Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_loong64_Assembler_loong64_h
#define jit_loong64_Assembler_loong64_h
#include "mozilla/Sprintf.h"
#include <iterator>
#include "jit/CompactBuffer.h"
#include "jit/JitCode.h"
#include "jit/JitSpewer.h"
#include "jit/loong64/Architecture-loong64.h"
#include "jit/shared/Assembler-shared.h"
#include "jit/shared/Disassembler-shared.h"
#include "jit/shared/IonAssemblerBuffer.h"
#include "wasm/WasmTypeDecls.h"
namespace js {
namespace jit {
static constexpr Register zero{Registers::zero};
static constexpr Register ra{Registers::ra};
static constexpr Register tp{Registers::tp};
static constexpr Register sp{Registers::sp};
static constexpr Register a0{Registers::a0};
static constexpr Register a1{Registers::a1};
static constexpr Register a2{Registers::a2};
static constexpr Register a3{Registers::a3};
static constexpr Register a4{Registers::a4};
static constexpr Register a5{Registers::a5};
static constexpr Register a6{Registers::a6};
static constexpr Register a7{Registers::a7};
static constexpr Register t0{Registers::t0};
static constexpr Register t1{Registers::t1};
static constexpr Register t2{Registers::t2};
static constexpr Register t3{Registers::t3};
static constexpr Register t4{Registers::t4};
static constexpr Register t5{Registers::t5};
static constexpr Register t6{Registers::t6};
static constexpr Register t7{Registers::t7};
static constexpr Register t8{Registers::t8};
static constexpr Register rx{Registers::rx};
static constexpr Register fp{Registers::fp};
static constexpr Register s0{Registers::s0};
static constexpr Register s1{Registers::s1};
static constexpr Register s2{Registers::s2};
static constexpr Register s3{Registers::s3};
static constexpr Register s4{Registers::s4};
static constexpr Register s5{Registers::s5};
static constexpr Register s6{Registers::s6};
static constexpr Register s7{Registers::s7};
static constexpr Register s8{Registers::s8};
static constexpr FloatRegister f0{FloatRegisters::f0, FloatRegisters::Double};
static constexpr FloatRegister f1{FloatRegisters::f1, FloatRegisters::Double};
static constexpr FloatRegister f2{FloatRegisters::f2, FloatRegisters::Double};
static constexpr FloatRegister f3{FloatRegisters::f3, FloatRegisters::Double};
static constexpr FloatRegister f4{FloatRegisters::f4, FloatRegisters::Double};
static constexpr FloatRegister f5{FloatRegisters::f5, FloatRegisters::Double};
static constexpr FloatRegister f6{FloatRegisters::f6, FloatRegisters::Double};
static constexpr FloatRegister f7{FloatRegisters::f7, FloatRegisters::Double};
static constexpr FloatRegister f8{FloatRegisters::f8, FloatRegisters::Double};
static constexpr FloatRegister f9{FloatRegisters::f9, FloatRegisters::Double};
static constexpr FloatRegister f10{FloatRegisters::f10, FloatRegisters::Double};
static constexpr FloatRegister f11{FloatRegisters::f11, FloatRegisters::Double};
static constexpr FloatRegister f12{FloatRegisters::f12, FloatRegisters::Double};
static constexpr FloatRegister f13{FloatRegisters::f13, FloatRegisters::Double};
static constexpr FloatRegister f14{FloatRegisters::f14, FloatRegisters::Double};
static constexpr FloatRegister f15{FloatRegisters::f15, FloatRegisters::Double};
static constexpr FloatRegister f16{FloatRegisters::f16, FloatRegisters::Double};
static constexpr FloatRegister f17{FloatRegisters::f17, FloatRegisters::Double};
static constexpr FloatRegister f18{FloatRegisters::f18, FloatRegisters::Double};
static constexpr FloatRegister f19{FloatRegisters::f19, FloatRegisters::Double};
static constexpr FloatRegister f20{FloatRegisters::f20, FloatRegisters::Double};
static constexpr FloatRegister f21{FloatRegisters::f21, FloatRegisters::Double};
static constexpr FloatRegister f22{FloatRegisters::f22, FloatRegisters::Double};
static constexpr FloatRegister f23{FloatRegisters::f23, FloatRegisters::Double};
static constexpr FloatRegister f24{FloatRegisters::f24, FloatRegisters::Double};
static constexpr FloatRegister f25{FloatRegisters::f25, FloatRegisters::Double};
static constexpr FloatRegister f26{FloatRegisters::f26, FloatRegisters::Double};
static constexpr FloatRegister f27{FloatRegisters::f27, FloatRegisters::Double};
static constexpr FloatRegister f28{FloatRegisters::f28, FloatRegisters::Double};
static constexpr FloatRegister f29{FloatRegisters::f29, FloatRegisters::Double};
static constexpr FloatRegister f30{FloatRegisters::f30, FloatRegisters::Double};
static constexpr FloatRegister f31{FloatRegisters::f31, FloatRegisters::Double};
static constexpr Register InvalidReg{Registers::Invalid};
static constexpr FloatRegister InvalidFloatReg;
static constexpr Register StackPointer = sp;
static constexpr Register FramePointer = fp;
static constexpr Register ReturnReg = a0;
static constexpr Register64 ReturnReg64(ReturnReg);
static constexpr FloatRegister ReturnFloat32Reg{FloatRegisters::f0,
FloatRegisters::Single};
static constexpr FloatRegister ReturnDoubleReg = f0;
static constexpr FloatRegister ReturnSimd128Reg = InvalidFloatReg;
static constexpr Register ScratchRegister = t7;
static constexpr Register SecondScratchReg = t8;
// Helper classes for ScratchRegister usage. Asserts that only one piece
// of code thinks it has exclusive ownership of each scratch register.
struct ScratchRegisterScope : public AutoRegisterScope {
explicit ScratchRegisterScope(MacroAssembler& masm)
: AutoRegisterScope(masm, ScratchRegister) {}
};
struct SecondScratchRegisterScope : public AutoRegisterScope {
explicit SecondScratchRegisterScope(MacroAssembler& masm)
: AutoRegisterScope(masm, SecondScratchReg) {}
};
static constexpr FloatRegister ScratchFloat32Reg{FloatRegisters::f23,
FloatRegisters::Single};
static constexpr FloatRegister ScratchDoubleReg = f23;
static constexpr FloatRegister ScratchSimd128Reg = InvalidFloatReg;
struct ScratchFloat32Scope : public AutoFloatRegisterScope {
explicit ScratchFloat32Scope(MacroAssembler& masm)
: AutoFloatRegisterScope(masm, ScratchFloat32Reg) {}
};
struct ScratchDoubleScope : public AutoFloatRegisterScope {
explicit ScratchDoubleScope(MacroAssembler& masm)
: AutoFloatRegisterScope(masm, ScratchDoubleReg) {}
};
// Use arg reg from EnterJIT function as OsrFrameReg.
static constexpr Register OsrFrameReg = a3;
static constexpr Register PreBarrierReg = a1;
static constexpr Register InterpreterPCReg = t0;
static constexpr Register CallTempReg0 = t0;
static constexpr Register CallTempReg1 = t1;
static constexpr Register CallTempReg2 = t2;
static constexpr Register CallTempReg3 = t3;
static constexpr Register CallTempReg4 = t4;
static constexpr Register CallTempReg5 = t5;
static constexpr Register CallTempNonArgRegs[] = {t0, t1, t2, t3};
static const uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs);
static constexpr Register IntArgReg0 = a0;
static constexpr Register IntArgReg1 = a1;
static constexpr Register IntArgReg2 = a2;
static constexpr Register IntArgReg3 = a3;
static constexpr Register IntArgReg4 = a4;
static constexpr Register IntArgReg5 = a5;
static constexpr Register IntArgReg6 = a6;
static constexpr Register IntArgReg7 = a7;
static constexpr Register HeapReg = s7;
// Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use
// JSReturnOperand).
static constexpr Register RegExpMatcherRegExpReg = CallTempReg0;
static constexpr Register RegExpMatcherStringReg = CallTempReg1;
static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2;
// Registers used by RegExpExecTest stub (do not use ReturnReg).
static constexpr Register RegExpExecTestRegExpReg = CallTempReg0;
static constexpr Register RegExpExecTestStringReg = CallTempReg1;
// Registers used by RegExpSearcher stub (do not use ReturnReg).
static constexpr Register RegExpSearcherRegExpReg = CallTempReg0;
static constexpr Register RegExpSearcherStringReg = CallTempReg1;
static constexpr Register RegExpSearcherLastIndexReg = CallTempReg2;
static constexpr Register JSReturnReg_Type = a3;
static constexpr Register JSReturnReg_Data = a2;
static constexpr Register JSReturnReg = a2;
static constexpr ValueOperand JSReturnOperand = ValueOperand(JSReturnReg);
// These registers may be volatile or nonvolatile.
static constexpr Register ABINonArgReg0 = t0;
static constexpr Register ABINonArgReg1 = t1;
static constexpr Register ABINonArgReg2 = t2;
static constexpr Register ABINonArgReg3 = t3;
// These registers may be volatile or nonvolatile.
