#### Other Tools

```/* ```
``` * jidctint.c ```
``` * ```
``` * This file was part of the Independent JPEG Group's software: ```
``` * Copyright (C) 1991-1998, Thomas G. Lane. ```
``` * Modification developed 2002-2018 by Guido Vollbeding. ```
``` * libjpeg-turbo Modifications: ```
``` * Copyright (C) 2015, 2020, D. R. Commander. ```
``` * For conditions of distribution and use, see the accompanying README.ijg ```
``` * file. ```
``` * ```
``` * This file contains a slower but more accurate integer implementation of the ```
``` * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine ```
``` * must also perform dequantization of the input coefficients. ```
``` * ```
``` * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT ```
``` * on each row (or vice versa, but it's more convenient to emit a row at ```
``` * a time). Direct algorithms are also available, but they are much more ```
``` * complex and seem not to be any faster when reduced to code. ```
``` * ```
``` * This implementation is based on an algorithm described in ```
``` * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT ```
``` * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, ```
``` * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. ```
``` * The primary algorithm described there uses 11 multiplies and 29 adds. ```
``` * We use their alternate method with 12 multiplies and 32 adds. ```
``` * The advantage of this method is that no data path contains more than one ```
``` * multiplication; this allows a very simple and accurate implementation in ```
``` * scaled fixed-point arithmetic, with a minimal number of shifts. ```
``` * ```
``` * We also provide IDCT routines with various output sample block sizes for ```
``` * direct resolution reduction or enlargement without additional resampling: ```
``` * NxN (N=1...16) pixels for one 8x8 input DCT block. ```
``` * ```
``` * For N<8 we simply take the corresponding low-frequency coefficients of ```
``` * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block ```
``` * to yield the downscaled outputs. ```
``` * This can be seen as direct low-pass downsampling from the DCT domain ```
``` * point of view rather than the usual spatial domain point of view, ```
``` * yielding significant computational savings and results at least ```
``` * as good as common bilinear (averaging) spatial downsampling. ```
``` * ```
``` * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as ```
``` * lower frequencies and higher frequencies assumed to be zero. ```
``` * It turns out that the computational effort is similar to the 8x8 IDCT ```
``` * regarding the output size. ```
``` * Furthermore, the scaling and descaling is the same for all IDCT sizes. ```
``` * ```
``` * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases ```
``` * since there would be too many additional constants to pre-calculate. ```
``` */ ```
``` ```
```#define JPEG_INTERNALS ```
```#include "jinclude.h" ```
```#include "jpeglib.h" ```
```#include "jdct.h" /* Private declarations for DCT subsystem */ ```
``` ```
```#ifdef DCT_ISLOW_SUPPORTED ```
``` ```
``` ```
```/* ```
``` * This module is specialized to the case DCTSIZE = 8. ```
``` */ ```
``` ```
```#if DCTSIZE != 8 ```
``` Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ ```
```#endif ```
``` ```
``` ```
```/* ```
``` * The poop on this scaling stuff is as follows: ```
``` * ```
``` * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) ```
``` * larger than the true IDCT outputs. The final outputs are therefore ```
``` * a factor of N larger than desired; since N=8 this can be cured by ```
``` * a simple right shift at the end of the algorithm. The advantage of ```
``` * this arrangement is that we save two multiplications per 1-D IDCT, ```
``` * because the y0 and y4 inputs need not be divided by sqrt(N). ```
``` * ```
``` * We have to do addition and subtraction of the integer inputs, which ```
``` * is no problem, and multiplication by fractional constants, which is ```
``` * a problem to do in integer arithmetic. We multiply all the constants ```
``` * by CONST_SCALE and convert them to integer constants (thus retaining ```
``` * CONST_BITS bits of precision in the constants). After doing a ```
``` * multiplication we have to divide the product by CONST_SCALE, with proper ```
``` * rounding, to produce the correct output. This division can be done ```
``` * cheaply as a right shift of CONST_BITS bits. We postpone shifting ```
``` * as long as possible so that partial sums can be added together with ```
``` * full fractional precision. ```
``` * ```
``` * The outputs of the first pass are scaled up by PASS1_BITS bits so that ```
``` * they are represented to better-than-integral precision. These outputs ```
``` * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word ```
``` * with the recommended scaling. (To scale up 12-bit sample data further, an ```
``` * intermediate JLONG array would be needed.) ```
``` * ```
``` * To avoid overflow of the 32-bit intermediate results in pass 2, we must ```
``` * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis ```
``` * shows that the values given below are the most effective. ```
``` */ ```
``` ```
```#if BITS_IN_JSAMPLE == 8 ```
```#define CONST_BITS 13 ```
```#define PASS1_BITS 2 ```
```#else ```
```#define CONST_BITS 13 ```
```#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ ```
```#endif ```
``` ```
```/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus ```
``` * causing a lot of useless floating-point operations at run time. ```
``` * To get around this we use the following pre-calculated constants. ```
``` * If you change CONST_BITS you may want to add appropriate values. ```
``` * (With a reasonable C compiler, you can just rely on the FIX() macro...) ```
``` */ ```
``` ```
```#if CONST_BITS == 13 ```
```#define FIX_0_298631336 ((JLONG)2446) /* FIX(0.298631336) */ ```
