Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/riscv64/Lowering-riscv64.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/Lowering.h"
#include "jit/MIR.h"
#include "jit/riscv64/Assembler-riscv64.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::FloorLog2;
LTableSwitch* LIRGeneratorRiscv64::newLTableSwitch(const LAllocation& in,
const LDefinition& inputCopy,
MTableSwitch* tableswitch) {
return new (alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch);
}
LTableSwitchV* LIRGeneratorRiscv64::newLTableSwitchV(
MTableSwitch* tableswitch) {
return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(),
tempDouble(), temp(), tableswitch);
}
void LIRGeneratorRiscv64::lowerForShift(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(ins, mir);
}
template <size_t Temps>
void LIRGeneratorRiscv64::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
static_assert(LShiftI64::Rhs == INT64_PIECES,
"Assume Rhs is located at INT64_PIECES.");
static_assert(LRotateI64::Count == INT64_PIECES,
"Assume Count is located at INT64_PIECES.");
ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs));
defineInt64ReuseInput(ins, mir, 0);
}
template void LIRGeneratorRiscv64::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
template void LIRGeneratorRiscv64::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
// x = !y
void LIRGeneratorRiscv64::lowerForALU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input) {
ins->setOperand(0, useRegister(input));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
// z = x + y
void LIRGeneratorRiscv64::lowerForALU(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
void LIRGeneratorRiscv64::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir,
MDefinition* input) {
ins->setInt64Operand(0, useInt64RegisterAtStart(input));
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorRiscv64::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES, willHaveDifferentLIRNodes(lhs, rhs)
? useInt64OrConstant(rhs)
: useInt64OrConstantAtStart(rhs));
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorRiscv64::lowerForMulInt64(LMulI64* ins, MMul* mir,
MDefinition* lhs, MDefinition* rhs) {
bool needsTemp = false;
bool cannotAliasRhs = false;
bool reuseInput = true;
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES,
(willHaveDifferentLIRNodes(lhs, rhs) || cannotAliasRhs)
? useInt64OrConstant(rhs)
: useInt64OrConstantAtStart(rhs));
if (needsTemp) {
ins->setTemp(0, temp());
}
if (reuseInput) {
defineInt64ReuseInput(ins, mir, 0);
} else {
defineInt64(ins, mir);
}
}
void LIRGeneratorRiscv64::lowerForFPU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input) {
ins->setOperand(0, useRegister(input));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template <size_t Temps>
void LIRGeneratorRiscv64::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegister(rhs));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template void LIRGeneratorRiscv64::lowerForFPU(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir,
MDefinition* lhs,
MDefinition* rhs);
template void LIRGeneratorRiscv64::lowerForFPU(LInstructionHelper<1, 2, 1>* ins,
MDefinition* mir,
MDefinition* lhs,
MDefinition* rhs);
void LIRGeneratorRiscv64::lowerForCompareI64AndBranch(
MTest* mir, MCompare* comp, JSOp op, MDefinition* left, MDefinition* right,
MBasicBlock* ifTrue, MBasicBlock* ifFalse) {
LCompareI64AndBranch* lir = new (alloc())
LCompareI64AndBranch(comp, op, useInt64Register(left),
useInt64OrConstant(right), ifTrue, ifFalse);
add(lir, mir);
}
void LIRGeneratorRiscv64::lowerForBitAndAndBranch(LBitAndAndBranch* baab,
MInstruction* mir,
MDefinition* lhs,
MDefinition* rhs) {
baab->setOperand(0, useRegisterAtStart(lhs));
baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
add(baab, mir);
}
LBoxAllocation LIRGeneratorRiscv64::useBoxFixed(MDefinition* mir, Register reg1,
Register reg2,
bool useAtStart) {
MOZ_ASSERT(mir->type() == MIRType::Value);
ensureDefined(mir);
return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart));
}
LAllocation LIRGeneratorRiscv64::useByteOpRegister(MDefinition* mir) {
return useRegister(mir);
}
LAllocation LIRGeneratorRiscv64::useByteOpRegisterAtStart(MDefinition* mir) {
return useRegisterAtStart(mir);
}
LAllocation LIRGeneratorRiscv64::useByteOpRegisterOrNonDoubleConstant(
MDefinition* mir) {
