Source code

Revision control

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/mips-shared/Lowering-mips-shared.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/Lowering.h"
#include "jit/MIR.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::FloorLog2;
LAllocation LIRGeneratorMIPSShared::useByteOpRegister(MDefinition* mir) {
return useRegister(mir);
}
LAllocation LIRGeneratorMIPSShared::useByteOpRegisterAtStart(MDefinition* mir) {
return useRegisterAtStart(mir);
}
LAllocation LIRGeneratorMIPSShared::useByteOpRegisterOrNonDoubleConstant(
MDefinition* mir) {
return useRegisterOrNonDoubleConstant(mir);
}
LDefinition LIRGeneratorMIPSShared::tempByteOpRegister() { return temp(); }
// x = !y
void LIRGeneratorMIPSShared::lowerForALU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input) {
ins->setOperand(0, useRegister(input));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
// z = x+y
void LIRGeneratorMIPSShared::lowerForALU(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
void LIRGeneratorMIPSShared::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES, lhs != rhs
? useInt64OrConstant(rhs)
: useInt64OrConstantAtStart(rhs));
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorMIPSShared::lowerForMulInt64(LMulI64* ins, MMul* mir,
MDefinition* lhs,
MDefinition* rhs) {
bool needsTemp = false;
bool cannotAliasRhs = false;
bool reuseInput = true;
#ifdef JS_CODEGEN_MIPS32
needsTemp = true;
cannotAliasRhs = true;
if (rhs->isConstant()) {
int64_t constant = rhs->toConstant()->toInt64();
int32_t shift = mozilla::FloorLog2(constant);
// See special cases in CodeGeneratorMIPSShared::visitMulI64
if (constant >= -1 && constant <= 2) {
needsTemp = false;
}
if (int64_t(1) << shift == constant) {
needsTemp = false;
}
if (mozilla::IsPowerOfTwo(static_cast<uint32_t>(constant + 1)) ||
mozilla::IsPowerOfTwo(static_cast<uint32_t>(constant - 1)))
reuseInput = false;
}
#endif
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES, (lhs != rhs || cannotAliasRhs)
? useInt64OrConstant(rhs)
: useInt64OrConstantAtStart(rhs));
if (needsTemp) {
ins->setTemp(0, temp());
}
if (reuseInput) {
defineInt64ReuseInput(ins, mir, 0);
} else {
defineInt64(ins, mir);
}
}
template <size_t Temps>
void LIRGeneratorMIPSShared::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
#ifdef JS_CODEGEN_MIPS32
if (mir->isRotate()) {
if (!rhs->isConstant()) {
ins->setTemp(0, temp());
}
ins->setInt64Operand(0, useInt64Register(lhs));
} else {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
}
#else
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
#endif
static_assert(LShiftI64::Rhs == INT64_PIECES,
"Assume Rhs is located at INT64_PIECES.");
static_assert(LRotateI64::Count == INT64_PIECES,
"Assume Count is located at INT64_PIECES.");
ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs));
#ifdef JS_CODEGEN_MIPS32
if (mir->isRotate()) {
defineInt64(ins, mir);
} else {
defineInt64ReuseInput(ins, mir, 0);
}
#else
defineInt64ReuseInput(ins, mir, 0);
#endif
}
template void LIRGeneratorMIPSShared::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
template void LIRGeneratorMIPSShared::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
void LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input) {
ins->setOperand(0, useRegister(input));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template <size_t Temps>
void LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegister(rhs));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template void LIRGeneratorMIPSShared::lowerForFPU(
LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs,
MDefinition* rhs);
template void LIRGeneratorMIPSShared::lowerForFPU(
LInstructionHelper<1, 2, 1>* ins, MDefinition* mir, MDefinition* lhs,
MDefinition* rhs);
void LIRGeneratorMIPSShared::lowerForBitAndAndBranch(LBitAndAndBranch* baab,
MInstruction* mir,
MDefinition* lhs,
MDefinition* rhs) {
baab->setOperand(0, useRegisterAtStart(lhs));
baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
add(baab, mir);
}
void LIRGeneratorMIPSShared::lowerWasmBuiltinTruncateToInt32(
MWasmBuiltinTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
if (opd->type() == MIRType::Double) {
define(new (alloc()) LWasmBuiltinTruncateDToInt32(
useRegister(opd), useFixed(ins->tls(), WasmTlsReg),
LDefinition::BogusTemp()),
ins);
return;
}
define(new (alloc()) LWasmBuiltinTruncateFToInt32(
useRegister(opd), useFixed(ins->tls(), WasmTlsReg),
LDefinition::BogusTemp()),
ins);
}
void LIRGeneratorMIPSShared::lowerForShift(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(ins, mir);
}
void LIRGeneratorMIPSShared::lowerDivI(MDiv* div) {
if (div->isUnsigned()) {
lowerUDiv(div);
return;
}
// Division instructions are slow. Division by constant denominators can be
// rewritten to use other instructions.
