Source code

Revision control

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* JS math package.
*/
#include "jsmath.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/RandomNum.h"
#include "mozilla/Unused.h"
#include "mozilla/WrappingOperations.h"
#include <cmath>
#include "fdlibm.h"
#include "jsapi.h"
#include "jstypes.h"
#include "jit/InlinableNatives.h"
#include "js/Class.h"
#include "js/PropertySpec.h"
#include "util/Windows.h"
#include "vm/JSAtom.h"
#include "vm/JSContext.h"
#include "vm/Realm.h"
#include "vm/Time.h"
#include "vm/JSObject-inl.h"
using namespace js;
using JS::GenericNaN;
using JS::ToNumber;
using mozilla::Abs;
using mozilla::ExponentComponent;
using mozilla::FloatingPoint;
using mozilla::IsFinite;
using mozilla::IsInfinite;
using mozilla::IsNaN;
using mozilla::IsNegative;
using mozilla::IsNegativeZero;
using mozilla::Maybe;
using mozilla::NegativeInfinity;
using mozilla::NumberEqualsInt32;
using mozilla::PositiveInfinity;
using mozilla::WrappingMultiply;
template <UnaryMathFunctionType F>
static bool math_function(JSContext* cx, HandleValue val,
MutableHandleValue res) {
double x;
if (!ToNumber(cx, val, &x)) {
return false;
}
// NB: Always stored as a double so the math function can be inlined
// through MMathFunction. We also rely on this to avoid type monitoring
// in CallIRGenerator::tryAttachMathSqrt.
double z = F(x);
res.setDouble(z);
return true;
}
template <UnaryMathFunctionType F>
static bool math_function(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setNaN();
return true;
}
return math_function<F>(cx, args[0], args.rval());
}
bool js::math_abs_handle(JSContext* cx, js::HandleValue v,
js::MutableHandleValue r) {
double x;
if (!ToNumber(cx, v, &x)) {
return false;
}
double z = Abs(x);
r.setNumber(z);
return true;
}
bool js::math_abs(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setNaN();
return true;
}
return math_abs_handle(cx, args[0], args.rval());
}
double js::math_acos_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::acos(x);
}
bool js::math_acos(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_acos_impl>(cx, argc, vp);
}
double js::math_asin_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::asin(x);
}
bool js::math_asin(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_asin_impl>(cx, argc, vp);
}
double js::math_atan_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::atan(x);
}
bool js::math_atan(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_atan_impl>(cx, argc, vp);
}
double js::ecmaAtan2(double y, double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
return fdlibm::atan2(y, x);
}
bool js::math_atan2_handle(JSContext* cx, HandleValue y, HandleValue x,
MutableHandleValue res) {
double dy;
if (!ToNumber(cx, y, &dy)) {
return false;
}
double dx;
if (!ToNumber(cx, x, &dx)) {
return false;
}
double z = ecmaAtan2(dy, dx);
res.setDouble(z);
return true;
}
bool js::math_atan2(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
return math_atan2_handle(cx, args.get(0), args.get(1), args.rval());
}
double js::math_ceil_impl(double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
return fdlibm::ceil(x);
}
bool js::math_ceil_handle(JSContext* cx, HandleValue v,
MutableHandleValue res) {
double d;
if (!ToNumber(cx, v, &d)) return false;
double result = math_ceil_impl(d);
res.setNumber(result);
return true;
}
bool js::math_ceil(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setNaN();
return true;
}
return math_ceil_handle(cx, args[0], args.rval());
}
bool js::math_clz32(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setInt32(32);
return true;
}
uint32_t n;
if (!ToUint32(cx, args[0], &n)) {
return false;
}
if (n == 0) {
args.rval().setInt32(32);
return true;
}
args.rval().setInt32(mozilla::CountLeadingZeroes32(n));
return true;
}
double js::math_cos_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return cos(x);
}
bool js::math_cos(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_cos_impl>(cx, argc, vp);
}
double js::math_exp_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::exp(x);
}
bool js::math_exp(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_exp_impl>(cx, argc, vp);
}
double js::math_floor_impl(double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
return fdlibm::floor(x);
}
bool js::math_floor_handle(JSContext* cx, HandleValue v, MutableHandleValue r) {
