Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <string>
#include <tuple>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/vpx_timer.h"
using libvpx_test::ACMRandom;
using ::testing::Combine;
using ::testing::Range;
using ::testing::ValuesIn;
namespace {
const int kNumIterations = 10000;
typedef uint64_t (*SSI16Func)(const int16_t *src, int stride, int size);
typedef std::tuple<SSI16Func, SSI16Func> SumSquaresParam;
class SumSquaresTest : public ::testing::TestWithParam<SumSquaresParam> {
public:
~SumSquaresTest() override = default;
void SetUp() override {
ref_func_ = GET_PARAM(0);
tst_func_ = GET_PARAM(1);
}
void TearDown() override { libvpx_test::ClearSystemState(); }
protected:
SSI16Func ref_func_;
SSI16Func tst_func_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SumSquaresTest);
TEST_P(SumSquaresTest, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, int16_t, src[256 * 256]);
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
for (int k = 0; k < kNumIterations; k++) {
const int size = 4 << rnd(6); // Up to 128x128
int stride = 4 << rnd(7); // Up to 256 stride
while (stride < size) { // Make sure it's valid
stride = 4 << rnd(7);
}
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
src[i * stride + j] = rnd(2) ? rnd(limit) : -rnd(limit);
}
}
const uint64_t res_ref = ref_func_(src, stride, size);
uint64_t res_tst;
ASM_REGISTER_STATE_CHECK(res_tst = tst_func_(src, stride, size));
ASSERT_EQ(res_ref, res_tst) << "Error: Sum Squares Test"
<< " C output does not match optimized output.";
}
}
TEST_P(SumSquaresTest, ExtremeValues) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, int16_t, src[256 * 256]);
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
for (int k = 0; k < kNumIterations; k++) {
const int size = 4 << rnd(6); // Up to 128x128
int stride = 4 << rnd(7); // Up to 256 stride
while (stride < size) { // Make sure it's valid
stride = 4 << rnd(7);
}
const int val = rnd(2) ? limit - 1 : -(limit - 1);
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
src[i * stride + j] = val;
}
}
const uint64_t res_ref = ref_func_(src, stride, size);
uint64_t res_tst;
ASM_REGISTER_STATE_CHECK(res_tst = tst_func_(src, stride, size));
ASSERT_EQ(res_ref, res_tst) << "Error: Sum Squares Test"
<< " C output does not match optimized output.";
}
}
using std::make_tuple;
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, SumSquaresTest,
::testing::Values(make_tuple(&vpx_sum_squares_2d_i16_c,
&vpx_sum_squares_2d_i16_neon)));
#endif // HAVE_NEON
#if HAVE_SVE
INSTANTIATE_TEST_SUITE_P(
SVE, SumSquaresTest,
::testing::Values(make_tuple(&vpx_sum_squares_2d_i16_c,
&vpx_sum_squares_2d_i16_sve)));
#endif // HAVE_SVE
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, SumSquaresTest,
::testing::Values(make_tuple(&vpx_sum_squares_2d_i16_c,
&vpx_sum_squares_2d_i16_sse2)));
#endif // HAVE_SSE2
#if HAVE_MSA
INSTANTIATE_TEST_SUITE_P(
MSA, SumSquaresTest,
::testing::Values(make_tuple(&vpx_sum_squares_2d_i16_c,
&vpx_sum_squares_2d_i16_msa)));
#endif // HAVE_MSA
typedef int64_t (*SSEFunc)(const uint8_t *a, int a_stride, const uint8_t *b,
int b_stride, int width, int height);
struct TestSSEFuncs {
TestSSEFuncs(SSEFunc ref = nullptr, SSEFunc tst = nullptr, int depth = 0)
: ref_func(ref), tst_func(tst), bit_depth(depth) {}
SSEFunc ref_func; // Pointer to reference function
SSEFunc tst_func; // Pointer to tested function
int bit_depth;
};
typedef std::tuple<TestSSEFuncs, int> SSETestParam;
class SSETest : public ::testing::TestWithParam<SSETestParam> {
public:
~SSETest() override = default;
void SetUp() override {
params_ = GET_PARAM(0);
width_ = GET_PARAM(1);
is_hbd_ =
#if CONFIG_VP9_HIGHBITDEPTH
params_.ref_func == vpx_highbd_sse_c;
#else
false;
#endif
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<uint8_t *>(vpx_memalign(32, 256 * 256 * 2));
ref_ = reinterpret_cast<uint8_t *>(vpx_memalign(32, 256 * 256 * 2));
ASSERT_NE(src_, nullptr);
ASSERT_NE(ref_, nullptr);
}
void TearDown() override {
vpx_free(src_);
vpx_free(ref_);
}
void RunTest(bool is_random, int width, int height, int run_times);
void GenRandomData(int width, int height, int stride) {