if (div->rhs()->isConstant()) {
int32_t rhs = div->rhs()->toConstant()->toInt32();
// Check for division by a positive power of two, which is an easy and
// important case to optimize. Note that other optimizations are also
// possible; division by negative powers of two can be optimized in a
// similar manner as positive powers of two, and division by other
// constants can be optimized by a reciprocal multiplication technique.
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LDivPowTwoI* lir =
new (alloc()) LDivPowTwoI(useRegister(div->lhs()), shift, temp());
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
}
LDivI* lir = new (alloc())
LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
}
void LIRGeneratorMIPSShared::lowerMulI(MMul* mul, MDefinition* lhs,
MDefinition* rhs) {
LMulI* lir = new (alloc()) LMulI;
if (mul->fallible()) {
assignSnapshot(lir, mul->bailoutKind());
}
lowerForALU(lir, mul, lhs, rhs);
}
void LIRGeneratorMIPSShared::lowerModI(MMod* mod) {
if (mod->isUnsigned()) {
lowerUMod(mod);
return;
}
if (mod->rhs()->isConstant()) {
int32_t rhs = mod->rhs()->toConstant()->toInt32();
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LModPowTwoI* lir =
new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
} else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) {
LModMaskI* lir = new (alloc())
LModMaskI(useRegister(mod->lhs()), temp(LDefinition::GENERAL),
temp(LDefinition::GENERAL), shift + 1);
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
}
}
LModI* lir =
new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()),
temp(LDefinition::GENERAL));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
}
void LIRGenerator::visitPowHalf(MPowHalf* ins) {
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType::Double);
LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input));
defineReuseInput(lir, ins, 0);
}
LTableSwitch* LIRGeneratorMIPSShared::newLTableSwitch(
const LAllocation& in, const LDefinition& inputCopy,
MTableSwitch* tableswitch) {
return new (alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch);
}
LTableSwitchV* LIRGeneratorMIPSShared::newLTableSwitchV(
MTableSwitch* tableswitch) {
return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(),
tempDouble(), temp(), tableswitch);
}
void LIRGeneratorMIPSShared::lowerUrshD(MUrsh* mir) {
MDefinition* lhs = mir->lhs();
MDefinition* rhs = mir->rhs();
MOZ_ASSERT(lhs->type() == MIRType::Int32);
MOZ_ASSERT(rhs->type() == MIRType::Int32);
LUrshD* lir = new (alloc())
LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
define(lir, mir);
}
void LIRGeneratorMIPSShared::lowerPowOfTwoI(MPow* mir) {
int32_t base = mir->input()->toConstant()->toInt32();
MDefinition* power = mir->power();
auto* lir = new (alloc()) LPowOfTwoI(base, useRegister(power));
assignSnapshot(lir, mir->bailoutKind());
define(lir, mir);
}
void LIRGeneratorMIPSShared::lowerBigIntLsh(MBigIntLsh* ins) {
auto* lir = new (alloc()) LBigIntLsh(
useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorMIPSShared::lowerBigIntRsh(MBigIntRsh* ins) {
auto* lir = new (alloc()) LBigIntRsh(
useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitWasmNeg(MWasmNeg* ins) {
if (ins->type() == MIRType::Int32) {
define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
} else if (ins->type() == MIRType::Float32) {
define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
} else {
MOZ_ASSERT(ins->type() == MIRType::Double);
define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