double d;
if (!ToNumber(cx, v, &d)) {
return false;
}
double z = math_floor_impl(d);
r.setNumber(z);
return true;
}
bool js::math_floor(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setNaN();
return true;
}
return math_floor_handle(cx, args[0], args.rval());
}
bool js::math_imul_handle(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
int32_t a = 0, b = 0;
if (!lhs.isUndefined() && !ToInt32(cx, lhs, &a)) {
return false;
}
if (!rhs.isUndefined() && !ToInt32(cx, rhs, &b)) {
return false;
}
res.setInt32(WrappingMultiply(a, b));
return true;
}
bool js::math_imul(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
return math_imul_handle(cx, args.get(0), args.get(1), args.rval());
}
// Implements Math.fround (20.2.2.16) up to step 3
bool js::RoundFloat32(JSContext* cx, HandleValue v, float* out) {
double d;
bool success = ToNumber(cx, v, &d);
*out = static_cast<float>(d);
return success;
}
bool js::RoundFloat32(JSContext* cx, HandleValue arg, MutableHandleValue res) {
float f;
if (!RoundFloat32(cx, arg, &f)) {
return false;
}
res.setDouble(static_cast<double>(f));
return true;
}
bool js::math_fround(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setNaN();
return true;
}
return RoundFloat32(cx, args[0], args.rval());
}
double js::math_log_impl(double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
return fdlibm::log(x);
}
bool js::math_log_handle(JSContext* cx, HandleValue val,
MutableHandleValue res) {
return math_function<math_log_impl>(cx, val, res);
}
bool js::math_log(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_log_impl>(cx, argc, vp);
}
double js::math_max_impl(double x, double y) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
// Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0
if (x > y || IsNaN(x) || (x == y && IsNegative(y))) {
return x;
}
return y;
}
bool js::math_max(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
double maxval = NegativeInfinity<double>();
for (unsigned i = 0; i < args.length(); i++) {
double x;
if (!ToNumber(cx, args[i], &x)) {
return false;
}
maxval = math_max_impl(x, maxval);
}
args.rval().setNumber(maxval);
return true;
}
double js::math_min_impl(double x, double y) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
// Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0
if (x < y || IsNaN(x) || (x == y && IsNegativeZero(x))) {
return x;
}
return y;
}
bool js::math_min(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
double minval = PositiveInfinity<double>();
for (unsigned i = 0; i < args.length(); i++) {
double x;
if (!ToNumber(cx, args[i], &x)) {
return false;
}
minval = math_min_impl(x, minval);
}
args.rval().setNumber(minval);
return true;
}
bool js::minmax_impl(JSContext* cx, bool max, HandleValue a, HandleValue b,
MutableHandleValue res) {
double x, y;
if (!ToNumber(cx, a, &x)) {
return false;
}
if (!ToNumber(cx, b, &y)) {
return false;
}
if (max) {
res.setNumber(math_max_impl(x, y));
} else {
res.setNumber(math_min_impl(x, y));
}
return true;
}
double js::powi(double x, int32_t y) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
uint32_t n = Abs(y);
double m = x;
double p = 1;
while (true) {
if ((n & 1) != 0) p *= m;
n >>= 1;
if (n == 0) {
if (y < 0) {
// Unfortunately, we have to be careful when p has reached
// infinity in the computation, because sometimes the higher
// internal precision in the pow() implementation would have
// given us a finite p. This happens very rarely.
double result = 1.0 / p;
return (result == 0 && IsInfinite(p))
? pow(x, static_cast<double>(y)) // Avoid pow(double, int).
: result;
}
return p;
}
m *= m;
}
}
double js::ecmaPow(double x, double y) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
/*
* Use powi if the exponent is an integer-valued double. We don't have to
* check for NaN since a comparison with NaN is always false.
*/
int32_t yi;
if (NumberEqualsInt32(y, &yi)) {
return powi(x, yi);
}
/*
* Because C99 and ECMA specify different behavior for pow(),
* we need to wrap the libm call to make it ECMA compliant.
*/
if (!IsFinite(y) && (x == 1.0 || x == -1.0)) {
return GenericNaN();
}
/* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */
if (y == 0) {
return 1;
}
/*
* Special case for square roots. Note that pow(x, 0.5) != sqrt(x)
* when x = -0.0, so we have to guard for this.