return useRegisterOrNonDoubleConstant(mir);
}
LDefinition LIRGeneratorRiscv64::tempByteOpRegister() { return temp(); }
LDefinition LIRGeneratorRiscv64::tempToUnbox() { return temp(); }
void LIRGeneratorRiscv64::lowerUntypedPhiInput(MPhi* phi,
uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
lowerTypedPhiInput(phi, inputPosition, block, lirIndex);
}
void LIRGeneratorRiscv64::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
lowerTypedPhiInput(phi, inputPosition, block, lirIndex);
}
void LIRGeneratorRiscv64::defineInt64Phi(MPhi* phi, size_t lirIndex) {
defineTypedPhi(phi, lirIndex);
}
void LIRGeneratorRiscv64::lowerNegI(MInstruction* ins, MDefinition* input) {
define(new (alloc()) LNegI(useRegisterAtStart(input)), ins);
}
void LIRGeneratorRiscv64::lowerNegI64(MInstruction* ins, MDefinition* input) {
defineInt64ReuseInput(new (alloc()) LNegI64(useInt64RegisterAtStart(input)),
ins, 0);
}
void LIRGeneratorRiscv64::lowerMulI(MMul* mul, MDefinition* lhs,
MDefinition* rhs) {
LMulI* lir = new (alloc()) LMulI;
if (mul->fallible()) {
assignSnapshot(lir, mul->bailoutKind());
}
lowerForALU(lir, mul, lhs, rhs);
}
void LIRGeneratorRiscv64::lowerDivI(MDiv* div) {
if (div->isUnsigned()) {
lowerUDiv(div);
return;
}
// Division instructions are slow. Division by constant denominators can be
// rewritten to use other instructions.
if (div->rhs()->isConstant()) {
int32_t rhs = div->rhs()->toConstant()->toInt32();
// Check for division by a positive power of two, which is an easy and
// important case to optimize. Note that other optimizations are also
// possible; division by negative powers of two can be optimized in a
// similar manner as positive powers of two, and division by other
// constants can be optimized by a reciprocal multiplication technique.
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LDivPowTwoI* lir =
new (alloc()) LDivPowTwoI(useRegister(div->lhs()), shift, temp());
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
}
LDivI* lir = new (alloc())
LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
}
void LIRGeneratorRiscv64::lowerDivI64(MDiv* div) {
if (div->isUnsigned()) {
lowerUDivI64(div);
return;
}
LDivOrModI64* lir = new (alloc())
LDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs()), temp());
defineInt64(lir, div);
}
void LIRGeneratorRiscv64::lowerModI(MMod* mod) {
if (mod->isUnsigned()) {
lowerUMod(mod);
return;
}
if (mod->rhs()->isConstant()) {
int32_t rhs = mod->rhs()->toConstant()->toInt32();
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LModPowTwoI* lir =
new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
} else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) {
LModMaskI* lir = new (alloc())
LModMaskI(useRegister(mod->lhs()), temp(LDefinition::GENERAL),
temp(LDefinition::GENERAL), shift + 1);
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
}
}
LModI* lir =
new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()),
temp(LDefinition::GENERAL));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
}
void LIRGeneratorRiscv64::lowerModI64(MMod* mod) {
if (mod->isUnsigned()) {
lowerUModI64(mod);
return;
}
LDivOrModI64* lir = new (alloc())
LDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs()), temp());
defineInt64(lir, mod);
}
void LIRGeneratorRiscv64::lowerUDiv(MDiv* div) {
MDefinition* lhs = div->getOperand(0);
MDefinition* rhs = div->getOperand(1);
LUDivOrMod* lir = new (alloc()) LUDivOrMod;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
}
void LIRGeneratorRiscv64::lowerUDivI64(MDiv* div) {
LUDivOrModI64* lir = new (alloc())
LUDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs()), temp());
defineInt64(lir, div);
}
void LIRGeneratorRiscv64::lowerUMod(MMod* mod) {
MDefinition* lhs = mod->getOperand(0);
MDefinition* rhs = mod->getOperand(1);
LUDivOrMod* lir = new (alloc()) LUDivOrMod;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
}
void LIRGeneratorRiscv64::lowerUModI64(MMod* mod) {
LUDivOrModI64* lir = new (alloc())
LUDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs()), temp());
defineInt64(lir, mod);
}
void LIRGeneratorRiscv64::lowerUrshD(MUrsh* mir) {
MDefinition* lhs = mir->lhs();
MDefinition* rhs = mir->rhs();
MOZ_ASSERT(lhs->type() == MIRType::Int32);
MOZ_ASSERT(rhs->type() == MIRType::Int32);
LUrshD* lir = new (alloc())
LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