}
}
void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) {
auto* lir = new (alloc()) LWasmHeapBase(LAllocation());
define(lir, ins);
}
void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
LAllocation ptr;
#ifdef JS_CODEGEN_MIPS32
if (ins->type() == MIRType::Int64) {
ptr = useRegister(base);
} else {
ptr = useRegisterAtStart(base);
}
#else
ptr = useRegisterAtStart(base);
#endif
if (IsUnaligned(ins->access())) {
if (ins->type() == MIRType::Int64) {
auto* lir = new (alloc()) LWasmUnalignedLoadI64(ptr, temp());
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
defineInt64(lir, ins);
return;
}
auto* lir = new (alloc()) LWasmUnalignedLoad(ptr, temp());
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
define(lir, ins);
return;
}
if (ins->type() == MIRType::Int64) {
#ifdef JS_CODEGEN_MIPS32
if (ins->access().isAtomic()) {
auto* lir = new (alloc()) LWasmAtomicLoadI64(ptr);
defineInt64(lir, ins);
return;
}
#endif
auto* lir = new (alloc()) LWasmLoadI64(ptr);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
defineInt64(lir, ins);
return;
}
auto* lir = new (alloc()) LWasmLoad(ptr);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
define(lir, ins);
}
void LIRGenerator::visitWasmStore(MWasmStore* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* value = ins->value();
if (IsUnaligned(ins->access())) {
LAllocation baseAlloc = useRegisterAtStart(base);
if (ins->access().type() == Scalar::Int64) {
LInt64Allocation valueAlloc = useInt64RegisterAtStart(value);
auto* lir =
new (alloc()) LWasmUnalignedStoreI64(baseAlloc, valueAlloc, temp());
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
add(lir, ins);
return;
}
LAllocation valueAlloc = useRegisterAtStart(value);
auto* lir =
new (alloc()) LWasmUnalignedStore(baseAlloc, valueAlloc, temp());
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
add(lir, ins);
return;
}
if (ins->access().type() == Scalar::Int64) {
#ifdef JS_CODEGEN_MIPS32
if (ins->access().isAtomic()) {
auto* lir = new (alloc()) LWasmAtomicStoreI64(
useRegister(base), useInt64Register(value), temp());
add(lir, ins);
return;
}
#endif
LAllocation baseAlloc = useRegisterAtStart(base);
LInt64Allocation valueAlloc = useInt64RegisterAtStart(value);
auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
add(lir, ins);
return;
}
LAllocation baseAlloc = useRegisterAtStart(base);
LAllocation valueAlloc = useRegisterAtStart(value);
auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
add(lir, ins);
}
void LIRGeneratorMIPSShared::lowerUDiv(MDiv* div) {
MDefinition* lhs = div->getOperand(0);
MDefinition* rhs = div->getOperand(1);
LUDivOrMod* lir = new (alloc()) LUDivOrMod;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
}
void LIRGeneratorMIPSShared::lowerUMod(MMod* mod) {
MDefinition* lhs = mod->getOperand(0);
MDefinition* rhs = mod->getOperand(1);
LUDivOrMod* lir = new (alloc()) LUDivOrMod;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
}
void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToDouble* lir =
new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToFloat32* lir =
new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) {
MOZ_ASSERT(ins->access().offset() == 0);
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
LAllocation baseAlloc;
LAllocation limitAlloc;
// For MIPS it is best to keep the 'base' in a register if a bounds check
// is needed.
if (base->isConstant() && !ins->needsBoundsCheck()) {
// A bounds check is only skipped for a positive index.