*/
if (IsFinite(x) && x != 0.0) {
if (y == 0.5) {
return sqrt(x);
}
if (y == -0.5) {
return 1.0 / sqrt(x);
}
}
return pow(x, y);
}
bool js::math_pow(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
double x;
if (!ToNumber(cx, args.get(0), &x)) {
return false;
}
double y;
if (!ToNumber(cx, args.get(1), &y)) {
return false;
}
double z = ecmaPow(x, y);
args.rval().setNumber(z);
return true;
}
uint64_t js::GenerateRandomSeed() {
Maybe<uint64_t> maybeSeed = mozilla::RandomUint64();
return maybeSeed.valueOrFrom([] {
// Use PRMJ_Now() in case we couldn't read random bits from the OS.
uint64_t timestamp = PRMJ_Now();
return timestamp ^ (timestamp << 32);
});
}
void js::GenerateXorShift128PlusSeed(mozilla::Array<uint64_t, 2>& seed) {
// XorShift128PlusRNG must be initialized with a non-zero seed.
do {
seed[0] = GenerateRandomSeed();
seed[1] = GenerateRandomSeed();
} while (seed[0] == 0 && seed[1] == 0);
}
mozilla::non_crypto::XorShift128PlusRNG&
Realm::getOrCreateRandomNumberGenerator() {
if (randomNumberGenerator_.isNothing()) {
mozilla::Array<uint64_t, 2> seed;
GenerateXorShift128PlusSeed(seed);
randomNumberGenerator_.emplace(seed[0], seed[1]);
}
return randomNumberGenerator_.ref();
}
double js::math_random_impl(JSContext* cx) {
return cx->realm()->getOrCreateRandomNumberGenerator().nextDouble();
}
bool js::math_random(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
args.rval().setDouble(math_random_impl(cx));
return true;
}
bool js::math_round_handle(JSContext* cx, HandleValue arg,
MutableHandleValue res) {
double d;
if (!ToNumber(cx, arg, &d)) {
return false;
}
d = math_round_impl(d);
res.setNumber(d);
return true;
}
template <typename T>
T js::GetBiggestNumberLessThan(T x) {
MOZ_ASSERT(!IsNegative(x));
MOZ_ASSERT(IsFinite(x));
using Bits = typename mozilla::FloatingPoint<T>::Bits;
Bits bits = mozilla::BitwiseCast<Bits>(x);
MOZ_ASSERT(bits > 0, "will underflow");
return mozilla::BitwiseCast<T>(bits - 1);
}
template double js::GetBiggestNumberLessThan<>(double x);
template float js::GetBiggestNumberLessThan<>(float x);
double js::math_round_impl(double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
int32_t ignored;
if (NumberEqualsInt32(x, &ignored)) {
return x;
}
/* Some numbers are so big that adding 0.5 would give the wrong number. */
if (ExponentComponent(x) >=
int_fast16_t(FloatingPoint<double>::kExponentShift)) {
return x;
}
double add = (x >= 0) ? GetBiggestNumberLessThan(0.5) : 0.5;
return std::copysign(fdlibm::floor(x + add), x);
}
float js::math_roundf_impl(float x) {
AutoUnsafeCallWithABI unsafe;
int32_t ignored;
if (NumberEqualsInt32(x, &ignored)) {
return x;
}
/* Some numbers are so big that adding 0.5 would give the wrong number. */
if (ExponentComponent(x) >=
int_fast16_t(FloatingPoint<float>::kExponentShift)) {
return x;
}
float add = (x >= 0) ? GetBiggestNumberLessThan(0.5f) : 0.5f;
return std::copysign(fdlibm::floorf(x + add), x);
}
bool /* ES5 15.8.2.15. */
js::math_round(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setNaN();
return true;
}
return math_round_handle(cx, args[0], args.rval());
}
double js::math_sin_impl(double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
return sin(x);
}
bool js::math_sin_handle(JSContext* cx, HandleValue val,
MutableHandleValue res) {
return math_function<math_sin_impl>(cx, val, res);
}
bool js::math_sin(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_sin_impl>(cx, argc, vp);
}
double js::math_sqrt_impl(double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
return sqrt(x);
}
bool js::math_sqrt_handle(JSContext* cx, HandleValue number,
MutableHandleValue result) {
return math_function<math_sqrt_impl>(cx, number, result);
}
bool js::math_sqrt(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_sqrt_impl>(cx, argc, vp);