// Note: these three registers are all guaranteed to be different
static constexpr Register ABINonArgReturnReg0 = t0;
static constexpr Register ABINonArgReturnReg1 = t1;
static constexpr Register ABINonVolatileReg = s0;
// This register is guaranteed to be clobberable during the prologue and
// epilogue of an ABI call which must preserve both ABI argument, return
// and non-volatile registers.
static constexpr Register ABINonArgReturnVolatileReg = ra;
// This register may be volatile or nonvolatile.
// Avoid f23 which is the scratch register.
static constexpr FloatRegister ABINonArgDoubleReg{FloatRegisters::f21,
FloatRegisters::Double};
// Instance pointer argument register for WebAssembly functions. This must not
// alias any other register used for passing function arguments or return
// values. Preserved by WebAssembly functions. Must be nonvolatile.
static constexpr Register InstanceReg = s4;
// Registers used for wasm table calls. These registers must be disjoint
// from the ABI argument registers, InstanceReg and each other.
static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmTableCallSigReg = ABINonArgReg2;
static constexpr Register WasmTableCallIndexReg = ABINonArgReg3;
// Registers used for ref calls.
static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmCallRefReg = ABINonArgReg3;
// Registers used for wasm tail calls operations.
static constexpr Register WasmTailCallInstanceScratchReg = ABINonArgReg1;
static constexpr Register WasmTailCallRAScratchReg = ra;
static constexpr Register WasmTailCallFPScratchReg = ABINonArgReg3;
// Register used as a scratch along the return path in the fast js -> wasm stub
// code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg.
// It must be a volatile register.
static constexpr Register WasmJitEntryReturnScratch = t1;
static constexpr uint32_t ABIStackAlignment = 16;
static constexpr uint32_t CodeAlignment = 16;
static constexpr uint32_t JitStackAlignment = 16;
static constexpr uint32_t JitStackValueAlignment =
JitStackAlignment / sizeof(Value);
static_assert(JitStackAlignment % sizeof(Value) == 0 &&
JitStackValueAlignment >= 1,
"Stack alignment should be a non-zero multiple of sizeof(Value)");
// TODO(loong64): this is just a filler to prevent a build failure. The
// LoongArch SIMD alignment requirements still need to be explored.
static constexpr uint32_t SimdMemoryAlignment = 16;
static_assert(CodeAlignment % SimdMemoryAlignment == 0,
"Code alignment should be larger than any of the alignments "
"which are used for "
"the constant sections of the code buffer. Thus it should be "
"larger than the "
"alignment for SIMD constants.");
static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment;
static const uint32_t WasmTrapInstructionLength = 4;
// See comments in wasm::GenerateFunctionPrologue. The difference between these
// is the size of the largest callable prologue on the platform.
static constexpr uint32_t WasmCheckedCallEntryOffset = 0u;
static constexpr Scale ScalePointer = TimesEight;
// TODO(loong64): Add LoongArch instruction types description.
// LoongArch instruction encoding constants.
static const uint32_t RJShift = 5;
static const uint32_t RJBits = 5;
static const uint32_t RKShift = 10;
static const uint32_t RKBits = 5;
static const uint32_t RDShift = 0;
static const uint32_t RDBits = 5;
static const uint32_t FJShift = 5;
static const uint32_t FJBits = 5;
static const uint32_t FKShift = 10;
static const uint32_t FKBits = 5;
static const uint32_t FDShift = 0;
static const uint32_t FDBits = 5;
static const uint32_t FAShift = 15;
static const uint32_t FABits = 5;
static const uint32_t CJShift = 5;
static const uint32_t CJBits = 3;
static const uint32_t CDShift = 0;
static const uint32_t CDBits = 3;
static const uint32_t CAShift = 15;
static const uint32_t CABits = 3;
static const uint32_t CONDShift = 15;
static const uint32_t CONDBits = 5;
static const uint32_t SAShift = 15;
static const uint32_t SA2Bits = 2;
static const uint32_t SA3Bits = 3;
static const uint32_t LSBWShift = 10;
static const uint32_t LSBWBits = 5;
static const uint32_t LSBDShift = 10;
static const uint32_t LSBDBits = 6;
static const uint32_t MSBWShift = 16;
static const uint32_t MSBWBits = 5;
static const uint32_t MSBDShift = 16;
static const uint32_t MSBDBits = 6;
static const uint32_t Imm5Shift = 10;
static const uint32_t Imm5Bits = 5;
static const uint32_t Imm6Shift = 10;
static const uint32_t Imm6Bits = 6;
static const uint32_t Imm12Shift = 10;
static const uint32_t Imm12Bits = 12;
static const uint32_t Imm14Shift = 10;
static const uint32_t Imm14Bits = 14;
static const uint32_t Imm15Shift = 0;
static const uint32_t Imm15Bits = 15;
static const uint32_t Imm16Shift = 10;
static const uint32_t Imm16Bits = 16;
static const uint32_t Imm20Shift = 5;
static const uint32_t Imm20Bits = 20;
static const uint32_t Imm21Shift = 0;
static const uint32_t Imm21Bits = 21;
static const uint32_t Imm26Shift = 0;
static const uint32_t Imm26Bits = 26;
static const uint32_t CODEShift = 0;
static const uint32_t CODEBits = 15;
static const uint32_t HINTBits = 5;
// LoongArch instruction field bit masks.
static const uint32_t RJMask = (1 << RJBits) - 1;
static const uint32_t RKMask = (1 << RKBits) - 1;
static const uint32_t RDMask = (1 << RDBits) - 1;
static const uint32_t SA2Mask = (1 << SA2Bits) - 1;
static const uint32_t SA3Mask = (1 << SA3Bits) - 1;
static const uint32_t CDMask = (1 << CDBits) - 1;
static const uint32_t CONDMask = (1 << CONDBits) - 1;
static const uint32_t HINTMask = (1 << HINTBits) - 1;
static const uint32_t LSBWMask = (1 << LSBWBits) - 1;
static const uint32_t LSBDMask = (1 << LSBDBits) - 1;
static const uint32_t MSBWMask = (1 << MSBWBits) - 1;
static const uint32_t MSBDMask = (1 << MSBDBits) - 1;
static const uint32_t CODEMask = (1 << CODEBits) - 1;
static const uint32_t Imm5Mask = (1 << Imm5Bits) - 1;
static const uint32_t Imm6Mask = (1 << Imm6Bits) - 1;
static const uint32_t Imm12Mask = (1 << Imm12Bits) - 1;
static const uint32_t Imm14Mask = (1 << Imm14Bits) - 1;
static const uint32_t Imm15Mask = (1 << Imm15Bits) - 1;
static const uint32_t Imm16Mask = (1 << Imm16Bits) - 1;
static const uint32_t Imm20Mask = (1 << Imm20Bits) - 1;
static const uint32_t Imm21Mask = (1 << Imm21Bits) - 1;
static const uint32_t Imm26Mask = (1 << Imm26Bits) - 1;
static const uint32_t BOffImm16Mask = ((1 << Imm16Bits) - 1) << Imm16Shift;
static const uint32_t BOffImm21Mask = ((1 << Imm21Bits) - 1) << Imm21Shift;
static const uint32_t BOffImm26Mask = ((1 << Imm26Bits) - 1) << Imm26Shift;
static const uint32_t RegMask = Registers::Total - 1;
// TODO(loong64) Change to syscall?
static const uint32_t MAX_BREAK_CODE = 1024 - 1;
static const uint32_t WASM_TRAP = 6; // BRK_OVERFLOW
// TODO(loong64) Change to LoongArch instruction type.