MOZ_ASSERT(base->toConstant()->toInt32() >= 0);
baseAlloc = LAllocation(base->toConstant());
} else {
baseAlloc = useRegisterAtStart(base);
if (ins->needsBoundsCheck()) {
MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32);
limitAlloc = useRegisterAtStart(boundsCheckLimit);
}
}
define(new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc), ins);
}
void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) {
MOZ_ASSERT(ins->access().offset() == 0);
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
LAllocation baseAlloc;
LAllocation limitAlloc;
if (base->isConstant() && !ins->needsBoundsCheck()) {
MOZ_ASSERT(base->toConstant()->toInt32() >= 0);
baseAlloc = LAllocation(base->toConstant());
} else {
baseAlloc = useRegisterAtStart(base);
if (ins->needsBoundsCheck()) {
MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32);
limitAlloc = useRegisterAtStart(boundsCheckLimit);
}
}
add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()),
limitAlloc),
ins);
}
void LIRGenerator::visitSubstr(MSubstr* ins) {
LSubstr* lir = new (alloc())
LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
useRegister(ins->length()), temp(), temp(), tempByteOpRegister());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitCompareExchangeTypedArrayElement(
MCompareExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
if (Scalar::isBigIntType(ins->arrayType())) {
MOZ_CRASH("NYI");
}
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
const LAllocation newval = useRegister(ins->newval());
const LAllocation oldval = useRegister(ins->oldval());
LDefinition outTemp = LDefinition::BogusTemp();
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
outTemp = temp();
}
if (Scalar::byteSize(ins->arrayType()) < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
LCompareExchangeTypedArrayElement* lir = new (alloc())
LCompareExchangeTypedArrayElement(elements, index, oldval, newval,
outTemp, valueTemp, offsetTemp,
maskTemp);
define(lir, ins);
}
void LIRGenerator::visitAtomicExchangeTypedArrayElement(
MAtomicExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
if (Scalar::isBigIntType(ins->arrayType())) {
MOZ_CRASH("NYI");
}
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
const LAllocation value = useRegister(ins->value());
LDefinition outTemp = LDefinition::BogusTemp();
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
MOZ_ASSERT(ins->type() == MIRType::Double);
outTemp = temp();
}
if (Scalar::byteSize(ins->arrayType()) < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
LAtomicExchangeTypedArrayElement* lir =
new (alloc()) LAtomicExchangeTypedArrayElement(
elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp);
define(lir, ins);
}
void LIRGeneratorMIPSShared::lowerAtomicLoad64(MLoadUnboxedScalar* ins) {
MOZ_CRASH("NYI");
}
void LIRGeneratorMIPSShared::lowerAtomicStore64(MStoreUnboxedScalar* ins) {
MOZ_CRASH("NYI");
}
void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
MOZ_ASSERT(ins->base()->type() == MIRType::Int32);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmCompareExchangeI64(
useRegister(ins->base()), useInt64Register(ins->oldValue()),
useInt64Register(ins->newValue()));
defineInt64(lir, ins);
return;
}
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->access().byteSize() < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap(
useRegister(ins->base()), useRegister(ins->oldValue()),
useRegister(ins->newValue()), valueTemp, offsetTemp, maskTemp);
define(lir, ins);
}
void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
MOZ_ASSERT(ins->base()->type() == MIRType::Int32);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmAtomicExchangeI64(
useRegister(ins->base()), useInt64Register(ins->value()));
defineInt64(lir, ins);
return;
}
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->access().byteSize() < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
LWasmAtomicExchangeHeap* lir = new (alloc()) LWasmAtomicExchangeHeap(
useRegister(ins->base()), useRegister(ins->value()), valueTemp,