define(lir, mir);
}
void LIRGeneratorRiscv64::lowerPowOfTwoI(MPow* mir) {
int32_t base = mir->input()->toConstant()->toInt32();
MDefinition* power = mir->power();
auto* lir = new (alloc()) LPowOfTwoI(useRegister(power), base);
assignSnapshot(lir, mir->bailoutKind());
define(lir, mir);
}
void LIRGeneratorRiscv64::lowerBigIntDiv(MBigIntDiv* ins) {
auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()),
useRegister(ins->rhs()), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorRiscv64::lowerBigIntMod(MBigIntMod* ins) {
auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()),
useRegister(ins->rhs()), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorRiscv64::lowerBigIntLsh(MBigIntLsh* ins) {
auto* lir = new (alloc()) LBigIntLsh(
useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorRiscv64::lowerBigIntRsh(MBigIntRsh* ins) {
auto* lir = new (alloc()) LBigIntRsh(
useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorRiscv64::lowerTruncateDToInt32(MTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double);
define(new (alloc()) LTruncateDToInt32(useRegister(opd), tempDouble()), ins);
}
void LIRGeneratorRiscv64::lowerTruncateFToInt32(MTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Float32);
define(new (alloc()) LTruncateFToInt32(useRegister(opd), tempFloat32()), ins);
}
void LIRGeneratorRiscv64::lowerBuiltinInt64ToFloatingPoint(
MBuiltinInt64ToFloatingPoint* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
void LIRGeneratorRiscv64::lowerWasmSelectI(MWasmSelect* select) {
auto* lir = new (alloc())
LWasmSelect(useRegisterAtStart(select->trueExpr()),
useAny(select->falseExpr()), useRegister(select->condExpr()));
defineReuseInput(lir, select, LWasmSelect::TrueExprIndex);
}
void LIRGeneratorRiscv64::lowerWasmSelectI64(MWasmSelect* select) {
auto* lir = new (alloc()) LWasmSelectI64(
useInt64RegisterAtStart(select->trueExpr()),
useInt64(select->falseExpr()), useRegister(select->condExpr()));
defineInt64ReuseInput(lir, select, LWasmSelectI64::TrueExprIndex);
}
// On riscv we specialize the only cases where compare is {U,}Int32 and select
// is {U,}Int32.
bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect(
MCompare::CompareType compTy, MIRType insTy) {
return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 ||
compTy == MCompare::Compare_UInt32);
}
void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins,
MDefinition* lhs,
MDefinition* rhs,
MCompare::CompareType compTy,
JSOp jsop) {
MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type()));
auto* lir = new (alloc()) LWasmCompareAndSelect(
useRegister(lhs), useRegister(rhs), compTy, jsop,
useRegisterAtStart(ins->trueExpr()), useRegister(ins->falseExpr()));
defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex);
}
void LIRGeneratorRiscv64::lowerWasmBuiltinTruncateToInt32(
MWasmBuiltinTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
if (opd->type() == MIRType::Double) {
define(new (alloc()) LWasmBuiltinTruncateDToInt32(
useRegister(opd), useFixed(ins->instance(), InstanceReg),
LDefinition::BogusTemp()),
ins);
return;
}
define(new (alloc()) LWasmBuiltinTruncateFToInt32(
useRegister(opd), useFixed(ins->instance(), InstanceReg),
LDefinition::BogusTemp()),
ins);
}
void LIRGeneratorRiscv64::lowerWasmBuiltinTruncateToInt64(
MWasmBuiltinTruncateToInt64* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
void LIRGeneratorRiscv64::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
MOZ_CRASH("We don't use runtime div for this architecture");
}
void LIRGeneratorRiscv64::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
MOZ_CRASH("We don't use runtime mod for this architecture");
}
void LIRGeneratorRiscv64::lowerAtomicLoad64(MLoadUnboxedScalar* ins) {
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->storageType());
auto* lir = new (alloc()) LAtomicLoad64(elements, index, temp(), tempInt64());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorRiscv64::lowerAtomicStore64(MStoreUnboxedScalar* ins) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->writeType());
LAllocation value = useRegister(ins->value());
add(new (alloc()) LAtomicStore64(elements, index, value, tempInt64()), ins);
}
void LIRGenerator::visitBox(MBox* box) {
MDefinition* opd = box->getOperand(0);
// If the operand is a constant, emit near its uses.