}
double js::math_tan_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return tan(x);
}
bool js::math_tan(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_tan_impl>(cx, argc, vp);
}
double js::math_log10_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::log10(x);
}
bool js::math_log10(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_log10_impl>(cx, argc, vp);
}
double js::math_log2_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::log2(x);
}
bool js::math_log2(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_log2_impl>(cx, argc, vp);
}
double js::math_log1p_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::log1p(x);
}
bool js::math_log1p(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_log1p_impl>(cx, argc, vp);
}
double js::math_expm1_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::expm1(x);
}
bool js::math_expm1(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_expm1_impl>(cx, argc, vp);
}
double js::math_cosh_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::cosh(x);
}
bool js::math_cosh(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_cosh_impl>(cx, argc, vp);
}
double js::math_sinh_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::sinh(x);
}
bool js::math_sinh(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_sinh_impl>(cx, argc, vp);
}
double js::math_tanh_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::tanh(x);
}
bool js::math_tanh(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_tanh_impl>(cx, argc, vp);
}
double js::math_acosh_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::acosh(x);
}
bool js::math_acosh(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_acosh_impl>(cx, argc, vp);
}
double js::math_asinh_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::asinh(x);
}
bool js::math_asinh(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_asinh_impl>(cx, argc, vp);
}
double js::math_atanh_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::atanh(x);
}
bool js::math_atanh(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_atanh_impl>(cx, argc, vp);
}
double js::ecmaHypot(double x, double y) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
return fdlibm::hypot(x, y);
}
static inline void hypot_step(double& scale, double& sumsq, double x) {
double xabs = mozilla::Abs(x);
if (scale < xabs) {
sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs);
scale = xabs;
} else if (scale != 0) {
sumsq += (xabs / scale) * (xabs / scale);
}
}
double js::hypot4(double x, double y, double z, double w) {
AutoUnsafeCallWithABI unsafe;
// Check for infinities or NaNs so that we can return immediately.
if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y) ||
mozilla::IsInfinite(z) || mozilla::IsInfinite(w)) {
return mozilla::PositiveInfinity<double>();
}
if (mozilla::IsNaN(x) || mozilla::IsNaN(y) || mozilla::IsNaN(z) ||
mozilla::IsNaN(w)) {
return GenericNaN();
}
double scale = 0;
double sumsq = 1;
hypot_step(scale, sumsq, x);
hypot_step(scale, sumsq, y);
hypot_step(scale, sumsq, z);
hypot_step(scale, sumsq, w);
return scale * sqrt(sumsq);
}
double js::hypot3(double x, double y, double z) {
AutoUnsafeCallWithABI unsafe;
return hypot4(x, y, z, 0.0);
}
bool js::math_hypot(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
return math_hypot_handle(cx, args, args.rval());
}
bool js::math_hypot_handle(JSContext* cx, HandleValueArray args,
MutableHandleValue res) {
// IonMonkey calls the ecmaHypot function directly if two arguments are
// given. Do that here as well to get the same results.
if (args.length() == 2) {
double x, y;
if (!ToNumber(cx, args[0], &x)) {
return false;
}
if (!ToNumber(cx, args[1], &y)) {
return false;
}
double result = ecmaHypot(x, y);
res.setDouble(result);
return true;
}
bool isInfinite = false;