uint16_t *src16 = reinterpret_cast<uint16_t *>(src_);
uint16_t *ref16 = reinterpret_cast<uint16_t *>(ref_);
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
if (!is_hbd_) {
src_[ii * stride + jj] = rnd_.Rand8();
ref_[ii * stride + jj] = rnd_.Rand8();
} else {
src16[ii * stride + jj] = rnd_(limit);
ref16[ii * stride + jj] = rnd_(limit);
}
}
}
}
void GenExtremeData(int width, int height, int stride, uint8_t *data,
int16_t val) {
uint16_t *data16 = reinterpret_cast<uint16_t *>(data);
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
if (!is_hbd_) {
data[ii * stride + jj] = static_cast<uint8_t>(val);
} else {
data16[ii * stride + jj] = val;
}
}
}
}
protected:
bool is_hbd_;
int width_;
TestSSEFuncs params_;
uint8_t *src_;
uint8_t *ref_;
ACMRandom rnd_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SSETest);
void SSETest::RunTest(bool is_random, int width, int height, int run_times) {
int failed = 0;
vpx_usec_timer ref_timer, test_timer;
for (int k = 0; k < 3; k++) {
int stride = 4 << rnd_(7); // Up to 256 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(7);
}
if (is_random) {
GenRandomData(width, height, stride);
} else {
const int msb = is_hbd_ ? 12 : 8; // Up to 12 bit input
const int limit = (1 << msb) - 1;
if (k == 0) {
GenExtremeData(width, height, stride, src_, 0);
GenExtremeData(width, height, stride, ref_, limit);
} else {
GenExtremeData(width, height, stride, src_, limit);
GenExtremeData(width, height, stride, ref_, 0);
}
}
int64_t res_ref, res_tst;
uint8_t *src = src_;
uint8_t *ref = ref_;
#if CONFIG_VP9_HIGHBITDEPTH
if (is_hbd_) {
src = CONVERT_TO_BYTEPTR(src_);
ref = CONVERT_TO_BYTEPTR(ref_);
}
#endif
res_ref = params_.ref_func(src, stride, ref, stride, width, height);
res_tst = params_.tst_func(src, stride, ref, stride, width, height);
if (run_times > 1) {
vpx_usec_timer_start(&ref_timer);
for (int j = 0; j < run_times; j++) {
params_.ref_func(src, stride, ref, stride, width, height);
}
vpx_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(vpx_usec_timer_elapsed(&ref_timer));
vpx_usec_timer_start(&test_timer);
for (int j = 0; j < run_times; j++) {
params_.tst_func(src, stride, ref, stride, width, height);
}
vpx_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(vpx_usec_timer_elapsed(&test_timer));
printf(
"c_time=%d \t simd_time=%d \t "
"gain=%d\n",
elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
} else {
if (!failed) {
failed = res_ref != res_tst;
EXPECT_EQ(res_ref, res_tst)
<< "Error:" << (is_hbd_ ? "hbd " : " ") << k << " SSE Test ["
<< width << "x" << height
<< "] C output does not match optimized output.";
}
}
}
}
TEST_P(SSETest, OperationCheck) {
for (int height = 4; height <= 128; height += 4) {
RunTest(true, width_, height, 1); // GenRandomData
}
}
TEST_P(SSETest, ExtremeValues) {
for (int height = 4; height <= 128; height += 4) {
RunTest(false, width_, height, 1);
}
}
TEST_P(SSETest, DISABLED_Speed) {
for (int height = 4; height <= 128; height += 4) {
RunTest(true, width_, height, 100);
}
}
#if HAVE_NEON
TestSSEFuncs sse_neon[] = {
TestSSEFuncs(&vpx_sse_c, &vpx_sse_neon),
#if CONFIG_VP9_HIGHBITDEPTH
TestSSEFuncs(&vpx_highbd_sse_c, &vpx_highbd_sse_neon)
#endif
};
INSTANTIATE_TEST_SUITE_P(NEON, SSETest,
Combine(ValuesIn(sse_neon), Range(4, 129, 4)));
#endif // HAVE_NEON
#if HAVE_NEON_DOTPROD
TestSSEFuncs sse_neon_dotprod[] = {
TestSSEFuncs(&vpx_sse_c, &vpx_sse_neon_dotprod),
};
INSTANTIATE_TEST_SUITE_P(NEON_DOTPROD, SSETest,
Combine(ValuesIn(sse_neon_dotprod), Range(4, 129, 4)));
#endif // HAVE_NEON_DOTPROD
#if HAVE_SSE4_1
TestSSEFuncs sse_sse4[] = {
TestSSEFuncs(&vpx_sse_c, &vpx_sse_sse4_1),
#if CONFIG_VP9_HIGHBITDEPTH
TestSSEFuncs(&vpx_highbd_sse_c, &vpx_highbd_sse_sse4_1)
#endif
};
INSTANTIATE_TEST_SUITE_P(SSE4_1, SSETest,
Combine(ValuesIn(sse_sse4), Range(4, 129, 4)));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
TestSSEFuncs sse_avx2[] = {
TestSSEFuncs(&vpx_sse_c, &vpx_sse_avx2),
#if CONFIG_VP9_HIGHBITDEPTH
TestSSEFuncs(&vpx_highbd_sse_c, &vpx_highbd_sse_avx2)
#endif
};
INSTANTIATE_TEST_SUITE_P(AVX2, SSETest,
Combine(ValuesIn(sse_avx2), Range(4, 129, 4)));
#endif // HAVE_AVX2
} // namespace