```#define FIX_0_390180644 ((JLONG)3196) /* FIX(0.390180644) */ ```
```#define FIX_0_541196100 ((JLONG)4433) /* FIX(0.541196100) */ ```
```#define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */ ```
```#define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */ ```
```#define FIX_1_175875602 ((JLONG)9633) /* FIX(1.175875602) */ ```
```#define FIX_1_501321110 ((JLONG)12299) /* FIX(1.501321110) */ ```
```#define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */ ```
```#define FIX_1_961570560 ((JLONG)16069) /* FIX(1.961570560) */ ```
```#define FIX_2_053119869 ((JLONG)16819) /* FIX(2.053119869) */ ```
```#define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */ ```
```#define FIX_3_072711026 ((JLONG)25172) /* FIX(3.072711026) */ ```
```#else ```
```#define FIX_0_298631336 FIX(0.298631336) ```
```#define FIX_0_390180644 FIX(0.390180644) ```
```#define FIX_0_541196100 FIX(0.541196100) ```
```#define FIX_0_765366865 FIX(0.765366865) ```
```#define FIX_0_899976223 FIX(0.899976223) ```
```#define FIX_1_175875602 FIX(1.175875602) ```
```#define FIX_1_501321110 FIX(1.501321110) ```
```#define FIX_1_847759065 FIX(1.847759065) ```
```#define FIX_1_961570560 FIX(1.961570560) ```
```#define FIX_2_053119869 FIX(2.053119869) ```
```#define FIX_2_562915447 FIX(2.562915447) ```
```#define FIX_3_072711026 FIX(3.072711026) ```
```#endif ```
``` ```
``` ```
```/* Multiply an JLONG variable by an JLONG constant to yield an JLONG result. ```
``` * For 8-bit samples with the recommended scaling, all the variable ```
``` * and constant values involved are no more than 16 bits wide, so a ```
``` * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. ```
``` * For 12-bit samples, a full 32-bit multiplication will be needed. ```
``` */ ```
``` ```
```#if BITS_IN_JSAMPLE == 8 ```
```#define MULTIPLY(var, const) MULTIPLY16C16(var, const) ```
```#else ```
```#define MULTIPLY(var, const) ((var) * (const)) ```
```#endif ```
``` ```
``` ```
```/* Dequantize a coefficient by multiplying it by the multiplier-table ```
``` * entry; produce an int result. In this module, both inputs and result ```
``` * are 16 bits or less, so either int or short multiply will work. ```
``` */ ```
``` ```
```#define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval)) ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients. ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp0, tmp1, tmp2, tmp3; ```
``` JLONG tmp10, tmp11, tmp12, tmp13; ```
``` JLONG z1, z2, z3, z4, z5; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[DCTSIZE2]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ ```
``` /* furthermore, we scale the results by 2**PASS1_BITS. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = DCTSIZE; ctr > 0; ctr--) { ```
``` /* Due to quantization, we will usually find that many of the input ```
``` * coefficients are zero, especially the AC terms. We can exploit this ```
``` * by short-circuiting the IDCT calculation for any column in which all ```
``` * the AC terms are zero. In that case each output is equal to the ```
``` * DC coefficient (with scale factor as needed). ```
``` * With typical images and quantization tables, half or more of the ```
``` * column DCT calculations can be simplified this way. ```
``` */ ```
``` ```
``` if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && ```
``` inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && ```
``` inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && ```
``` inptr[DCTSIZE * 7] == 0) { ```
``` /* AC terms all zero */ ```
``` int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], ```
``` quantptr[DCTSIZE * 0]), PASS1_BITS); ```
``` ```
``` wsptr[DCTSIZE * 0] = dcval; ```
``` wsptr[DCTSIZE * 1] = dcval; ```
``` wsptr[DCTSIZE * 2] = dcval; ```
``` wsptr[DCTSIZE * 3] = dcval; ```
``` wsptr[DCTSIZE * 4] = dcval; ```
``` wsptr[DCTSIZE * 5] = dcval; ```
``` wsptr[DCTSIZE * 6] = dcval; ```
``` wsptr[DCTSIZE * 7] = dcval; ```
``` ```
``` inptr++; /* advance pointers to next column */ ```
``` quantptr++; ```
``` wsptr++; ```
``` continue; ```
``` } ```
``` ```
``` /* Even part: reverse the even part of the forward DCT. */ ```
``` /* The rotator is sqrt(2)*c(-6). */ ```
``` ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); ```
``` ```
``` z1 = MULTIPLY(z2 + z3, FIX_0_541196100); ```
``` tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); ```
``` tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); ```
``` ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); ```
``` ```
``` tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); ```
``` tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); ```
``` ```
``` tmp10 = tmp0 + tmp3; ```
``` tmp13 = tmp0 - tmp3; ```
``` tmp11 = tmp1 + tmp2; ```
``` tmp12 = tmp1 - tmp2; ```
``` ```
``` /* Odd part per figure 8; the matrix is unitary and hence its ```
``` * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. ```
``` */ ```
``` ```
``` tmp0 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); ```
``` tmp1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); ```
``` tmp2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); ```
``` tmp3 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` ```
``` z1 = tmp0 + tmp3; ```
``` z2 = tmp1 + tmp2; ```
``` z3 = tmp0 + tmp2; ```
``` z4 = tmp1 + tmp3; ```
``` z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ ```
``` ```
``` tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ ```
``` tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ ```
``` tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ ```
``` tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ ```
``` z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */ ```
``` z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ ```
``` z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ ```
``` z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */ ```