bool isNaN = false;
double scale = 0;
double sumsq = 1;
for (unsigned i = 0; i < args.length(); i++) {
double x;
if (!ToNumber(cx, args[i], &x)) {
return false;
}
isInfinite |= mozilla::IsInfinite(x);
isNaN |= mozilla::IsNaN(x);
if (isInfinite || isNaN) {
continue;
}
hypot_step(scale, sumsq, x);
}
double result = isInfinite ? PositiveInfinity<double>()
: isNaN ? GenericNaN() : scale * sqrt(sumsq);
res.setDouble(result);
return true;
}
double js::math_trunc_impl(double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
return fdlibm::trunc(x);
}
float js::math_truncf_impl(float x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::truncf(x);
}
bool js::math_trunc_handle(JSContext* cx, HandleValue v, MutableHandleValue r) {
double x;
if (!ToNumber(cx, v, &x)) {
return false;
}
r.setNumber(math_trunc_impl(x));
return true;
}
bool js::math_trunc(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setNaN();
return true;
}
return math_trunc_handle(cx, args[0], args.rval());
}
double js::math_sign_impl(double x) {
AutoUnsafeCallWithABI unsafe(UnsafeABIStrictness::AllowPendingExceptions);
if (mozilla::IsNaN(x)) {
return GenericNaN();
}
return x == 0 ? x : x < 0 ? -1 : 1;
}
bool js::math_sign_handle(JSContext* cx, HandleValue v, MutableHandleValue r) {
double x;
if (!ToNumber(cx, v, &x)) {
return false;
}
r.setNumber(math_sign_impl(x));
return true;
}
bool js::math_sign(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setNaN();
return true;
}
return math_sign_handle(cx, args[0], args.rval());
}
double js::math_cbrt_impl(double x) {
AutoUnsafeCallWithABI unsafe;
return fdlibm::cbrt(x);
}
bool js::math_cbrt(JSContext* cx, unsigned argc, Value* vp) {
return math_function<math_cbrt_impl>(cx, argc, vp);
}
static bool math_toSource(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
args.rval().setString(cx->names().Math);
return true;
}
UnaryMathFunctionType js::GetUnaryMathFunctionPtr(UnaryMathFunction fun) {
switch (fun) {
case UnaryMathFunction::Log:
return math_log_impl;
case UnaryMathFunction::Sin:
return math_sin_impl;
case UnaryMathFunction::Cos:
return math_cos_impl;
case UnaryMathFunction::Exp:
return math_exp_impl;
case UnaryMathFunction::Tan:
return math_tan_impl;
case UnaryMathFunction::ATan:
return math_atan_impl;
case UnaryMathFunction::ASin:
return math_asin_impl;
case UnaryMathFunction::ACos:
return math_acos_impl;
case UnaryMathFunction::Log10:
return math_log10_impl;
case UnaryMathFunction::Log2:
return math_log2_impl;
case UnaryMathFunction::Log1P:
return math_log1p_impl;
case UnaryMathFunction::ExpM1:
return math_expm1_impl;
case UnaryMathFunction::CosH:
return math_cosh_impl;
case UnaryMathFunction::SinH:
return math_sinh_impl;
case UnaryMathFunction::TanH:
return math_tanh_impl;
case UnaryMathFunction::ACosH:
return math_acosh_impl;
case UnaryMathFunction::ASinH:
return math_asinh_impl;
case UnaryMathFunction::ATanH:
return math_atanh_impl;
case UnaryMathFunction::Trunc:
return math_trunc_impl;
case UnaryMathFunction::Cbrt:
return math_cbrt_impl;
case UnaryMathFunction::Floor:
return math_floor_impl;
case UnaryMathFunction::Ceil:
return math_ceil_impl;
case UnaryMathFunction::Round:
return math_round_impl;
}
MOZ_CRASH("Unknown function");
}
const char* js::GetUnaryMathFunctionName(UnaryMathFunction fun) {
switch (fun) {
case UnaryMathFunction::Log:
return "Log";
case UnaryMathFunction::Sin:
return "Sin";
case UnaryMathFunction::Cos:
return "Cos";
case UnaryMathFunction::Exp:
return "Exp";
case UnaryMathFunction::Tan:
return "Tan";
case UnaryMathFunction::ACos:
return "ACos";
case UnaryMathFunction::ASin:
return "ASin";
case UnaryMathFunction::ATan:
return "ATan";
case UnaryMathFunction::Log10:
return "Log10";
case UnaryMathFunction::Log2:
return "Log2";
case UnaryMathFunction::Log1P:
return "Log1P";
case UnaryMathFunction::ExpM1:
return "ExpM1";
case UnaryMathFunction::CosH:
return "CosH";
case UnaryMathFunction::SinH:
return "SinH";
case UnaryMathFunction::TanH:
return "TanH";
case UnaryMathFunction::ACosH:
return "ACosH";
case UnaryMathFunction::ASinH:
return "ASinH";
case UnaryMathFunction::ATanH:
return "ATanH";
case UnaryMathFunction::Trunc:
return "Trunc";
case UnaryMathFunction::Cbrt:
return "Cbrt";
case UnaryMathFunction::Floor:
return "Floor";
case UnaryMathFunction::Ceil:
return "Ceil";
case UnaryMathFunction::Round:
return "Round";
}
MOZ_CRASH("Unknown function");
}
static const JSFunctionSpec math_static_methods[] = {
JS_FN(js_toSource_str, math_toSource, 0, 0),
JS_INLINABLE_FN("abs", math_abs, 1, 0, MathAbs),
JS_INLINABLE_FN("acos", math_acos, 1, 0, MathACos),
JS_INLINABLE_FN("asin", math_asin, 1, 0, MathASin),
JS_INLINABLE_FN("atan", math_atan, 1, 0, MathATan),
JS_INLINABLE_FN("atan2", math_atan2, 2, 0, MathATan2),
JS_INLINABLE_FN("ceil", math_ceil, 1, 0, MathCeil),
JS_INLINABLE_FN("clz32", math_clz32, 1, 0, MathClz32),
JS_INLINABLE_FN("cos", math_cos, 1, 0, MathCos),
JS_INLINABLE_FN("exp", math_exp, 1, 0, MathExp),
JS_INLINABLE_FN("floor", math_floor, 1, 0, MathFloor),
JS_INLINABLE_FN("imul", math_imul, 2, 0, MathImul),
JS_INLINABLE_FN("fround", math_fround, 1, 0, MathFRound),
JS_INLINABLE_FN("log", math_log, 1, 0, MathLog),
JS_INLINABLE_FN("max", math_max, 2, 0, MathMax),
JS_INLINABLE_FN("min", math_min, 2, 0, MathMin),
JS_INLINABLE_FN("pow", math_pow, 2, 0, MathPow),
JS_INLINABLE_FN("random", math_random, 0, 0, MathRandom),
JS_INLINABLE_FN("round", math_round, 1, 0, MathRound),
JS_INLINABLE_FN("sin", math_sin, 1, 0, MathSin),
JS_INLINABLE_FN("sqrt", math_sqrt, 1, 0, MathSqrt),
JS_INLINABLE_FN("tan", math_tan, 1, 0, MathTan),
JS_INLINABLE_FN("log10", math_log10, 1, 0, MathLog10),
JS_INLINABLE_FN("log2", math_log2, 1, 0, MathLog2),
JS_INLINABLE_FN("log1p", math_log1p, 1, 0, MathLog1P),
JS_INLINABLE_FN("expm1", math_expm1, 1, 0, MathExpM1),
JS_INLINABLE_FN("cosh", math_cosh, 1, 0, MathCosH),
JS_INLINABLE_FN("sinh", math_sinh, 1, 0, MathSinH),
JS_INLINABLE_FN("tanh", math_tanh, 1, 0, MathTanH),
JS_INLINABLE_FN("acosh", math_acosh, 1, 0, MathACosH),
JS_INLINABLE_FN("asinh", math_asinh, 1, 0, MathASinH),
JS_INLINABLE_FN("atanh", math_atanh, 1, 0, MathATanH),
JS_INLINABLE_FN("hypot", math_hypot, 2, 0, MathHypot),
JS_INLINABLE_FN("trunc", math_trunc, 1, 0, MathTrunc),
JS_INLINABLE_FN("sign", math_sign, 1, 0, MathSign),
JS_INLINABLE_FN("cbrt", math_cbrt, 1, 0, MathCbrt),
JS_FS_END};
static const JSPropertySpec math_static_properties[] = {
JS_DOUBLE_PS("E", M_E, JSPROP_READONLY | JSPROP_PERMANENT),
JS_DOUBLE_PS("LOG2E", M_LOG2E, JSPROP_READONLY | JSPROP_PERMANENT),
JS_DOUBLE_PS("LOG10E", M_LOG10E, JSPROP_READONLY | JSPROP_PERMANENT),
JS_DOUBLE_PS("LN2", M_LN2, JSPROP_READONLY | JSPROP_PERMANENT),
JS_DOUBLE_PS("LN10", M_LN10, JSPROP_READONLY | JSPROP_PERMANENT),
JS_DOUBLE_PS("PI", M_PI, JSPROP_READONLY | JSPROP_PERMANENT),
JS_DOUBLE_PS("SQRT2", M_SQRT2, JSPROP_READONLY | JSPROP_PERMANENT),
JS_DOUBLE_PS("SQRT1_2", M_SQRT1_2, JSPROP_READONLY | JSPROP_PERMANENT),
JS_STRING_SYM_PS(toStringTag, "Math", JSPROP_READONLY),
JS_PS_END};
static JSObject* CreateMathObject(JSContext* cx, JSProtoKey key) {
Handle<GlobalObject*> global = cx->global();
RootedObject proto(cx, GlobalObject::getOrCreateObjectPrototype(cx, global));
if (!proto) {
return nullptr;
}
return NewSingletonObjectWithGivenProto(cx, &MathClass, proto);
}
static const ClassSpec MathClassSpec = {CreateMathObject,
nullptr,
math_static_methods,
math_static_properties,
nullptr,
nullptr,
nullptr};
const JSClass js::MathClass = {js_Math_str,
JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
JS_NULL_CLASS_OPS, &MathClassSpec};