class Instruction;
class InstReg;
class InstImm;
class InstJump;
uint32_t RJ(Register r);
uint32_t RK(Register r);
uint32_t RD(Register r);
uint32_t FJ(FloatRegister r);
uint32_t FK(FloatRegister r);
uint32_t FD(FloatRegister r);
uint32_t FA(FloatRegister r);
uint32_t SA2(uint32_t value);
uint32_t SA2(FloatRegister r);
uint32_t SA3(uint32_t value);
uint32_t SA3(FloatRegister r);
Register toRK(Instruction& i);
Register toRJ(Instruction& i);
Register toRD(Instruction& i);
Register toR(Instruction& i);
// LoongArch enums for instruction fields
enum OpcodeField {
op_beqz = 0x10U << 26,
op_bnez = 0x11U << 26,
op_bcz = 0x12U << 26, // bceqz & bcnez
op_jirl = 0x13U << 26,
op_b = 0x14U << 26,
op_bl = 0x15U << 26,
op_beq = 0x16U << 26,
op_bne = 0x17U << 26,
op_blt = 0x18U << 26,
op_bge = 0x19U << 26,
op_bltu = 0x1aU << 26,
op_bgeu = 0x1bU << 26,
op_addu16i_d = 0x4U << 26,
op_lu12i_w = 0xaU << 25,
op_lu32i_d = 0xbU << 25,
op_pcaddi = 0xcU << 25,
op_pcalau12i = 0xdU << 25,
op_pcaddu12i = 0xeU << 25,
op_pcaddu18i = 0xfU << 25,
op_ll_w = 0x20U << 24,
op_sc_w = 0x21U << 24,
op_ll_d = 0x22U << 24,
op_sc_d = 0x23U << 24,
op_ldptr_w = 0x24U << 24,
op_stptr_w = 0x25U << 24,
op_ldptr_d = 0x26U << 24,
op_stptr_d = 0x27U << 24,
op_bstrins_d = 0x2U << 22,
op_bstrpick_d = 0x3U << 22,
op_slti = 0x8U << 22,
op_sltui = 0x9U << 22,
op_addi_w = 0xaU << 22,
op_addi_d = 0xbU << 22,
op_lu52i_d = 0xcU << 22,
op_andi = 0xdU << 22,
op_ori = 0xeU << 22,
op_xori = 0xfU << 22,
op_ld_b = 0xa0U << 22,
op_ld_h = 0xa1U << 22,
op_ld_w = 0xa2U << 22,
op_ld_d = 0xa3U << 22,
op_st_b = 0xa4U << 22,
op_st_h = 0xa5U << 22,
op_st_w = 0xa6U << 22,
op_st_d = 0xa7U << 22,
op_ld_bu = 0xa8U << 22,
op_ld_hu = 0xa9U << 22,
op_ld_wu = 0xaaU << 22,
op_preld = 0xabU << 22,
op_fld_s = 0xacU << 22,
op_fst_s = 0xadU << 22,
op_fld_d = 0xaeU << 22,
op_fst_d = 0xafU << 22,
op_bstr_w = 0x3U << 21, // BSTRINS_W & BSTRPICK_W
op_fmadd_s = 0x81U << 20,
op_fmadd_d = 0x82U << 20,
op_fmsub_s = 0x85U << 20,
op_fmsub_d = 0x86U << 20,
op_fnmadd_s = 0x89U << 20,
op_fnmadd_d = 0x8aU << 20,
op_fnmsub_s = 0x8dU << 20,
op_fnmsub_d = 0x8eU << 20,
op_fcmp_cond_s = 0xc1U << 20,
op_fcmp_cond_d = 0xc2U << 20,
op_bytepick_d = 0x3U << 18,
op_fsel = 0x340U << 18,
op_bytepick_w = 0x4U << 17,
op_alsl_w = 0x2U << 17,
op_alsl_wu = 0x3U << 17,
op_alsl_d = 0x16U << 17,
op_slli_d = 0x41U << 16,
op_srli_d = 0x45U << 16,
op_srai_d = 0x49U << 16,
op_slli_w = 0x81U << 15,
op_srli_w = 0x89U << 15,
op_srai_w = 0x91U << 15,
op_add_w = 0x20U << 15,
op_add_d = 0x21U << 15,
op_sub_w = 0x22U << 15,
op_sub_d = 0x23U << 15,
op_slt = 0x24U << 15,
op_sltu = 0x25U << 15,
op_maskeqz = 0x26U << 15,
op_masknez = 0x27U << 15,
op_nor = 0x28U << 15,
op_and = 0x29U << 15,
op_or = 0x2aU << 15,
op_xor = 0x2bU << 15,
op_orn = 0x2cU << 15,
op_andn = 0x2dU << 15,
op_sll_w = 0x2eU << 15,
op_srl_w = 0x2fU << 15,
op_sra_w = 0x30U << 15,
op_sll_d = 0x31U << 15,
op_srl_d = 0x32U << 15,
op_sra_d = 0x33U << 15,
op_rotr_w = 0x36U << 15,
op_rotr_d = 0x37U << 15,
op_rotri_w = 0x99U << 15,
op_rotri_d = 0x4DU << 16,
op_mul_w = 0x38U << 15,
op_mulh_w = 0x39U << 15,
op_mulh_wu = 0x3aU << 15,
op_mul_d = 0x3bU << 15,
op_mulh_d = 0x3cU << 15,
op_mulh_du = 0x3dU << 15,
op_mulw_d_w = 0x3eU << 15,
op_mulw_d_wu = 0x3fU << 15,
op_div_w = 0x40U << 15,
op_mod_w = 0x41U << 15,
op_div_wu = 0x42U << 15,
op_mod_wu = 0x43U << 15,
op_div_d = 0x44U << 15,
op_mod_d = 0x45U << 15,
op_div_du = 0x46U << 15,
op_mod_du = 0x47U << 15,
op_break = 0x54U << 15,
op_syscall = 0x56U << 15,
op_fadd_s = 0x201U << 15,
op_fadd_d = 0x202U << 15,
op_fsub_s = 0x205U << 15,
op_fsub_d = 0x206U << 15,
op_fmul_s = 0x209U << 15,
op_fmul_d = 0x20aU << 15,
op_fdiv_s = 0x20dU << 15,
op_fdiv_d = 0x20eU << 15,
op_fmax_s = 0x211U << 15,
op_fmax_d = 0x212U << 15,
op_fmin_s = 0x215U << 15,
op_fmin_d = 0x216U << 15,
op_fmaxa_s = 0x219U << 15,
op_fmaxa_d = 0x21aU << 15,
op_fmina_s = 0x21dU << 15,
op_fmina_d = 0x21eU << 15,
op_fcopysign_s = 0x225U << 15,
op_fcopysign_d = 0x226U << 15,
op_ldx_b = 0x7000U << 15,
op_ldx_h = 0x7008U << 15,
op_ldx_w = 0x7010U << 15,
op_ldx_d = 0x7018U << 15,
op_stx_b = 0x7020U << 15,
op_stx_h = 0x7028U << 15,
op_stx_w = 0x7030U << 15,
op_stx_d = 0x7038U << 15,
op_ldx_bu = 0x7040U << 15,
op_ldx_hu = 0x7048U << 15,
op_ldx_wu = 0x7050U << 15,
op_fldx_s = 0x7060U << 15,
op_fldx_d = 0x7068U << 15,
op_fstx_s = 0x7070U << 15,
op_fstx_d = 0x7078U << 15,
op_amswap_w = 0x70c0U << 15,
op_amswap_d = 0x70c1U << 15,
op_amadd_w = 0x70c2U << 15,
op_amadd_d = 0x70c3U << 15,
op_amand_w = 0x70c4U << 15,
op_amand_d = 0x70c5U << 15,
op_amor_w = 0x70c6U << 15,
op_amor_d = 0x70c7U << 15,
op_amxor_w = 0x70c8U << 15,
op_amxor_d = 0x70c9U << 15,
op_ammax_w = 0x70caU << 15,
op_ammax_d = 0x70cbU << 15,
op_ammin_w = 0x70ccU << 15,
op_ammin_d = 0x70cdU << 15,
op_ammax_wu = 0x70ceU << 15,
op_ammax_du = 0x70cfU << 15,
op_ammin_wu = 0x70d0U << 15,
op_ammin_du = 0x70d1U << 15,
op_amswap_db_w = 0x70d2U << 15,
op_amswap_db_d = 0x70d3U << 15,
op_amadd_db_w = 0x70d4U << 15,
op_amadd_db_d = 0x70d5U << 15,
op_amand_db_w = 0x70d6U << 15,
op_amand_db_d = 0x70d7U << 15,
op_amor_db_w = 0x70d8U << 15,
op_amor_db_d = 0x70d9U << 15,
op_amxor_db_w = 0x70daU << 15,
op_amxor_db_d = 0x70dbU << 15,
op_ammax_db_w = 0x70dcU << 15,
op_ammax_db_d = 0x70ddU << 15,
op_ammin_db_w = 0x70deU << 15,
op_ammin_db_d = 0x70dfU << 15,
op_ammax_db_wu = 0x70e0U << 15,
op_ammax_db_du = 0x70e1U << 15,
op_ammin_db_wu = 0x70e2U << 15,
op_ammin_db_du = 0x70e3U << 15,
op_dbar = 0x70e4U << 15,
op_ibar = 0x70e5U << 15,
op_clo_w = 0x4U << 10,
op_clz_w = 0x5U << 10,
op_cto_w = 0x6U << 10,
op_ctz_w = 0x7U << 10,
op_clo_d = 0x8U << 10,
op_clz_d = 0x9U << 10,
op_cto_d = 0xaU << 10,
op_ctz_d = 0xbU << 10,
op_revb_2h = 0xcU << 10,
op_revb_4h = 0xdU << 10,
op_revb_2w = 0xeU << 10,
op_revb_d = 0xfU << 10,
op_revh_2w = 0x10U << 10,
op_revh_d = 0x11U << 10,
op_bitrev_4b = 0x12U << 10,
op_bitrev_8b = 0x13U << 10,
op_bitrev_w = 0x14U << 10,
op_bitrev_d = 0x15U << 10,
op_ext_w_h = 0x16U << 10,
op_ext_w_b = 0x17U << 10,
op_fabs_s = 0x4501U << 10,
op_fabs_d = 0x4502U << 10,
op_fneg_s = 0x4505U << 10,
op_fneg_d = 0x4506U << 10,
op_fsqrt_s = 0x4511U << 10,
op_fsqrt_d = 0x4512U << 10,
op_fmov_s = 0x4525U << 10,
op_fmov_d = 0x4526U << 10,
op_movgr2fr_w = 0x4529U << 10,
op_movgr2fr_d = 0x452aU << 10,
op_movgr2frh_w = 0x452bU << 10,
op_movfr2gr_s = 0x452dU << 10,
op_movfr2gr_d = 0x452eU << 10,
op_movfrh2gr_s = 0x452fU << 10,
op_movgr2fcsr = 0x4530U << 10,
op_movfcsr2gr = 0x4532U << 10,
op_movfr2cf = 0x4534U << 10,
op_movgr2cf = 0x4536U << 10,
op_fcvt_s_d = 0x4646U << 10,
op_fcvt_d_s = 0x4649U << 10,
op_ftintrm_w_s = 0x4681U << 10,
op_ftintrm_w_d = 0x4682U << 10,
op_ftintrm_l_s = 0x4689U << 10,
op_ftintrm_l_d = 0x468aU << 10,
op_ftintrp_w_s = 0x4691U << 10,
op_ftintrp_w_d = 0x4692U << 10,
op_ftintrp_l_s = 0x4699U << 10,
op_ftintrp_l_d = 0x469aU << 10,
op_ftintrz_w_s = 0x46a1U << 10,
op_ftintrz_w_d = 0x46a2U << 10,
op_ftintrz_l_s = 0x46a9U << 10,
op_ftintrz_l_d = 0x46aaU << 10,
op_ftintrne_w_s = 0x46b1U << 10,
op_ftintrne_w_d = 0x46b2U << 10,
op_ftintrne_l_s = 0x46b9U << 10,
op_ftintrne_l_d = 0x46baU << 10,
op_ftint_w_s = 0x46c1U << 10,
op_ftint_w_d = 0x46c2U << 10,
op_ftint_l_s = 0x46c9U << 10,
op_ftint_l_d = 0x46caU << 10,
op_ffint_s_w = 0x4744U << 10,
op_ffint_s_l = 0x4746U << 10,
op_ffint_d_w = 0x4748U << 10,
op_ffint_d_l = 0x474aU << 10,
op_frint_s = 0x4791U << 10,
op_frint_d = 0x4792U << 10,
op_movcf2fr = 0x114d4U << 8,
op_movcf2gr = 0x114dcU << 8,
};
class Operand;
// A BOffImm16 is a 16 bit immediate that is used for branches.