``` ```
``` z3 += z5; ```
``` z4 += z5; ```
``` ```
``` tmp0 += z1 + z3; ```
``` tmp1 += z2 + z4; ```
``` tmp2 += z2 + z3; ```
``` tmp3 += z1 + z4; ```
``` ```
``` /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ ```
``` ```
``` wsptr[DCTSIZE * 0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS - PASS1_BITS); ```
``` wsptr[DCTSIZE * 7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS - PASS1_BITS); ```
``` wsptr[DCTSIZE * 1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS - PASS1_BITS); ```
``` wsptr[DCTSIZE * 6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS - PASS1_BITS); ```
``` wsptr[DCTSIZE * 2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS - PASS1_BITS); ```
``` wsptr[DCTSIZE * 5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS - PASS1_BITS); ```
``` wsptr[DCTSIZE * 3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[DCTSIZE * 4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS - PASS1_BITS); ```
``` ```
``` inptr++; /* advance pointers to next column */ ```
``` quantptr++; ```
``` wsptr++; ```
``` } ```
``` ```
``` /* Pass 2: process rows from work array, store into output array. */ ```
``` /* Note that we must descale the results by a factor of 8 == 2**3, */ ```
``` /* and also undo the PASS1_BITS scaling. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < DCTSIZE; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` /* Rows of zeroes can be exploited in the same way as we did with columns. ```
``` * However, the column calculation has created many nonzero AC terms, so ```
``` * the simplification applies less often (typically 5% to 10% of the time). ```
``` * On machines with very fast multiplication, it's possible that the ```
``` * test takes more time than it's worth. In that case this section ```
``` * may be commented out. ```
``` */ ```
``` ```
```#ifndef NO_ZERO_ROW_TEST ```
``` if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && ```
``` wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { ```
``` /* AC terms all zero */ ```
``` JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], ```
``` PASS1_BITS + 3) & RANGE_MASK]; ```
``` ```
``` outptr[0] = dcval; ```
``` outptr[1] = dcval; ```
``` outptr[2] = dcval; ```
``` outptr[3] = dcval; ```
``` outptr[4] = dcval; ```
``` outptr[5] = dcval; ```
``` outptr[6] = dcval; ```
``` outptr[7] = dcval; ```
``` ```
``` wsptr += DCTSIZE; /* advance pointer to next row */ ```
``` continue; ```
``` } ```
```#endif ```
``` ```
``` /* Even part: reverse the even part of the forward DCT. */ ```
``` /* The rotator is sqrt(2)*c(-6). */ ```
``` ```
``` z2 = (JLONG)wsptr[2]; ```
``` z3 = (JLONG)wsptr[6]; ```
``` ```
``` z1 = MULTIPLY(z2 + z3, FIX_0_541196100); ```
``` tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); ```
``` tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); ```
``` ```
``` tmp0 = LEFT_SHIFT((JLONG)wsptr[0] + (JLONG)wsptr[4], CONST_BITS); ```
``` tmp1 = LEFT_SHIFT((JLONG)wsptr[0] - (JLONG)wsptr[4], CONST_BITS); ```
``` ```
``` tmp10 = tmp0 + tmp3; ```
``` tmp13 = tmp0 - tmp3; ```
``` tmp11 = tmp1 + tmp2; ```
``` tmp12 = tmp1 - tmp2; ```
``` ```
``` /* Odd part per figure 8; the matrix is unitary and hence its ```
``` * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. ```
``` */ ```
``` ```
``` tmp0 = (JLONG)wsptr[7]; ```
``` tmp1 = (JLONG)wsptr[5]; ```
``` tmp2 = (JLONG)wsptr[3]; ```
``` tmp3 = (JLONG)wsptr[1]; ```
``` ```
``` z1 = tmp0 + tmp3; ```
``` z2 = tmp1 + tmp2; ```
``` z3 = tmp0 + tmp2; ```
``` z4 = tmp1 + tmp3; ```
``` z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ ```
``` ```
``` tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ ```
``` tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ ```
``` tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ ```
``` tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ ```
``` z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */ ```
``` z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ ```
``` z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ ```
``` z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */ ```
``` ```
``` z3 += z5; ```
``` z4 += z5; ```
``` ```
``` tmp0 += z1 + z3; ```
``` tmp1 += z2 + z4; ```
``` tmp2 += z2 + z3; ```
``` tmp3 += z1 + z4; ```
``` ```
``` /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ ```
``` ```
``` outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp3, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[7] = range_limit[(int)DESCALE(tmp10 - tmp3, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)DESCALE(tmp11 + tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[6] = range_limit[(int)DESCALE(tmp11 - tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)DESCALE(tmp12 + tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[5] = range_limit[(int)DESCALE(tmp12 - tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[3] = range_limit[(int)DESCALE(tmp13 + tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[4] = range_limit[(int)DESCALE(tmp13 - tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += DCTSIZE; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
```#ifdef IDCT_SCALING_SUPPORTED ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing a reduced-size 7x7 output block. ```
``` * ```
``` * Optimized algorithm with 12 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/14). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_7x7(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13; ```
``` JLONG z1, z2, z3; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[7 * 7]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) { ```
``` /* Even part */ ```
``` ```
``` tmp13 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` tmp13 = LEFT_SHIFT(tmp13, CONST_BITS); ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp13 += ONE << (CONST_BITS - PASS1_BITS - 1); ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); ```