if (opd->isConstant() && box->canEmitAtUses()) {
emitAtUses(box);
return;
}
if (opd->isConstant()) {
define(new (alloc()) LValue(opd->toConstant()->toJSValue()), box,
LDefinition(LDefinition::BOX));
} else {
LBox* ins = new (alloc()) LBox(useRegister(opd), opd->type());
define(ins, box, LDefinition(LDefinition::BOX));
}
}
void LIRGenerator::visitUnbox(MUnbox* unbox) {
MDefinition* box = unbox->getOperand(0);
MOZ_ASSERT(box->type() == MIRType::Value);
LUnbox* lir;
if (IsFloatingPointType(unbox->type())) {
lir = new (alloc())
LUnboxFloatingPoint(useRegisterAtStart(box), unbox->type());
} else if (unbox->fallible()) {
// If the unbox is fallible, load the Value in a register first to
// avoid multiple loads.
lir = new (alloc()) LUnbox(useRegisterAtStart(box));
} else {
lir = new (alloc()) LUnbox(useAtStart(box));
}
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
define(lir, unbox);
}
void LIRGenerator::visitAbs(MAbs* ins) {
define(allocateAbs(ins, useRegisterAtStart(ins->input())), ins);
}
void LIRGenerator::visitCopySign(MCopySign* ins) {
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(IsFloatingPointType(lhs->type()));
MOZ_ASSERT(lhs->type() == rhs->type());
MOZ_ASSERT(lhs->type() == ins->type());
LInstructionHelper<1, 2, 2>* lir;
if (lhs->type() == MIRType::Double) {
lir = new (alloc()) LCopySignD();
} else {
lir = new (alloc()) LCopySignF();
}
lir->setTemp(0, temp());
lir->setTemp(1, temp());
lir->setOperand(0, useRegisterAtStart(lhs));
lir->setOperand(1, useRegister(rhs));
defineReuseInput(lir, ins, 0);
}
void LIRGenerator::visitPowHalf(MPowHalf* ins) {
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType::Double);
LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input));
defineReuseInput(lir, ins, 0);
}
void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
defineInt64(
new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins);
}
void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
defineInt64(new (alloc())
LSignExtendInt64(useInt64RegisterAtStart(ins->input())),
ins);
}
void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Int64);
MOZ_ASSERT(IsFloatingPointType(ins->type()));
define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd)), ins);
}
void LIRGenerator::visitSubstr(MSubstr* ins) {
LSubstr* lir = new (alloc())
LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
useRegister(ins->length()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitCompareExchangeTypedArrayElement(
MCompareExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation newval = useRegister(ins->newval());
const LAllocation oldval = useRegister(ins->oldval());
if (Scalar::isBigIntType(ins->arrayType())) {
LInt64Definition temp1 = tempInt64();
LInt64Definition temp2 = tempInt64();
auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64(
elements, index, oldval, newval, temp1, temp2);
define(lir, ins);
assignSafepoint(lir, ins);
return;
}
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
LDefinition outTemp = LDefinition::BogusTemp();
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
outTemp = temp();
}
if (Scalar::byteSize(ins->arrayType()) < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
LCompareExchangeTypedArrayElement* lir = new (alloc())
LCompareExchangeTypedArrayElement(elements, index, oldval, newval,
outTemp, valueTemp, offsetTemp,
maskTemp);
define(lir, ins);
}
void LIRGenerator::visitAtomicExchangeTypedArrayElement(
MAtomicExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation value = useRegister(ins->value());
if (Scalar::isBigIntType(ins->arrayType())) {
LInt64Definition temp1 = tempInt64();
LDefinition temp2 = temp();
auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64(
elements, index, value, temp1, temp2);
define(lir, ins);
assignSafepoint(lir, ins);
return;
}
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
LDefinition outTemp = LDefinition::BogusTemp();
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
MOZ_ASSERT(ins->type() == MIRType::Double);
outTemp = temp();
}
if (Scalar::byteSize(ins->arrayType()) < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
LAtomicExchangeTypedArrayElement* lir =
new (alloc()) LAtomicExchangeTypedArrayElement(
elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp);
define(lir, ins);
}
void LIRGenerator::visitAtomicTypedArrayElementBinop(
MAtomicTypedArrayElementBinop* ins) {
MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation value = useRegister(ins->value());
if (Scalar::isBigIntType(ins->arrayType())) {
LInt64Definition temp1 = tempInt64();
LInt64Definition temp2 = tempInt64();
// Case 1: the result of the operation is not used.