class BOffImm16 {
uint32_t data;
public:
uint32_t encode() {
MOZ_ASSERT(!isInvalid());
return data;
}
int32_t decode() {
MOZ_ASSERT(!isInvalid());
return (int32_t(data << 18) >> 16);
}
explicit BOffImm16(int offset) : data((offset) >> 2 & Imm16Mask) {
MOZ_ASSERT((offset & 0x3) == 0);
MOZ_ASSERT(IsInRange(offset));
}
static bool IsInRange(int offset) {
if ((offset) < int(unsigned(INT16_MIN) << 2)) {
return false;
}
if ((offset) > (INT16_MAX << 2)) {
return false;
}
return true;
}
static const uint32_t INVALID = 0x00020000;
BOffImm16() : data(INVALID) {}
bool isInvalid() { return data == INVALID; }
Instruction* getDest(Instruction* src) const;
BOffImm16(InstImm inst);
};
// A JOffImm26 is a 26 bit immediate that is used for unconditional jumps.
class JOffImm26 {
uint32_t data;
public:
uint32_t encode() {
MOZ_ASSERT(!isInvalid());
return data;
}
int32_t decode() {
MOZ_ASSERT(!isInvalid());
return (int32_t(data << 8) >> 6);
}
explicit JOffImm26(int offset) : data((offset) >> 2 & Imm26Mask) {
MOZ_ASSERT((offset & 0x3) == 0);
MOZ_ASSERT(IsInRange(offset));
}
static bool IsInRange(int offset) {
if ((offset) < -536870912) {
return false;
}
if ((offset) > 536870908) {
return false;
}
return true;
}
static const uint32_t INVALID = 0x20000000;
JOffImm26() : data(INVALID) {}
bool isInvalid() { return data == INVALID; }
Instruction* getDest(Instruction* src);
};
class Imm16 {
uint16_t value;
public:
Imm16();
Imm16(uint32_t imm) : value(imm) {}
uint32_t encode() { return value; }
int32_t decodeSigned() { return value; }
uint32_t decodeUnsigned() { return value; }
static bool IsInSignedRange(int32_t imm) {
return imm >= INT16_MIN && imm <= INT16_MAX;
}
static bool IsInUnsignedRange(uint32_t imm) { return imm <= UINT16_MAX; }
};
class Imm8 {
uint8_t value;
public:
Imm8();
Imm8(uint32_t imm) : value(imm) {}
uint32_t encode(uint32_t shift) { return value << shift; }
int32_t decodeSigned() { return value; }
uint32_t decodeUnsigned() { return value; }
static bool IsInSignedRange(int32_t imm) {
return imm >= INT8_MIN && imm <= INT8_MAX;
}
static bool IsInUnsignedRange(uint32_t imm) { return imm <= UINT8_MAX; }
static Imm8 Lower(Imm16 imm) { return Imm8(imm.decodeSigned() & 0xff); }
static Imm8 Upper(Imm16 imm) {
return Imm8((imm.decodeSigned() >> 8) & 0xff);
}
};
class Operand {
public:
enum Tag { REG, FREG, MEM };
private:
Tag tag : 3;
uint32_t reg : 5;
int32_t offset;
public:
Operand(Register reg_) : tag(REG), reg(reg_.code()) {}
Operand(FloatRegister freg) : tag(FREG), reg(freg.code()) {}
Operand(Register base, Imm32 off)
: tag(MEM), reg(base.code()), offset(off.value) {}
Operand(Register base, int32_t off)
: tag(MEM), reg(base.code()), offset(off) {}
Operand(const Address& addr)
: tag(MEM), reg(addr.base.code()), offset(addr.offset) {}
Tag getTag() const { return tag; }
Register toReg() const {
MOZ_ASSERT(tag == REG);
return Register::FromCode(reg);
}
FloatRegister toFReg() const {
MOZ_ASSERT(tag == FREG);
return FloatRegister::FromCode(reg);
}
void toAddr(Register* r, Imm32* dest) const {
MOZ_ASSERT(tag == MEM);
*r = Register::FromCode(reg);
*dest = Imm32(offset);
}
Address toAddress() const {
MOZ_ASSERT(tag == MEM);
return Address(Register::FromCode(reg), offset);
}
int32_t disp() const {
MOZ_ASSERT(tag == MEM);
return offset;
}
int32_t base() const {
MOZ_ASSERT(tag == MEM);
return reg;
}
Register baseReg() const {
MOZ_ASSERT(tag == MEM);
return Register::FromCode(reg);
}
};
// int check.
inline bool is_intN(int32_t x, unsigned n) {
MOZ_ASSERT((0 < n) && (n < 64));
int32_t limit = static_cast<int32_t>(1) << (n - 1);
return (-limit <= x) && (x < limit);
}
inline bool is_uintN(int32_t x, unsigned n) {
MOZ_ASSERT((0 < n) && (n < (sizeof(x) * 8)));
return !(x >> n);
}
inline Imm32 Imm64::firstHalf() const { return low(); }
inline Imm32 Imm64::secondHalf() const { return hi(); }
static constexpr int32_t SliceSize = 1024;
typedef js::jit::AssemblerBuffer<SliceSize, Instruction> LOONGBuffer;
class LOONGBufferWithExecutableCopy : public LOONGBuffer {
public:
void executableCopy(uint8_t* buffer) {
if (this->oom()) {
return;
}
for (Slice* cur = head; cur != nullptr; cur = cur->getNext()) {
memcpy(buffer, &cur->instructions, cur->length());
buffer += cur->length();
}
}
bool appendRawCode(const uint8_t* code, size_t numBytes) {
if (this->oom()) {
return false;
}
while (numBytes > SliceSize) {
this->putBytes(SliceSize, code);
numBytes -= SliceSize;
code += SliceSize;
}
this->putBytes(numBytes, code);
return !this->oom();
}
};
class AssemblerLOONG64 : public AssemblerShared {
public:
// TODO(loong64): Should we remove these conditions here?
enum Condition {
Equal,
NotEqual,
Above,
AboveOrEqual,
Below,
BelowOrEqual,
GreaterThan,
GreaterThanOrEqual,
GreaterThanOrEqual_Signed,
GreaterThanOrEqual_NotSigned,
LessThan,
LessThan_Signed,
LessThan_NotSigned,
LessThanOrEqual,
Overflow,
CarrySet,
CarryClear,
Signed,
NotSigned,
Zero,
NonZero,
Always,
};
enum DoubleCondition {
DoubleOrdered,
DoubleEqual,
DoubleNotEqual,
DoubleGreaterThan,
DoubleGreaterThanOrEqual,
DoubleLessThan,
DoubleLessThanOrEqual,
DoubleUnordered,
DoubleEqualOrUnordered,
DoubleNotEqualOrUnordered,
DoubleGreaterThanOrUnordered,
DoubleGreaterThanOrEqualOrUnordered,
DoubleLessThanOrUnordered,
DoubleLessThanOrEqualOrUnordered
};
enum FPUCondition {
kNoFPUCondition = -1,
CAF = 0x00,
SAF = 0x01,
CLT = 0x02,
SLT = 0x03,
CEQ = 0x04,
SEQ = 0x05,
CLE = 0x06,
SLE = 0x07,
CUN = 0x08,
SUN = 0x09,
CULT = 0x0a,
SULT = 0x0b,
CUEQ = 0x0c,
SUEQ = 0x0d,
CULE = 0x0e,
SULE = 0x0f,
CNE = 0x10,
SNE = 0x11,
COR = 0x14,
SOR = 0x15,
CUNE = 0x18,
SUNE = 0x19,
};
enum FPConditionBit { FCC0 = 0, FCC1, FFC2, FCC3, FCC4, FCC5, FCC6, FCC7 };
enum FPControl { FCSR = 0 };
enum FCSRBit { CauseI = 24, CauseU, CauseO, CauseZ, CauseV };
enum FloatFormat { SingleFloat, DoubleFloat };
enum JumpOrCall { BranchIsJump, BranchIsCall };
enum FloatTestKind { TestForTrue, TestForFalse };
// :( this should be protected, but since CodeGenerator
// wants to use it, It needs to go out here :(
BufferOffset nextOffset() { return m_buffer.nextOffset(); }
protected:
Instruction* editSrc(BufferOffset bo) { return m_buffer.getInst(bo); }
// structure for fixing up pc-relative loads/jumps when a the machine code
// gets moved (executable copy, gc, etc.)