``` ```
``` tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ ```
``` tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ ```
``` tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ ```
``` tmp0 = z1 + z3; ```
``` z2 -= tmp0; ```
``` tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ ```
``` tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ ```
``` tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ ```
``` tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); ```
``` ```
``` tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ ```
``` tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ ```
``` tmp0 = tmp1 - tmp2; ```
``` tmp1 += tmp2; ```
``` tmp2 = MULTIPLY(z2 + z3, -FIX(1.378756276)); /* -c1 */ ```
``` tmp1 += tmp2; ```
``` z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ ```
``` tmp0 += z2; ```
``` tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` wsptr[7 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[7 * 6] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[7 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS); ```
``` wsptr[7 * 5] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS); ```
``` wsptr[7 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS); ```
``` wsptr[7 * 4] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS); ```
``` wsptr[7 * 3] = (int)RIGHT_SHIFT(tmp13, CONST_BITS - PASS1_BITS); ```
``` } ```
``` ```
``` /* Pass 2: process 7 rows from work array, store into output array. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 7; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` ```
``` /* Even part */ ```
``` ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp13 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); ```
``` tmp13 = LEFT_SHIFT(tmp13, CONST_BITS); ```
``` ```
``` z1 = (JLONG)wsptr[2]; ```
``` z2 = (JLONG)wsptr[4]; ```
``` z3 = (JLONG)wsptr[6]; ```
``` ```
``` tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ ```
``` tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ ```
``` tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ ```
``` tmp0 = z1 + z3; ```
``` z2 -= tmp0; ```
``` tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ ```
``` tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ ```
``` tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ ```
``` tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = (JLONG)wsptr[1]; ```
``` z2 = (JLONG)wsptr[3]; ```
``` z3 = (JLONG)wsptr[5]; ```
``` ```
``` tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ ```
``` tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ ```
``` tmp0 = tmp1 - tmp2; ```
``` tmp1 += tmp2; ```
``` tmp2 = MULTIPLY(z2 + z3, -FIX(1.378756276)); /* -c1 */ ```
``` tmp1 += tmp2; ```
``` z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ ```
``` tmp0 += z2; ```
``` tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp13, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += 7; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing a reduced-size 6x6 output block. ```
``` * ```
``` * Optimized algorithm with 3 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/12). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_6x6(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; ```
``` JLONG z1, z2, z3; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[6 * 6]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { ```
``` /* Even part */ ```
``` ```
``` tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1); ```
``` tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); ```
``` tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ ```
``` tmp1 = tmp0 + tmp10; ```
``` tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS - PASS1_BITS); ```
``` tmp10 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ ```
``` tmp10 = tmp1 + tmp0; ```
``` tmp12 = tmp1 - tmp0; ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); ```
``` tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ ```
``` tmp0 = tmp1 + LEFT_SHIFT(z1 + z2, CONST_BITS); ```
``` tmp2 = tmp1 + LEFT_SHIFT(z3 - z2, CONST_BITS); ```
``` tmp1 = LEFT_SHIFT(z1 - z2 - z3, PASS1_BITS); ```
``` ```
``` /* Final output stage */ ```
``` ```
``` wsptr[6 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[6 * 5] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[6 * 1] = (int)(tmp11 + tmp1); ```
``` wsptr[6 * 4] = (int)(tmp11 - tmp1); ```
``` wsptr[6 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS); ```
``` wsptr[6 * 3] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS); ```
``` } ```
``` ```
``` /* Pass 2: process 6 rows from work array, store into output array. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 6; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` ```
``` /* Even part */ ```
``` ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); ```
``` tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); ```
``` tmp2 = (JLONG)wsptr[4]; ```
``` tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ ```
``` tmp1 = tmp0 + tmp10; ```
``` tmp11 = tmp0 - tmp10 - tmp10; ```
``` tmp10 = (JLONG)wsptr[2]; ```
``` tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ ```
``` tmp10 = tmp1 + tmp0; ```
``` tmp12 = tmp1 - tmp0; ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = (JLONG)wsptr[1]; ```
``` z2 = (JLONG)wsptr[3]; ```
``` z3 = (JLONG)wsptr[5]; ```
``` tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ ```
``` tmp0 = tmp1 + LEFT_SHIFT(z1 + z2, CONST_BITS); ```
``` tmp2 = tmp1 + LEFT_SHIFT(z3 - z2, CONST_BITS); ```
``` tmp1 = LEFT_SHIFT(z1 - z2 - z3, CONST_BITS); ```
``` ```
``` /* Final output stage */ ```
``` ```
``` outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += 6; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing a reduced-size 5x5 output block. ```
``` * ```