//
// We can omit allocating the result BigInt.
if (ins->isForEffect()) {
auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64(
elements, index, value, temp1, temp2);
add(lir, ins);
return;
}
// Case 2: the result of the operation is used.
auto* lir = new (alloc())
LAtomicTypedArrayElementBinop64(elements, index, value, temp1, temp2);
define(lir, ins);
assignSafepoint(lir, ins);
return;
}
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (Scalar::byteSize(ins->arrayType()) < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
if (ins->isForEffect()) {
LAtomicTypedArrayElementBinopForEffect* lir =
new (alloc()) LAtomicTypedArrayElementBinopForEffect(
elements, index, value, valueTemp, offsetTemp, maskTemp);
add(lir, ins);
return;
}
// For a Uint32Array with a known double result we need a temp for
// the intermediate output.
LDefinition outTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
outTemp = temp();
}
LAtomicTypedArrayElementBinop* lir =
new (alloc()) LAtomicTypedArrayElementBinop(
elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp);
define(lir, ins);
}
void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
MOZ_ASSERT(opd->type() == MIRType::Value);
LReturn* ins = new (alloc()) LReturn(isGenerator);
ins->setOperand(0, useFixed(opd, JSReturnReg));
add(ins);
}
void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
MOZ_ASSERT_IF(ins->needsBoundsCheck(),
boundsCheckLimit->type() == MIRType::Int32);
LAllocation baseAlloc = useRegisterAtStart(base);
LAllocation limitAlloc = ins->needsBoundsCheck()
? useRegisterAtStart(boundsCheckLimit)
: LAllocation();
// We have no memory-base value, meaning that HeapReg is to be used as the
// memory base. This follows from the definition of
// FunctionCompiler::maybeLoadMemoryBase() in WasmIonCompile.cpp.
MOZ_ASSERT(!ins->hasMemoryBase());
auto* lir =
new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc, LAllocation());
define(lir, ins);
}
void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
MOZ_ASSERT_IF(ins->needsBoundsCheck(),
boundsCheckLimit->type() == MIRType::Int32);
LAllocation baseAlloc = useRegisterAtStart(base);
LAllocation limitAlloc = ins->needsBoundsCheck()
? useRegisterAtStart(boundsCheckLimit)
: LAllocation();
// See comment in LIRGenerator::visitAsmJSStoreHeap just above.