struct RelativePatch {
// the offset within the code buffer where the value is loaded that
// we want to fix-up
BufferOffset offset;
void* target;
RelocationKind kind;
RelativePatch(BufferOffset offset, void* target, RelocationKind kind)
: offset(offset), target(target), kind(kind) {}
};
js::Vector<RelativePatch, 8, SystemAllocPolicy> jumps_;
CompactBufferWriter jumpRelocations_;
CompactBufferWriter dataRelocations_;
LOONGBufferWithExecutableCopy m_buffer;
#ifdef JS_JITSPEW
Sprinter* printer;
#endif
public:
AssemblerLOONG64()
: m_buffer(),
#ifdef JS_JITSPEW
printer(nullptr),
#endif
isFinished(false) {
}
static Condition InvertCondition(Condition cond);
static DoubleCondition InvertCondition(DoubleCondition cond);
// This is changing the condition codes for cmp a, b to the same codes for cmp
// b, a.
static Condition InvertCmpCondition(Condition cond);
// As opposed to x86/x64 version, the data relocation has to be executed
// before to recover the pointer, and not after.
void writeDataRelocation(ImmGCPtr ptr) {
// Raw GC pointer relocations and Value relocations both end up in
// TraceOneDataRelocation.
if (ptr.value) {
if (gc::IsInsideNursery(ptr.value)) {
embedsNurseryPointers_ = true;
}
dataRelocations_.writeUnsigned(nextOffset().getOffset());
}
}
void assertNoGCThings() const {
#ifdef DEBUG
MOZ_ASSERT(dataRelocations_.length() == 0);
for (auto& j : jumps_) {
MOZ_ASSERT(j.kind == RelocationKind::HARDCODED);
}
#endif
}
public:
void setUnlimitedBuffer() { m_buffer.setUnlimited(); }
bool oom() const;
void setPrinter(Sprinter* sp) {
#ifdef JS_JITSPEW
printer = sp;
#endif
}
#ifdef JS_JITSPEW
inline void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {
if (MOZ_UNLIKELY(printer || JitSpewEnabled(JitSpew_Codegen))) {
va_list va;
va_start(va, fmt);
spew(fmt, va);
va_end(va);
}
}
void decodeBranchInstAndSpew(InstImm branch);
#else
MOZ_ALWAYS_INLINE void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {}
#endif
#ifdef JS_JITSPEW
MOZ_COLD void spew(const char* fmt, va_list va) MOZ_FORMAT_PRINTF(2, 0) {
// Buffer to hold the formatted string. Note that this may contain
// '%' characters, so do not pass it directly to printf functions.
char buf[200];
int i = VsprintfLiteral(buf, fmt, va);
if (i > -1) {
if (printer) {
printer->printf("%s\n", buf);
}
js::jit::JitSpew(js::jit::JitSpew_Codegen, "%s", buf);
}
}
#endif
Register getStackPointer() const { return StackPointer; }
protected:
bool isFinished;
public:
void finish();
bool appendRawCode(const uint8_t* code, size_t numBytes);
bool reserve(size_t size);
bool swapBuffer(wasm::Bytes& bytes);
void executableCopy(void* buffer);
void copyJumpRelocationTable(uint8_t* dest);
void copyDataRelocationTable(uint8_t* dest);
// Size of the instruction stream, in bytes.
size_t size() const;
// Size of the jump relocation table, in bytes.
size_t jumpRelocationTableBytes() const;
size_t dataRelocationTableBytes() const;
// Size of the data table, in bytes.
size_t bytesNeeded() const;
// Write a blob of binary into the instruction stream *OR*
// into a destination address. If dest is nullptr (the default), then the
// instruction gets written into the instruction stream. If dest is not null
// it is interpreted as a pointer to the location that we want the
// instruction to be written.
BufferOffset writeInst(uint32_t x, uint32_t* dest = nullptr);
// A static variant for the cases where we don't want to have an assembler
// object at all. Normally, you would use the dummy (nullptr) object.
static void WriteInstStatic(uint32_t x, uint32_t* dest);
public:
BufferOffset haltingAlign(int alignment);
BufferOffset nopAlign(int alignment);
BufferOffset as_nop() { return as_andi(zero, zero, 0); }
// Branch and jump instructions
BufferOffset as_b(JOffImm26 off);
BufferOffset as_bl(JOffImm26 off);
BufferOffset as_jirl(Register rd, Register rj, BOffImm16 off);
InstImm getBranchCode(JumpOrCall jumpOrCall); // b, bl
InstImm getBranchCode(Register rd, Register rj,
Condition c); // beq, bne, bge, bgeu, blt, bltu
InstImm getBranchCode(Register rj, Condition c); // beqz, bnez
InstImm getBranchCode(FPConditionBit cj); // bceqz, bcnez
// Arithmetic instructions
BufferOffset as_add_w(Register rd, Register rj, Register rk);
BufferOffset as_add_d(Register rd, Register rj, Register rk);
BufferOffset as_sub_w(Register rd, Register rj, Register rk);
BufferOffset as_sub_d(Register rd, Register rj, Register rk);
BufferOffset as_addi_w(Register rd, Register rj, int32_t si12);
BufferOffset as_addi_d(Register rd, Register rj, int32_t si12);
BufferOffset as_addu16i_d(Register rd, Register rj, int32_t si16);
BufferOffset as_alsl_w(Register rd, Register rj, Register rk, uint32_t sa2);
BufferOffset as_alsl_wu(Register rd, Register rj, Register rk, uint32_t sa2);
BufferOffset as_alsl_d(Register rd, Register rj, Register rk, uint32_t sa2);
BufferOffset as_lu12i_w(Register rd, int32_t si20);
BufferOffset as_lu32i_d(Register rd, int32_t si20);
BufferOffset as_lu52i_d(Register rd, Register rj, int32_t si12);
BufferOffset as_slt(Register rd, Register rj, Register rk);
BufferOffset as_sltu(Register rd, Register rj, Register rk);
BufferOffset as_slti(Register rd, Register rj, int32_t si12);
BufferOffset as_sltui(Register rd, Register rj, int32_t si12);
BufferOffset as_pcaddi(Register rd, int32_t si20);
BufferOffset as_pcaddu12i(Register rd, int32_t si20);
BufferOffset as_pcaddu18i(Register rd, int32_t si20);
BufferOffset as_pcalau12i(Register rd, int32_t si20);
BufferOffset as_mul_w(Register rd, Register rj, Register rk);
BufferOffset as_mulh_w(Register rd, Register rj, Register rk);
BufferOffset as_mulh_wu(Register rd, Register rj, Register rk);
BufferOffset as_mul_d(Register rd, Register rj, Register rk);
BufferOffset as_mulh_d(Register rd, Register rj, Register rk);
BufferOffset as_mulh_du(Register rd, Register rj, Register rk);
BufferOffset as_mulw_d_w(Register rd, Register rj, Register rk);
BufferOffset as_mulw_d_wu(Register rd, Register rj, Register rk);
BufferOffset as_div_w(Register rd, Register rj, Register rk);
BufferOffset as_mod_w(Register rd, Register rj, Register rk);
BufferOffset as_div_wu(Register rd, Register rj, Register rk);
BufferOffset as_mod_wu(Register rd, Register rj, Register rk);
BufferOffset as_div_d(Register rd, Register rj, Register rk);
BufferOffset as_mod_d(Register rd, Register rj, Register rk);
BufferOffset as_div_du(Register rd, Register rj, Register rk);
BufferOffset as_mod_du(Register rd, Register rj, Register rk);
// Logical instructions
BufferOffset as_and(Register rd, Register rj, Register rk);
BufferOffset as_or(Register rd, Register rj, Register rk);
BufferOffset as_xor(Register rd, Register rj, Register rk);
BufferOffset as_nor(Register rd, Register rj, Register rk);
BufferOffset as_andn(Register rd, Register rj, Register rk);
BufferOffset as_orn(Register rd, Register rj, Register rk);
BufferOffset as_andi(Register rd, Register rj, int32_t ui12);
BufferOffset as_ori(Register rd, Register rj, int32_t ui12);
BufferOffset as_xori(Register rd, Register rj, int32_t ui12);
// Shift instructions
BufferOffset as_sll_w(Register rd, Register rj, Register rk);
BufferOffset as_srl_w(Register rd, Register rj, Register rk);
BufferOffset as_sra_w(Register rd, Register rj, Register rk);
BufferOffset as_rotr_w(Register rd, Register rj, Register rk);
BufferOffset as_slli_w(Register rd, Register rj, int32_t ui5);
BufferOffset as_srli_w(Register rd, Register rj, int32_t ui5);
BufferOffset as_srai_w(Register rd, Register rj, int32_t ui5);
BufferOffset as_rotri_w(Register rd, Register rj, int32_t ui5);
BufferOffset as_sll_d(Register rd, Register rj, Register rk);
BufferOffset as_srl_d(Register rd, Register rj, Register rk);
BufferOffset as_sra_d(Register rd, Register rj, Register rk);
BufferOffset as_rotr_d(Register rd, Register rj, Register rk);
BufferOffset as_slli_d(Register rd, Register rj, int32_t ui6);
BufferOffset as_srli_d(Register rd, Register rj, int32_t ui6);
BufferOffset as_srai_d(Register rd, Register rj, int32_t ui6);
BufferOffset as_rotri_d(Register rd, Register rj, int32_t ui6);
// Bit operation instrucitons
BufferOffset as_ext_w_b(Register rd, Register rj);
BufferOffset as_ext_w_h(Register rd, Register rj);
BufferOffset as_clo_w(Register rd, Register rj);
BufferOffset as_clz_w(Register rd, Register rj);
BufferOffset as_cto_w(Register rd, Register rj);
BufferOffset as_ctz_w(Register rd, Register rj);
BufferOffset as_clo_d(Register rd, Register rj);
BufferOffset as_clz_d(Register rd, Register rj);
BufferOffset as_cto_d(Register rd, Register rj);
BufferOffset as_ctz_d(Register rd, Register rj);
BufferOffset as_bytepick_w(Register rd, Register rj, Register rk,
int32_t sa2);
BufferOffset as_bytepick_d(Register rd, Register rj, Register rk,