``` * Optimized algorithm with 5 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/10). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_5x5(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp0, tmp1, tmp10, tmp11, tmp12; ```
``` JLONG z1, z2, z3; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[5 * 5]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) { ```
``` /* Even part */ ```
``` ```
``` tmp12 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` tmp12 = LEFT_SHIFT(tmp12, CONST_BITS); ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp12 += ONE << (CONST_BITS - PASS1_BITS - 1); ```
``` tmp0 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` tmp1 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); ```
``` z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ ```
``` z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ ```
``` z3 = tmp12 + z2; ```
``` tmp10 = z3 + z1; ```
``` tmp11 = z3 - z1; ```
``` tmp12 -= LEFT_SHIFT(z2, 2); ```
``` ```
``` /* Odd part */ ```
``` ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); ```
``` ```
``` z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ ```
``` tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ ```
``` tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` wsptr[5 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[5 * 4] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[5 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS); ```
``` wsptr[5 * 3] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS); ```
``` wsptr[5 * 2] = (int)RIGHT_SHIFT(tmp12, CONST_BITS - PASS1_BITS); ```
``` } ```
``` ```
``` /* Pass 2: process 5 rows from work array, store into output array. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 5; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` ```
``` /* Even part */ ```
``` ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp12 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); ```
``` tmp12 = LEFT_SHIFT(tmp12, CONST_BITS); ```
``` tmp0 = (JLONG)wsptr[2]; ```
``` tmp1 = (JLONG)wsptr[4]; ```
``` z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ ```
``` z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ ```
``` z3 = tmp12 + z2; ```
``` tmp10 = z3 + z1; ```
``` tmp11 = z3 - z1; ```
``` tmp12 -= LEFT_SHIFT(z2, 2); ```
``` ```
``` /* Odd part */ ```
``` ```
``` z2 = (JLONG)wsptr[1]; ```
``` z3 = (JLONG)wsptr[3]; ```
``` ```
``` z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ ```
``` tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ ```
``` tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += 5; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing a reduced-size 3x3 output block. ```
``` * ```
``` * Optimized algorithm with 2 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/6). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_3x3(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp0, tmp2, tmp10, tmp12; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[3 * 3]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) { ```
``` /* Even part */ ```
``` ```
``` tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1); ```
``` tmp2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ ```
``` tmp10 = tmp0 + tmp12; ```
``` tmp2 = tmp0 - tmp12 - tmp12; ```
``` ```
``` /* Odd part */ ```
``` ```
``` tmp12 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` wsptr[3 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[3 * 2] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[3 * 1] = (int)RIGHT_SHIFT(tmp2, CONST_BITS - PASS1_BITS); ```
``` } ```
``` ```
``` /* Pass 2: process 3 rows from work array, store into output array. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 3; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` ```
``` /* Even part */ ```
``` ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); ```
``` tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); ```
``` tmp2 = (JLONG)wsptr[2]; ```
``` tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ ```
``` tmp10 = tmp0 + tmp12; ```
``` tmp2 = tmp0 - tmp12 - tmp12; ```
``` ```
``` /* Odd part */ ```
``` ```
``` tmp12 = (JLONG)wsptr[1]; ```
``` tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += 3; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing a 9x9 output block. ```
``` * ```
``` * Optimized algorithm with 10 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/18). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_9x9(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14; ```
``` JLONG z1, z2, z3, z4; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[8 * 9]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { ```
``` /* Even part */ ```
``` ```
``` tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1); ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); ```
``` ```
``` tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ ```
``` tmp1 = tmp0 + tmp3; ```
``` tmp2 = tmp0 - tmp3 - tmp3; ```
``` ```
``` tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ ```
``` tmp11 = tmp2 + tmp0; ```
``` tmp14 = tmp2 - tmp0 - tmp0; ```
``` ```
``` tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ ```
``` tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ ```
``` tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ ```
``` ```
``` tmp10 = tmp1 + tmp0 - tmp3; ```
``` tmp12 = tmp1 - tmp0 + tmp2; ```
``` tmp13 = tmp1 - tmp2 + tmp3; ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); ```
``` z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); ```
``` ```
``` z2 = MULTIPLY(z2, -FIX(1.224744871)); /* -c3 */ ```
``` ```
``` tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ ```
``` tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ ```
``` tmp0 = tmp2 + tmp3 - z2; ```
``` tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ ```
``` tmp2 += z2 - tmp1; ```
``` tmp3 += z2 + tmp1; ```
``` tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp14, CONST_BITS - PASS1_BITS); ```
``` } ```
``` ```
``` /* Pass 2: process 9 rows from work array, store into output array. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 9; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` ```
``` /* Even part */ ```
``` ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); ```
``` tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); ```
``` ```
``` z1 = (JLONG)wsptr[2]; ```
``` z2 = (JLONG)wsptr[4]; ```
``` z3 = (JLONG)wsptr[6]; ```
``` ```
``` tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ ```
``` tmp1 = tmp0 + tmp3; ```
``` tmp2 = tmp0 - tmp3 - tmp3; ```
``` ```
``` tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ ```
``` tmp11 = tmp2 + tmp0; ```
``` tmp14 = tmp2 - tmp0 - tmp0; ```
``` ```
``` tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ ```
``` tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ ```
``` tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ ```
``` ```
``` tmp10 = tmp1 + tmp0 - tmp3; ```
``` tmp12 = tmp1 - tmp0 + tmp2; ```
``` tmp13 = tmp1 - tmp2 + tmp3; ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = (JLONG)wsptr[1]; ```
``` z2 = (JLONG)wsptr[3]; ```
``` z3 = (JLONG)wsptr[5]; ```
``` z4 = (JLONG)wsptr[7]; ```
``` ```
``` z2 = MULTIPLY(z2, -FIX(1.224744871)); /* -c3 */ ```
``` ```
``` tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ ```
``` tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ ```
``` tmp0 = tmp2 + tmp3 - z2; ```
``` tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ ```
``` tmp2 += z2 - tmp1; ```
``` tmp3 += z2 + tmp1; ```
``` tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp13 + tmp3, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp13 - tmp3, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp14, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += 8; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing a 10x10 output block. ```
``` * ```
``` * Optimized algorithm with 12 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/20). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_10x10(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp10, tmp11, tmp12, tmp13, tmp14; ```
``` JLONG tmp20, tmp21, tmp22, tmp23, tmp24; ```
``` JLONG z1, z2, z3, z4, z5; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[8 * 10]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { ```
``` /* Even part */ ```
``` ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` z3 = LEFT_SHIFT(z3, CONST_BITS); ```
``` /* Add fudge factor here for final descale. */ ```
``` z3 += ONE << (CONST_BITS - PASS1_BITS - 1); ```
``` z4 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); ```
``` z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ ```
``` z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ ```
``` tmp10 = z3 + z1; ```
``` tmp11 = z3 - z2; ```
``` ```
``` tmp22 = RIGHT_SHIFT(z3 - LEFT_SHIFT(z1 - z2, 1), ```
``` CONST_BITS - PASS1_BITS); /* c0 = (c4-c8)*2 */ ```
``` ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); ```
``` ```
``` z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ ```
``` tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ ```
``` tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ ```
``` ```
``` tmp20 = tmp10 + tmp12; ```
``` tmp24 = tmp10 - tmp12; ```
``` tmp21 = tmp11 + tmp13; ```
``` tmp23 = tmp11 - tmp13; ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); ```
``` z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); ```
``` ```
``` tmp11 = z2 + z4; ```
``` tmp13 = z2 - z4; ```
``` ```
``` tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ ```
``` z5 = LEFT_SHIFT(z3, CONST_BITS); ```
``` ```
``` z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ ```
``` z4 = z5 + tmp12; ```
``` ```
``` tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ ```
``` tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ ```
``` ```
``` z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ ```
``` z4 = z5 - tmp12 - LEFT_SHIFT(tmp13, CONST_BITS - 1); ```
``` ```
``` tmp12 = LEFT_SHIFT(z1 - tmp13 - z3, PASS1_BITS); ```
``` ```
``` tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ ```
``` tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 2] = (int)(tmp22 + tmp12); ```
``` wsptr[8 * 7] = (int)(tmp22 - tmp12); ```
``` wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); ```
``` } ```
``` ```
``` /* Pass 2: process 10 rows from work array, store into output array. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 10; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` ```
``` /* Even part */ ```
``` ```
``` /* Add fudge factor here for final descale. */ ```
``` z3 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); ```
``` z3 = LEFT_SHIFT(z3, CONST_BITS); ```
``` z4 = (JLONG)wsptr[4]; ```
``` z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ ```
``` z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ ```
``` tmp10 = z3 + z1; ```
``` tmp11 = z3 - z2; ```
``` ```
``` tmp22 = z3 - LEFT_SHIFT(z1 - z2, 1); /* c0 = (c4-c8)*2 */ ```
``` ```
``` z2 = (JLONG)wsptr[2]; ```
``` z3 = (JLONG)wsptr[6]; ```
``` ```
``` z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ ```
``` tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ ```
``` tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ ```
``` ```
``` tmp20 = tmp10 + tmp12; ```
``` tmp24 = tmp10 - tmp12; ```
``` tmp21 = tmp11 + tmp13; ```
``` tmp23 = tmp11 - tmp13; ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = (JLONG)wsptr[1]; ```
``` z2 = (JLONG)wsptr[3]; ```
``` z3 = (JLONG)wsptr[5]; ```
``` z3 = LEFT_SHIFT(z3, CONST_BITS); ```
``` z4 = (JLONG)wsptr[7]; ```
``` ```
``` tmp11 = z2 + z4; ```
``` tmp13 = z2 - z4; ```
``` ```
``` tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ ```
``` ```
``` z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ ```
``` z4 = z3 + tmp12; ```
``` ```
``` tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ ```
``` tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ ```
``` ```
``` z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ ```
``` z4 = z3 - tmp12 - LEFT_SHIFT(tmp13, CONST_BITS - 1); ```
``` ```
``` tmp12 = LEFT_SHIFT(z1 - tmp13, CONST_BITS) - z3; ```
``` ```
``` tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ ```
``` tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += 8; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing an 11x11 output block. ```
``` * ```
``` * Optimized algorithm with 24 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/22). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_11x11(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp10, tmp11, tmp12, tmp13, tmp14; ```
``` JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; ```
``` JLONG z1, z2, z3, z4; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[8 * 11]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { ```
``` /* Even part */ ```
``` ```
``` tmp10 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` tmp10 = LEFT_SHIFT(tmp10, CONST_BITS); ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp10 += ONE << (CONST_BITS - PASS1_BITS - 1); ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); ```
``` ```
``` tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ ```
``` tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ ```
``` z4 = z1 + z3; ```
``` tmp24 = MULTIPLY(z4, -FIX(1.155664402)); /* -(c2-c10) */ ```
``` z4 -= z2; ```
``` tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ ```
``` tmp21 = tmp20 + tmp23 + tmp25 - ```
``` MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ ```
``` tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ ```
``` tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ ```
``` tmp24 += tmp25; ```
``` tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ ```
``` tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ ```
``` MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ ```
``` tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); ```
``` z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); ```
``` ```
``` tmp11 = z1 + z2; ```
``` tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ ```
``` tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ ```
``` tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ ```
``` tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ ```
``` tmp10 = tmp11 + tmp12 + tmp13 - ```
``` MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ ```
``` z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ ```
``` tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ ```
``` tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ ```
``` z1 = MULTIPLY(z2 + z4, -FIX(1.798248910)); /* -(c1+c9) */ ```
``` tmp11 += z1; ```
``` tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ ```
``` tmp14 += MULTIPLY(z2, -FIX(1.467221301)) + /* -(c5+c9) */ ```
``` MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ ```
``` MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp25, CONST_BITS - PASS1_BITS); ```
``` } ```
``` ```
``` /* Pass 2: process 11 rows from work array, store into output array. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 11; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` ```
``` /* Even part */ ```
``` ```
``` /* Add fudge factor here for final descale. */ ```
``` tmp10 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); ```
``` tmp10 = LEFT_SHIFT(tmp10, CONST_BITS); ```
``` ```
``` z1 = (JLONG)wsptr[2]; ```
``` z2 = (JLONG)wsptr[4]; ```
``` z3 = (JLONG)wsptr[6]; ```
``` ```
``` tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ ```
``` tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ ```
``` z4 = z1 + z3; ```
``` tmp24 = MULTIPLY(z4, -FIX(1.155664402)); /* -(c2-c10) */ ```
``` z4 -= z2; ```
``` tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ ```
``` tmp21 = tmp20 + tmp23 + tmp25 - ```
``` MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ ```
``` tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ ```
``` tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ ```
``` tmp24 += tmp25; ```
``` tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ ```
``` tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ ```
``` MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ ```
``` tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = (JLONG)wsptr[1]; ```
``` z2 = (JLONG)wsptr[3]; ```
``` z3 = (JLONG)wsptr[5]; ```
``` z4 = (JLONG)wsptr[7]; ```
``` ```
``` tmp11 = z1 + z2; ```
``` tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ ```
``` tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ ```
``` tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ ```
``` tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ ```
``` tmp10 = tmp11 + tmp12 + tmp13 - ```
``` MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ ```
``` z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ ```
``` tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ ```
``` tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ ```
``` z1 = MULTIPLY(z2 + z4, -FIX(1.798248910)); /* -(c1+c9) */ ```
``` tmp11 += z1; ```
``` tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ ```
``` tmp14 += MULTIPLY(z2, -FIX(1.467221301)) + /* -(c5+c9) */ ```
``` MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ ```
``` MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp25, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += 8; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing a 12x12 output block. ```
``` * ```
``` * Optimized algorithm with 15 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/24). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_12x12(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; ```
``` JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; ```