offsetTemp, maskTemp);
define(lir, ins);
}
void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
MOZ_ASSERT(ins->base()->type() == MIRType::Int32);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmAtomicBinopI64(
useRegister(ins->base()), useInt64Register(ins->value()));
lir->setTemp(0, temp());
#ifdef JS_CODEGEN_MIPS32
lir->setTemp(1, temp());
#endif
defineInt64(lir, ins);
return;
}
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (ins->access().byteSize() < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
if (!ins->hasUses()) {
LWasmAtomicBinopHeapForEffect* lir = new (alloc())
LWasmAtomicBinopHeapForEffect(useRegister(ins->base()),
useRegister(ins->value()), valueTemp,
offsetTemp, maskTemp);
add(lir, ins);
return;
}
LWasmAtomicBinopHeap* lir = new (alloc())
LWasmAtomicBinopHeap(useRegister(ins->base()), useRegister(ins->value()),
valueTemp, offsetTemp, maskTemp);
define(lir, ins);
}
void LIRGenerator::visitAtomicTypedArrayElementBinop(
MAtomicTypedArrayElementBinop* ins) {
MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation value = useRegister(ins->value());
if (Scalar::isBigIntType(ins->arrayType())) {
MOZ_CRASH("NYI");
}
LDefinition valueTemp = LDefinition::BogusTemp();
LDefinition offsetTemp = LDefinition::BogusTemp();
LDefinition maskTemp = LDefinition::BogusTemp();
if (Scalar::byteSize(ins->arrayType()) < 4) {
valueTemp = temp();
offsetTemp = temp();
maskTemp = temp();
}
if (ins->isForEffect()) {
LAtomicTypedArrayElementBinopForEffect* lir =
new (alloc()) LAtomicTypedArrayElementBinopForEffect(
elements, index, value, valueTemp, offsetTemp, maskTemp);
add(lir, ins);
return;
}
// For a Uint32Array with a known double result we need a temp for
// the intermediate output.
LDefinition outTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
outTemp = temp();
}
LAtomicTypedArrayElementBinop* lir =
new (alloc()) LAtomicTypedArrayElementBinop(
elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp);
define(lir, ins);
}
void LIRGenerator::visitCopySign(MCopySign* ins) {
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(IsFloatingPointType(lhs->type()));
MOZ_ASSERT(lhs->type() == rhs->type());
MOZ_ASSERT(lhs->type() == ins->type());
LInstructionHelper<1, 2, 2>* lir;
if (lhs->type() == MIRType::Double) {
lir = new (alloc()) LCopySignD();
} else {
lir = new (alloc()) LCopySignF();
}
lir->setTemp(0, temp());
lir->setTemp(1, temp());
lir->setOperand(0, useRegisterAtStart(lhs));
lir->setOperand(1, useRegister(rhs));
defineReuseInput(lir, ins, 0);
}
void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
defineInt64(
new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins);
}
void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
defineInt64(new (alloc())
LSignExtendInt64(useInt64RegisterAtStart(ins->input())),
ins);
}
void LIRGenerator::visitWasmBitselectSimd128(MWasmBitselectSimd128* ins) {
MOZ_CRASH("bitselect NYI");
}
void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) {
MOZ_CRASH("binary SIMD NYI");
}
bool MWasmBinarySimd128::specializeForConstantRhs() {
// Probably many we want to do here
return false;
}
void LIRGenerator::visitWasmBinarySimd128WithConstant(
MWasmBinarySimd128WithConstant* ins) {
MOZ_CRASH("binary SIMD with constant NYI");
}
void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) {
MOZ_CRASH("shift SIMD NYI");
}
void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) {
MOZ_CRASH("shuffle SIMD NYI");
}
void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) {
MOZ_CRASH("replace-lane SIMD NYI");
}
void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) {
MOZ_CRASH("scalar-to-SIMD NYI");
}
void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) {
MOZ_CRASH("unary SIMD NYI");
}
void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) {
MOZ_CRASH("reduce-SIMD NYI");
}
void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) {
MOZ_CRASH("load-lane SIMD NYI");
}
void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) {
MOZ_CRASH("store-lane SIMD NYI");
}