int32_t sa3);
BufferOffset as_revb_2h(Register rd, Register rj);
BufferOffset as_revb_4h(Register rd, Register rj);
BufferOffset as_revb_2w(Register rd, Register rj);
BufferOffset as_revb_d(Register rd, Register rj);
BufferOffset as_revh_2w(Register rd, Register rj);
BufferOffset as_revh_d(Register rd, Register rj);
BufferOffset as_bitrev_4b(Register rd, Register rj);
BufferOffset as_bitrev_8b(Register rd, Register rj);
BufferOffset as_bitrev_w(Register rd, Register rj);
BufferOffset as_bitrev_d(Register rd, Register rj);
BufferOffset as_bstrins_w(Register rd, Register rj, int32_t msbw,
int32_t lsbw);
BufferOffset as_bstrins_d(Register rd, Register rj, int32_t msbd,
int32_t lsbd);
BufferOffset as_bstrpick_w(Register rd, Register rj, int32_t msbw,
int32_t lsbw);
BufferOffset as_bstrpick_d(Register rd, Register rj, int32_t msbd,
int32_t lsbd);
BufferOffset as_maskeqz(Register rd, Register rj, Register rk);
BufferOffset as_masknez(Register rd, Register rj, Register rk);
// Load and store instructions
BufferOffset as_ld_b(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_h(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_w(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_d(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_bu(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_hu(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_wu(Register rd, Register rj, int32_t si12);
BufferOffset as_st_b(Register rd, Register rj, int32_t si12);
BufferOffset as_st_h(Register rd, Register rj, int32_t si12);
BufferOffset as_st_w(Register rd, Register rj, int32_t si12);
BufferOffset as_st_d(Register rd, Register rj, int32_t si12);
BufferOffset as_ldx_b(Register rd, Register rj, Register rk);
BufferOffset as_ldx_h(Register rd, Register rj, Register rk);
BufferOffset as_ldx_w(Register rd, Register rj, Register rk);
BufferOffset as_ldx_d(Register rd, Register rj, Register rk);
BufferOffset as_ldx_bu(Register rd, Register rj, Register rk);
BufferOffset as_ldx_hu(Register rd, Register rj, Register rk);
BufferOffset as_ldx_wu(Register rd, Register rj, Register rk);
BufferOffset as_stx_b(Register rd, Register rj, Register rk);
BufferOffset as_stx_h(Register rd, Register rj, Register rk);
BufferOffset as_stx_w(Register rd, Register rj, Register rk);
BufferOffset as_stx_d(Register rd, Register rj, Register rk);
BufferOffset as_ldptr_w(Register rd, Register rj, int32_t si14);
BufferOffset as_ldptr_d(Register rd, Register rj, int32_t si14);
BufferOffset as_stptr_w(Register rd, Register rj, int32_t si14);
BufferOffset as_stptr_d(Register rd, Register rj, int32_t si14);
BufferOffset as_preld(int32_t hint, Register rj, int32_t si12);
// Atomic instructions
BufferOffset as_amswap_w(Register rd, Register rj, Register rk);
BufferOffset as_amswap_d(Register rd, Register rj, Register rk);
BufferOffset as_amadd_w(Register rd, Register rj, Register rk);
BufferOffset as_amadd_d(Register rd, Register rj, Register rk);
BufferOffset as_amand_w(Register rd, Register rj, Register rk);
BufferOffset as_amand_d(Register rd, Register rj, Register rk);
BufferOffset as_amor_w(Register rd, Register rj, Register rk);
BufferOffset as_amor_d(Register rd, Register rj, Register rk);
BufferOffset as_amxor_w(Register rd, Register rj, Register rk);
BufferOffset as_amxor_d(Register rd, Register rj, Register rk);
BufferOffset as_ammax_w(Register rd, Register rj, Register rk);
BufferOffset as_ammax_d(Register rd, Register rj, Register rk);
BufferOffset as_ammin_w(Register rd, Register rj, Register rk);
BufferOffset as_ammin_d(Register rd, Register rj, Register rk);
BufferOffset as_ammax_wu(Register rd, Register rj, Register rk);
BufferOffset as_ammax_du(Register rd, Register rj, Register rk);
BufferOffset as_ammin_wu(Register rd, Register rj, Register rk);
BufferOffset as_ammin_du(Register rd, Register rj, Register rk);
BufferOffset as_amswap_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amswap_db_d(Register rd, Register rj, Register rk);
BufferOffset as_amadd_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amadd_db_d(Register rd, Register rj, Register rk);
BufferOffset as_amand_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amand_db_d(Register rd, Register rj, Register rk);
BufferOffset as_amor_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amor_db_d(Register rd, Register rj, Register rk);
BufferOffset as_amxor_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amxor_db_d(Register rd, Register rj, Register rk);
BufferOffset as_ammax_db_w(Register rd, Register rj, Register rk);
BufferOffset as_ammax_db_d(Register rd, Register rj, Register rk);
BufferOffset as_ammin_db_w(Register rd, Register rj, Register rk);
BufferOffset as_ammin_db_d(Register rd, Register rj, Register rk);
BufferOffset as_ammax_db_wu(Register rd, Register rj, Register rk);
BufferOffset as_ammax_db_du(Register rd, Register rj, Register rk);
BufferOffset as_ammin_db_wu(Register rd, Register rj, Register rk);
BufferOffset as_ammin_db_du(Register rd, Register rj, Register rk);
BufferOffset as_ll_w(Register rd, Register rj, int32_t si14);
BufferOffset as_ll_d(Register rd, Register rj, int32_t si14);
BufferOffset as_sc_w(Register rd, Register rj, int32_t si14);
BufferOffset as_sc_d(Register rd, Register rj, int32_t si14);
// Barrier instructions
BufferOffset as_dbar(int32_t hint);
BufferOffset as_ibar(int32_t hint);
// FP Arithmetic instructions
BufferOffset as_fadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmul_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmul_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fdiv_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fdiv_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fmadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fmsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fmsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fnmadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fnmadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fnmsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fnmsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fmax_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmax_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmin_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmin_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmaxa_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmaxa_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmina_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmina_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fabs_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_fabs_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fneg_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_fneg_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fsqrt_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_fsqrt_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fcopysign_s(FloatRegister fd, FloatRegister fj,
FloatRegister fk);
BufferOffset as_fcopysign_d(FloatRegister fd, FloatRegister fj,
FloatRegister fk);
// FP compare instructions (fcmp.cond.s fcmp.cond.d)
BufferOffset as_fcmp_cor(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_ceq(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cne(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cle(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_clt(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cun(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cueq(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cune(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cule(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cult(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
// FP conversion instructions
BufferOffset as_fcvt_s_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fcvt_d_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ffint_s_w(FloatRegister fd, FloatRegister fj);
BufferOffset as_ffint_s_l(FloatRegister fd, FloatRegister fj);
BufferOffset as_ffint_d_w(FloatRegister fd, FloatRegister fj);
BufferOffset as_ffint_d_l(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftint_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftint_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftint_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftint_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrm_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrm_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrm_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrm_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrp_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrp_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrp_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrp_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrz_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrz_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrz_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrz_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrne_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrne_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrne_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrne_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_frint_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_frint_d(FloatRegister fd, FloatRegister fj);