``` JLONG z1, z2, z3, z4; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[8 * 12]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```
``` ```
``` inptr = coef_block; ```
``` quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { ```
``` /* Even part */ ```
``` ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); ```
``` z3 = LEFT_SHIFT(z3, CONST_BITS); ```
``` /* Add fudge factor here for final descale. */ ```
``` z3 += ONE << (CONST_BITS - PASS1_BITS - 1); ```
``` ```
``` z4 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); ```
``` z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ ```
``` ```
``` tmp10 = z3 + z4; ```
``` tmp11 = z3 - z4; ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); ```
``` z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ ```
``` z1 = LEFT_SHIFT(z1, CONST_BITS); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); ```
``` z2 = LEFT_SHIFT(z2, CONST_BITS); ```
``` ```
``` tmp12 = z1 - z2; ```
``` ```
``` tmp21 = z3 + tmp12; ```
``` tmp24 = z3 - tmp12; ```
``` ```
``` tmp12 = z4 + z2; ```
``` ```
``` tmp20 = tmp10 + tmp12; ```
``` tmp25 = tmp10 - tmp12; ```
``` ```
``` tmp12 = z4 - z1 - z2; ```
``` ```
``` tmp22 = tmp11 + tmp12; ```
``` tmp23 = tmp11 - tmp12; ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); ```
``` z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); ```
``` z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); ```
``` z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); ```
``` ```
``` tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ ```
``` tmp14 = MULTIPLY(z2, -FIX_0_541196100); /* -c9 */ ```
``` ```
``` tmp10 = z1 + z3; ```
``` tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ ```
``` tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ ```
``` tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ ```
``` tmp13 = MULTIPLY(z3 + z4, -FIX(1.045510580)); /* -(c7+c11) */ ```
``` tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ ```
``` tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ ```
``` tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ ```
``` MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ ```
``` ```
``` z1 -= z4; ```
``` z2 -= z3; ```
``` z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ ```
``` tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ ```
``` tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS); ```
``` wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS); ```
``` } ```
``` ```
``` /* Pass 2: process 12 rows from work array, store into output array. */ ```
``` ```
``` wsptr = workspace; ```
``` for (ctr = 0; ctr < 12; ctr++) { ```
``` outptr = output_buf[ctr] + output_col; ```
``` ```
``` /* Even part */ ```
``` ```
``` /* Add fudge factor here for final descale. */ ```
``` z3 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); ```
``` z3 = LEFT_SHIFT(z3, CONST_BITS); ```
``` ```
``` z4 = (JLONG)wsptr[4]; ```
``` z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ ```
``` ```
``` tmp10 = z3 + z4; ```
``` tmp11 = z3 - z4; ```
``` ```
``` z1 = (JLONG)wsptr[2]; ```
``` z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ ```
``` z1 = LEFT_SHIFT(z1, CONST_BITS); ```
``` z2 = (JLONG)wsptr[6]; ```
``` z2 = LEFT_SHIFT(z2, CONST_BITS); ```
``` ```
``` tmp12 = z1 - z2; ```
``` ```
``` tmp21 = z3 + tmp12; ```
``` tmp24 = z3 - tmp12; ```
``` ```
``` tmp12 = z4 + z2; ```
``` ```
``` tmp20 = tmp10 + tmp12; ```
``` tmp25 = tmp10 - tmp12; ```
``` ```
``` tmp12 = z4 - z1 - z2; ```
``` ```
``` tmp22 = tmp11 + tmp12; ```
``` tmp23 = tmp11 - tmp12; ```
``` ```
``` /* Odd part */ ```
``` ```
``` z1 = (JLONG)wsptr[1]; ```
``` z2 = (JLONG)wsptr[3]; ```
``` z3 = (JLONG)wsptr[5]; ```
``` z4 = (JLONG)wsptr[7]; ```
``` ```
``` tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ ```
``` tmp14 = MULTIPLY(z2, -FIX_0_541196100); /* -c9 */ ```
``` ```
``` tmp10 = z1 + z3; ```
``` tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ ```
``` tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ ```
``` tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ ```
``` tmp13 = MULTIPLY(z3 + z4, -FIX(1.045510580)); /* -(c7+c11) */ ```
``` tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ ```
``` tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ ```
``` tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ ```
``` MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ ```
``` ```
``` z1 -= z4; ```
``` z2 -= z3; ```
``` z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ ```
``` tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ ```
``` tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ ```
``` ```
``` /* Final output stage */ ```
``` ```
``` outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15, ```
``` CONST_BITS + PASS1_BITS + 3) & ```
``` RANGE_MASK]; ```
``` ```
``` wsptr += 8; /* advance pointer to next row */ ```
``` } ```
```} ```
``` ```
``` ```
```/* ```
``` * Perform dequantization and inverse DCT on one block of coefficients, ```
``` * producing a 13x13 output block. ```
``` * ```
``` * Optimized algorithm with 29 multiplications in the 1-D kernel. ```
``` * cK represents sqrt(2) * cos(K*pi/26). ```
``` */ ```
``` ```
```GLOBAL(void) ```
```jpeg_idct_13x13(j_decompress_ptr cinfo, jpeg_component_info *compptr, ```
``` JCOEFPTR coef_block, JSAMPARRAY output_buf, ```
``` JDIMENSION output_col) ```
```{ ```
``` JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; ```
``` JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; ```
``` JLONG z1, z2, z3, z4; ```
``` JCOEFPTR inptr; ```
``` ISLOW_MULT_TYPE *quantptr; ```
``` int *wsptr; ```
``` JSAMPROW outptr; ```
``` JSAMPLE *range_limit = IDCT_range_limit(cinfo); ```
``` int ctr; ```
``` int workspace[8 * 13]; /* buffers data between passes */ ```
``` SHIFT_TEMPS ```
``` ```
``` /* Pass 1: process columns from input, store into work array. */ ```