MOZ_ASSERT(!ins->hasMemoryBase());
add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()),
limitAlloc, LAllocation()),
ins);
}
void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
MDefinition* base = ins->base();
// 'base' is a GPR but may be of either type. If it is 32-bit, it is
// sign-extended on riscv64 platform and we should explicitly promote it
// to 64-bit by zero-extension when use it as an index register in memory
// accesses.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
LAllocation ptr;
ptr = useRegisterAtStart(base);
if (ins->type() == MIRType::Int64) {
auto* lir = new (alloc()) LWasmLoadI64(ptr, memoryBase);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
defineInt64(lir, ins);
return;
}
auto* lir = new (alloc()) LWasmLoad(ptr, memoryBase);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
define(lir, ins);
}
void LIRGenerator::visitWasmStore(MWasmStore* ins) {
MDefinition* base = ins->base();
// See comment in visitWasmLoad re the type of 'base'.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
MDefinition* value = ins->value();
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
if (ins->access().type() == Scalar::Int64) {
LAllocation baseAlloc = useRegisterAtStart(base);
LInt64Allocation valueAlloc = useInt64RegisterAtStart(value);
auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc, memoryBase);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
add(lir, ins);
return;
}
LAllocation baseAlloc = useRegisterAtStart(base);
LAllocation valueAlloc = useRegisterAtStart(value);
auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc, memoryBase);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
add(lir, ins);
}
void LIRGenerator::visitWasmNeg(MWasmNeg* ins) {
if (ins->type() == MIRType::Int32) {
define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
} else if (ins->type() == MIRType::Float32) {
define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
} else {
MOZ_ASSERT(ins->type() == MIRType::Double);
define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
}
}
void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd)), ins);
}
void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToDouble* lir =
new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToFloat32* lir =
new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
MDefinition* base = ins->base();
// See comment in visitWasmLoad re the type of 'base'.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmCompareExchangeI64(
useRegister(base), useInt64Register(ins->oldValue()),
useInt64Register(ins->newValue()), memoryBase);
defineInt64(lir, ins);
return;
}
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->access().byteSize() < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
LWasmCompareExchangeHeap* lir = new (alloc())
LWasmCompareExchangeHeap(useRegister(base), useRegister(ins->oldValue()),
useRegister(ins->newValue()), valueTemp,
offsetTemp, maskTemp, memoryBase);
define(lir, ins);
}
void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
MDefinition* base = ins->base();
// See comment in visitWasmLoad re the type of 'base'.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmAtomicExchangeI64(
useRegister(base), useInt64Register(ins->value()), memoryBase);
defineInt64(lir, ins);
return;
}
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->access().byteSize() < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
LWasmAtomicExchangeHeap* lir = new (alloc())
LWasmAtomicExchangeHeap(useRegister(base), useRegister(ins->value()),
valueTemp, offsetTemp, maskTemp, memoryBase);
define(lir, ins);
}
void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
MDefinition* base = ins->base();
// See comment in visitWasmLoad re the type of 'base'.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmAtomicBinopI64(
useRegister(base), useInt64Register(ins->value()), memoryBase);
lir->setTemp(0, temp());
defineInt64(lir, ins);
return;
}
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->access().byteSize() < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
if (!ins->hasUses()) {
LWasmAtomicBinopHeapForEffect* lir = new (alloc())
LWasmAtomicBinopHeapForEffect(useRegister(base),
useRegister(ins->value()), valueTemp,
offsetTemp, maskTemp, memoryBase);
add(lir, ins);
return;
}
LWasmAtomicBinopHeap* lir = new (alloc())
LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()),
valueTemp, offsetTemp, maskTemp, memoryBase);
define(lir, ins);
}
void LIRGenerator::visitWasmTernarySimd128(MWasmTernarySimd128* ins) {
MOZ_CRASH("ternary SIMD NYI");
}
void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) {
MOZ_CRASH("binary SIMD NYI");
}
#ifdef ENABLE_WASM_SIMD
bool MWasmTernarySimd128::specializeBitselectConstantMaskAsShuffle(
int8_t shuffle[16]) {
return false;
}
#endif
bool MWasmBinarySimd128::specializeForConstantRhs() {
// Probably many we want to do here
return false;
}
void LIRGenerator::visitWasmBinarySimd128WithConstant(
MWasmBinarySimd128WithConstant* ins) {
MOZ_CRASH("binary SIMD with constant NYI");
}
void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) {
MOZ_CRASH("shift SIMD NYI");
}
void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) {
MOZ_CRASH("shuffle SIMD NYI");
}
void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) {
MOZ_CRASH("replace-lane SIMD NYI");
}
void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) {
MOZ_CRASH("scalar-to-SIMD NYI");
}
void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) {
MOZ_CRASH("unary SIMD NYI");
}
void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) {
MOZ_CRASH("reduce-SIMD NYI");
}
void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) {
MOZ_CRASH("load-lane SIMD NYI");
}
void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) {
MOZ_CRASH("store-lane SIMD NYI");
}