// FP mov instructions
BufferOffset as_fmov_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_fmov_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fsel(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FPConditionBit ca);
BufferOffset as_movgr2fr_w(FloatRegister fd, Register rj);
BufferOffset as_movgr2fr_d(FloatRegister fd, Register rj);
BufferOffset as_movgr2frh_w(FloatRegister fd, Register rj);
BufferOffset as_movfr2gr_s(Register rd, FloatRegister fj);
BufferOffset as_movfr2gr_d(Register rd, FloatRegister fj);
BufferOffset as_movfrh2gr_s(Register rd, FloatRegister fj);
BufferOffset as_movgr2fcsr(Register rj);
BufferOffset as_movfcsr2gr(Register rd);
BufferOffset as_movfr2cf(FPConditionBit cd, FloatRegister fj);
BufferOffset as_movcf2fr(FloatRegister fd, FPConditionBit cj);
BufferOffset as_movgr2cf(FPConditionBit cd, Register rj);
BufferOffset as_movcf2gr(Register rd, FPConditionBit cj);
// FP load/store instructions
BufferOffset as_fld_s(FloatRegister fd, Register rj, int32_t si12);
BufferOffset as_fld_d(FloatRegister fd, Register rj, int32_t si12);
BufferOffset as_fst_s(FloatRegister fd, Register rj, int32_t si12);
BufferOffset as_fst_d(FloatRegister fd, Register rj, int32_t si12);
BufferOffset as_fldx_s(FloatRegister fd, Register rj, Register rk);
BufferOffset as_fldx_d(FloatRegister fd, Register rj, Register rk);
BufferOffset as_fstx_s(FloatRegister fd, Register rj, Register rk);
BufferOffset as_fstx_d(FloatRegister fd, Register rj, Register rk);
// label operations
void bind(Label* label, BufferOffset boff = BufferOffset());
virtual void bind(InstImm* inst, uintptr_t branch, uintptr_t target) = 0;
void bind(CodeLabel* label) { label->target()->bind(currentOffset()); }
uint32_t currentOffset() { return nextOffset().getOffset(); }
void retarget(Label* label, Label* target);
void call(Label* label);
void call(void* target);
void as_break(uint32_t code);
public:
static bool SupportsFloatingPoint() {
#if defined(__loongarch_hard_float) || defined(JS_SIMULATOR_LOONG64)
return true;
#else
return false;
#endif
}
static bool SupportsUnalignedAccesses() { return true; }
static bool SupportsFastUnalignedFPAccesses() { return true; }
static bool HasRoundInstruction(RoundingMode mode) { return false; }
protected:
InstImm invertBranch(InstImm branch, BOffImm16 skipOffset);
void addPendingJump(BufferOffset src, ImmPtr target, RelocationKind kind) {
enoughMemory_ &= jumps_.append(RelativePatch(src, target.value, kind));
if (kind == RelocationKind::JITCODE) {
jumpRelocations_.writeUnsigned(src.getOffset());
}
}
void addLongJump(BufferOffset src, BufferOffset dst) {
CodeLabel cl;
cl.patchAt()->bind(src.getOffset());
cl.target()->bind(dst.getOffset());
cl.setLinkMode(CodeLabel::JumpImmediate);
addCodeLabel(std::move(cl));
}
public:
void flushBuffer() {}
void comment(const char* msg) { spew("; %s", msg); }
static uint32_t NopSize() { return 4; }
static void PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm);
static uint8_t* NextInstruction(uint8_t* instruction,
uint32_t* count = nullptr);
static void ToggleToJmp(CodeLocationLabel inst_);
static void ToggleToCmp(CodeLocationLabel inst_);
void verifyHeapAccessDisassembly(uint32_t begin, uint32_t end,
const Disassembler::HeapAccess& heapAccess) {
// Implement this if we implement a disassembler.
}
}; // AssemblerLOONG64
// andi r0, r0, 0
const uint32_t NopInst = 0x03400000;
// An Instruction is a structure for both encoding and decoding any and all
// LoongArch instructions.
class Instruction {
public:
uint32_t data;
protected:
// Standard constructor
Instruction(uint32_t data_) : data(data_) {}
// You should never create an instruction directly. You should create a
// more specific instruction which will eventually call one of these
// constructors for you.
public:
uint32_t encode() const { return data; }
void makeNop() { data = NopInst; }
void setData(uint32_t data) { this->data = data; }
const Instruction& operator=(const Instruction& src) {
data = src.data;
return *this;
}
// Extract the one particular bit.
uint32_t extractBit(uint32_t bit) { return (encode() >> bit) & 1; }
// Extract a bit field out of the instruction
uint32_t extractBitField(uint32_t hi, uint32_t lo) {
return (encode() >> lo) & ((2 << (hi - lo)) - 1);
}
// Get the next instruction in the instruction stream.
// This does neat things like ignoreconstant pools and their guards.
Instruction* next();
// Sometimes, an api wants a uint32_t (or a pointer to it) rather than
// an instruction. raw() just coerces this into a pointer to a uint32_t
const uint32_t* raw() const { return &data; }
uint32_t size() const { return 4; }
}; // Instruction
// make sure that it is the right size
static_assert(sizeof(Instruction) == 4,
"Size of Instruction class has to be 4 bytes.");
class InstNOP : public Instruction {
public:
InstNOP() : Instruction(NopInst) {}
};
// Class for register type instructions.
class InstReg : public Instruction {
public:
InstReg(OpcodeField op, Register rj, Register rd)
: Instruction(op | RJ(rj) | RD(rd)) {}
InstReg(OpcodeField op, Register rk, Register rj, Register rd)
: Instruction(op | RK(rk) | RJ(rj) | RD(rd)) {}
InstReg(OpcodeField op, uint32_t sa, Register rk, Register rj, Register rd,
uint32_t sa_bit)
: Instruction(sa_bit == 2 ? op | SA2(sa) | RK(rk) | RJ(rj) | RD(rd)
: op | SA3(sa) | RK(rk) | RJ(rj) | RD(rd)) {
MOZ_ASSERT(sa_bit == 2 || sa_bit == 3);
}
InstReg(OpcodeField op, Register rj, Register rd, bool HasRd)
: Instruction(HasRd ? op | RJ(rj) | RD(rd) : op | RK(rj) | RJ(rd)) {}
// For floating-point
InstReg(OpcodeField op, Register rj, FloatRegister fd)
: Instruction(op | RJ(rj) | FD(fd)) {}
InstReg(OpcodeField op, FloatRegister fj, FloatRegister fd)
: Instruction(op | FJ(fj) | FD(fd)) {}
InstReg(OpcodeField op, FloatRegister fk, FloatRegister fj, FloatRegister fd)
: Instruction(op | FK(fk) | FJ(fj) | FD(fd)) {}
InstReg(OpcodeField op, Register rk, Register rj, FloatRegister fd)
: Instruction(op | RK(rk) | RJ(rj) | FD(fd)) {}
InstReg(OpcodeField op, FloatRegister fa, FloatRegister fk, FloatRegister fj,
FloatRegister fd)
: Instruction(op | FA(fa) | FK(fk) | FJ(fj) | FD(fd)) {}
InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit ca, FloatRegister fk,
FloatRegister fj, FloatRegister fd)
: Instruction(op | ca << CAShift | FK(fk) | FJ(fj) | FD(fd)) {
MOZ_ASSERT(op == op_fsel);
}
InstReg(OpcodeField op, FloatRegister fj, Register rd)
: Instruction(op | FJ(fj) | RD(rd)) {
MOZ_ASSERT((op == op_movfr2gr_s) || (op == op_movfr2gr_d) ||
(op == op_movfrh2gr_s));
}
InstReg(OpcodeField op, Register rj, uint32_t fd)
: Instruction(op | RJ(rj) | fd) {
MOZ_ASSERT(op == op_movgr2fcsr);
}
InstReg(OpcodeField op, uint32_t fj, Register rd)
: Instruction(op | (fj << FJShift) | RD(rd)) {
MOZ_ASSERT(op == op_movfcsr2gr);
}
InstReg(OpcodeField op, FloatRegister fj, AssemblerLOONG64::FPConditionBit cd)
: Instruction(op | FJ(fj) | cd) {
MOZ_ASSERT(op == op_movfr2cf);
}
InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit cj, FloatRegister fd)
: Instruction(op | (cj << CJShift) | FD(fd)) {
MOZ_ASSERT(op == op_movcf2fr);
}
InstReg(OpcodeField op, Register rj, AssemblerLOONG64::FPConditionBit cd)
: Instruction(op | RJ(rj) | cd) {
MOZ_ASSERT(op == op_movgr2cf);
}
InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit cj, Register rd)
: Instruction(op | (cj << CJShift) | RD(rd)) {
MOZ_ASSERT(op == op_movcf2gr);
}
InstReg(OpcodeField op, int32_t cond, FloatRegister fk, FloatRegister fj,
AssemblerLOONG64::FPConditionBit cd)
: Instruction(op | (cond & CONDMask) << CONDShift | FK(fk) | FJ(fj) |
(cd & CDMask)) {
MOZ_ASSERT(is_uintN(cond, 5));
}
uint32_t extractRK() {
return extractBitField(RKShift + RKBits - 1, RKShift);
}
uint32_t extractRJ() {
return extractBitField(RJShift + RJBits - 1, RJShift);
}
uint32_t extractRD() {
return extractBitField(RDShift + RDBits - 1, RDShift);
}
uint32_t extractSA2() {
return extractBitField(SAShift + SA2Bits - 1, SAShift);
}
uint32_t extractSA3() {
return extractBitField(SAShift + SA3Bits - 1, SAShift);
}
};
// Class for branch, load and store instructions with immediate offset.
