi_map(VP9_COMP *cpi, unsigned char *map,
unsigned int rows, unsigned int cols,
int delta_q[8], int delta_lf[8], int skip[8],
int ref_frame[8]);
void vp9_new_framerate(VP9_COMP *cpi, double framerate);
void vp9_set_row_mt(VP9_COMP *cpi);
int vp9_get_psnr(const VP9_COMP *cpi, PSNR_STATS *psnr);
#define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl))
static INLINE void alloc_frame_mvs(VP9_COMMON *const cm, int buffer_idx) {
RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
if (new_fb_ptr->mvs == NULL || new_fb_ptr->mi_rows < cm->mi_rows ||
new_fb_ptr->mi_cols < cm->mi_cols) {
vpx_free(new_fb_ptr->mvs);
CHECK_MEM_ERROR(&cm->error, new_fb_ptr->mvs,
(MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*new_fb_ptr->mvs)));
new_fb_ptr->mi_rows = cm->mi_rows;
new_fb_ptr->mi_cols = cm->mi_cols;
}
}
static INLINE int mv_cost(const MV *mv, const int *joint_cost,
int *const comp_cost[2]) {
assert(mv->row >= -MV_MAX && mv->row < MV_MAX);
assert(mv->col >= -MV_MAX && mv->col < MV_MAX);
return joint_cost[vp9_get_mv_joint(mv)] + comp_cost[0][mv->row] +
comp_cost[1][mv->col];
}
static INLINE int mvsad_err_cost(const MACROBLOCK *x, const MV *mv,
const MV *ref, int sad_per_bit) {
MV diff;
diff.row = mv->row - ref->row;
diff.col = mv->col - ref->col;
return ROUND_POWER_OF_TWO(
(unsigned)mv_cost(&diff, x->nmvjointsadcost, x->nmvsadcost) * sad_per_bit,
VP9_PROB_COST_SHIFT);
}
static INLINE uint32_t get_start_mv_sad(const MACROBLOCK *x, const MV *mvp_full,
const MV *ref_mv_full,
vpx_sad_fn_t sad_fn_ptr, int sadpb) {
const int src_buf_stride = x->plane[0].src.stride;
const uint8_t *const src_buf = x->plane[0].src.buf;
const MACROBLOCKD *const xd = &x->e_mbd;
const int pred_buf_stride = xd->plane[0].pre[0].stride;
const uint8_t *const pred_buf =
xd->plane[0].pre[0].buf + mvp_full->row * pred_buf_stride + mvp_full->col;
uint32_t start_mv_sad =
sad_fn_ptr(src_buf, src_buf_stride, pred_buf, pred_buf_stride);
start_mv_sad += mvsad_err_cost(x, mvp_full, ref_mv_full, sadpb);
return start_mv_sad;
}
static INLINE int num_4x4_to_edge(int plane_4x4_dim, int mb_to_edge_dim,
int subsampling_dim, int blk_dim) {
return plane_4x4_dim + (mb_to_edge_dim >> (5 + subsampling_dim)) - blk_dim;
}
// Compute the sum of squares on all visible 4x4s in the transform block.
static int64_t sum_squares_visible(const MACROBLOCKD *xd,
const struct macroblockd_plane *const pd,
const int16_t *diff, const int diff_stride,
int blk_row, int blk_col,
const BLOCK_SIZE plane_bsize,
const BLOCK_SIZE tx_bsize,
int *visible_width, int *visible_height) {
int64_t sse;
const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize];
const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize];
const int b4x4s_to_right_edge = num_4x4_to_edge(
plane_4x4_w, xd->mb_to_right_edge, pd->subsampling_x, blk_col);
const int b4x4s_to_bottom_edge = num_4x4_to_edge(
plane_4x4_h, xd->mb_to_bottom_edge, pd->subsampling_y, blk_row);
if (tx_bsize == BLOCK_4X4 ||
(b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) {
assert(tx_4x4_w == tx_4x4_h);
sse = (int64_t)vpx_sum_squares_2d_i16(diff, diff_stride, tx_4x4_w << 2);
*visible_width = tx_4x4_w << 2;
*visible_height = tx_4x4_h << 2;
} else {
int r, c;
const int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h);
const int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w);
sse = 0;
// if we are in the unrestricted motion border.
for (r = 0; r < max_r; ++r) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (c = 0; c < max_c; ++c) {
sse += (int64_t)vpx_sum_squares_2d_i16(
diff + r * diff_stride * 4 + c * 4, diff_stride, 4);
}
}
*visible_width = max_c << 2;
*visible_height = max_r << 2;
}
return sse;
}
// Check if trellis coefficient optimization of the transform block is enabled.
static INLINE int do_trellis_opt(const struct macroblockd_plane *pd,
const int16_t *src_diff, int diff_stride,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
const struct encode_b_args *const args = (struct encode_b_args *)arg;
const MACROBLOCK *const x = args->x;
switch (args->enable_trellis_opt) {
case DISABLE_TRELLIS_OPT: return 0;
case ENABLE_TRELLIS_OPT: return 1;
case ENABLE_TRELLIS_OPT_TX_RD_SRC_VAR: {
vpx_clear_system_state();
return (args->trellis_opt_thresh > 0.0)
? (x->log_block_src_var <= args->trellis_opt_thresh)
: 1;
}
case ENABLE_TRELLIS_OPT_TX_RD_RESIDUAL_MSE: {
const MACROBLOCKD *const xd = &x->e_mbd;
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
#if CONFIG_VP9_HIGHBITDEPTH
const int dequant_shift =
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
#else
const int dequant_shift = 3;
#endif // CONFIG_VP9_HIGHBITDEPTH
const int qstep = pd->dequant[1] >> dequant_shift;
int *sse_calc_done = args->sse_calc_done;
int64_t *sse = args->sse;
int visible_width = 0, visible_height = 0;
// TODO: Enable the sf for high bit-depth case
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) || !sse ||
!sse_calc_done)
return 1;
*sse = sum_squares_visible(xd, pd, src_diff, diff_stride, blk_row,
blk_col, plane_bsize, tx_bsize, &visible_width,
&visible_height);
*sse_calc_done = 1;
vpx_clear_system_state();
return (*(sse) <= (int64_t)visible_width * visible_height * qstep *
qstep * args->trellis_opt_thresh);
}
default: assert(0 && "Invalid trellis optimization method."); return 1;
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
static INLINE void start_timing(VP9_COMP *cpi, int component) {
vpx_usec_timer_start(&cpi->component_timer[component]);
}
static INLINE void end_timing(VP9_COMP *cpi, int component) {
vpx_usec_timer_mark(&cpi->component_timer[component]);
cpi->frame_component_time[component] +=
vpx_usec_timer_elapsed(&cpi->component_timer[component]);
}
static INLINE char const *get_frame_type_enum(int type) {
switch (type) {
case 0: return "KEY_FRAME";
case 1: return "INTER_FRAME";
default: assert(0);
}
return "error";
}
#endif
#ifdef __cplusplus
} // extern "C"
#endif
#endif // VPX_VP9_ENCODER_VP9_ENCODER_H_