class InstImm : public Instruction {
public:
void extractImm16(BOffImm16* dest);
uint32_t genImm(int32_t value, uint32_t value_bits) {
uint32_t imm = value & Imm5Mask;
if (value_bits == 6) {
imm = value & Imm6Mask;
} else if (value_bits == 12) {
imm = value & Imm12Mask;
} else if (value_bits == 14) {
imm = value & Imm14Mask;
}
return imm;
}
InstImm(OpcodeField op, int32_t value, Register rj, Register rd,
uint32_t value_bits)
: Instruction(op | genImm(value, value_bits) << RKShift | RJ(rj) |
RD(rd)) {
MOZ_ASSERT(value_bits == 5 || value_bits == 6 || value_bits == 12 ||
value_bits == 14);
}
InstImm(OpcodeField op, BOffImm16 off, Register rj, Register rd)
: Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift | RJ(rj) |
RD(rd)) {}
InstImm(OpcodeField op, int32_t si21, Register rj, bool NotHasRd)
: Instruction(NotHasRd ? op | (si21 & Imm16Mask) << RKShift | RJ(rj) |
(si21 & Imm21Mask) >> 16
: op | (si21 & Imm20Mask) << Imm20Shift | RD(rj)) {
if (NotHasRd) {
MOZ_ASSERT(op == op_beqz || op == op_bnez);
MOZ_ASSERT(is_intN(si21, 21));
} else {
MOZ_ASSERT(op == op_lu12i_w || op == op_lu32i_d || op == op_pcaddi ||
op == op_pcaddu12i || op == op_pcaddu18i ||
op == op_pcalau12i);
// si20
MOZ_ASSERT(is_intN(si21, 20) || is_uintN(si21, 20));
}
}
InstImm(OpcodeField op, int32_t si21, AssemblerLOONG64::FPConditionBit cj,
bool isNotEqual)
: Instruction(isNotEqual
? op | (si21 & Imm16Mask) << RKShift |
(cj + 8) << CJShift | (si21 & Imm21Mask) >> 16
: op | (si21 & Imm16Mask) << RKShift | cj << CJShift |
(si21 & Imm21Mask) >> 16) {
MOZ_ASSERT(is_intN(si21, 21));
MOZ_ASSERT(op == op_bcz);
MOZ_ASSERT(cj >= 0 && cj <= 7);
}
InstImm(OpcodeField op, Imm16 off, Register rj, Register rd)
: Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift | RJ(rj) |
RD(rd)) {}
InstImm(OpcodeField op, int32_t bit15)
: Instruction(op | (bit15 & Imm15Mask)) {
MOZ_ASSERT(is_uintN(bit15, 15));
}
InstImm(OpcodeField op, int32_t bit26, bool jump)
: Instruction(op | (bit26 & Imm16Mask) << Imm16Shift |
(bit26 & Imm26Mask) >> 16) {
MOZ_ASSERT(is_intN(bit26, 26));
}
InstImm(OpcodeField op, int32_t si12, Register rj, int32_t hint)
: Instruction(op | (si12 & Imm12Mask) << Imm12Shift | RJ(rj) |
(hint & HINTMask)) {
MOZ_ASSERT(op == op_preld);
}
InstImm(OpcodeField op, int32_t msb, int32_t lsb, Register rj, Register rd,
uint32_t sb_bits)
: Instruction((sb_bits == 5)
? op | (msb & MSBWMask) << MSBWShift |
(lsb & LSBWMask) << LSBWShift | RJ(rj) | RD(rd)
: op | (msb & MSBDMask) << MSBDShift |
(lsb & LSBDMask) << LSBDShift | RJ(rj) | RD(rd)) {
MOZ_ASSERT(sb_bits == 5 || sb_bits == 6);
MOZ_ASSERT(op == op_bstr_w || op == op_bstrins_d || op == op_bstrpick_d);
}
InstImm(OpcodeField op, int32_t msb, int32_t lsb, Register rj, Register rd)
: Instruction(op | (msb & MSBWMask) << MSBWShift |
((lsb + 0x20) & LSBDMask) << LSBWShift | RJ(rj) | RD(rd)) {
MOZ_ASSERT(op == op_bstr_w);
}
// For floating-point loads and stores.
InstImm(OpcodeField op, int32_t si12, Register rj, FloatRegister fd)
: Instruction(op | (si12 & Imm12Mask) << Imm12Shift | RJ(rj) | FD(fd)) {
MOZ_ASSERT(is_intN(si12, 12));
}
void setOpcode(OpcodeField op, uint32_t opBits) {
// opBits not greater than 24.
MOZ_ASSERT(opBits < 25);
uint32_t OpcodeShift = 32 - opBits;
uint32_t OpcodeMask = ((1 << opBits) - 1) << OpcodeShift;
data = (data & ~OpcodeMask) | op;
}
uint32_t extractRK() {
return extractBitField(RKShift + RKBits - 1, RKShift);
}
uint32_t extractRJ() {
return extractBitField(RJShift + RJBits - 1, RJShift);
}
void setRJ(uint32_t rj) {
data = (data & ~(RJMask << RJShift)) | (rj << RJShift);
}
uint32_t extractRD() {
return extractBitField(RDShift + RDBits - 1, RDShift);
}
uint32_t extractImm16Value() {
return extractBitField(Imm16Shift + Imm16Bits - 1, Imm16Shift);
}
void setBOffImm16(BOffImm16 off) {
// Reset immediate field and replace it
data = (data & ~BOffImm16Mask) | (off.encode() << Imm16Shift);
}
void setImm21(int32_t off) {
// Reset immediate field and replace it
uint32_t low16 = (off >> 2) & Imm16Mask;
int32_t high5 = (off >> 18) & Imm5Mask;
uint32_t fcc_info = (data >> 5) & 0x1F;
data = (data & ~BOffImm26Mask) | (low16 << Imm16Shift) | high5 |
(fcc_info << 5);
}
};
// Class for Jump type instructions.
class InstJump : public Instruction {
public:
InstJump(OpcodeField op, JOffImm26 off)
: Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift |
(off.encode() & Imm26Mask) >> 16) {
MOZ_ASSERT(op == op_b || op == op_bl);
}
void setJOffImm26(JOffImm26 off) {
// Reset immediate field and replace it
data = (data & ~BOffImm26Mask) |
((off.encode() & Imm16Mask) << Imm16Shift) |
((off.encode() >> 16) & 0x3ff);
}
uint32_t extractImm26Value() {
return extractBitField(Imm26Shift + Imm26Bits - 1, Imm26Shift);
}
};
class ABIArgGenerator {
public:
ABIArgGenerator()
: intRegIndex_(0), floatRegIndex_(0), stackOffset_(0), current_() {}
ABIArg next(MIRType argType);
ABIArg& current() { return current_; }
uint32_t stackBytesConsumedSoFar() const { return stackOffset_; }
void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; }
protected:
unsigned intRegIndex_;
unsigned floatRegIndex_;
uint32_t stackOffset_;
ABIArg current_;
};
class Assembler : public AssemblerLOONG64 {
public:
Assembler() : AssemblerLOONG64() {}
static uintptr_t GetPointer(uint8_t*);
using AssemblerLOONG64::bind;
static void Bind(uint8_t* rawCode, const CodeLabel& label);
void processCodeLabels(uint8_t* rawCode);
static void TraceJumpRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader);
static void TraceDataRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader);
void bind(InstImm* inst, uintptr_t branch, uintptr_t target);
// Copy the assembly code to the given buffer, and perform any pending
// relocations relying on the target address.
void executableCopy(uint8_t* buffer);
static uint32_t PatchWrite_NearCallSize();
static uint64_t ExtractLoad64Value(Instruction* inst0);
static void UpdateLoad64Value(Instruction* inst0, uint64_t value);
static void WriteLoad64Instructions(Instruction* inst0, Register reg,
uint64_t value);
static void PatchWrite_NearCall(CodeLocationLabel start,
CodeLocationLabel toCall);
static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue,
ImmPtr expectedValue);
static void PatchDataWithValueCheck(CodeLocationLabel label,
PatchedImmPtr newValue,
PatchedImmPtr expectedValue);
static uint64_t ExtractInstructionImmediate(uint8_t* code);
static void ToggleCall(CodeLocationLabel inst_, bool enabled);
}; // Assembler
static const uint32_t NumIntArgRegs = 8;
static const uint32_t NumFloatArgRegs = 8;
static inline bool GetIntArgReg(uint32_t usedIntArgs, Register* out) {
if (usedIntArgs < NumIntArgRegs) {
*out = Register::FromCode(a0.code() + usedIntArgs);
return true;
}
return false;
}
static inline bool GetFloatArgReg(uint32_t usedFloatArgs, FloatRegister* out) {
if (usedFloatArgs < NumFloatArgRegs) {
*out = FloatRegister::FromCode(f0.code() + usedFloatArgs);
return true;
}
return false;
}
// Get a register in which we plan to put a quantity that will be used as an
// integer argument. This differs from GetIntArgReg in that if we have no more
// actual argument registers to use we will fall back on using whatever
// CallTempReg* don't overlap the argument registers, and only fail once those
// run out too.
static inline bool GetTempRegForIntArg(uint32_t usedIntArgs,
uint32_t usedFloatArgs, Register* out) {
// NOTE: We can't properly determine which regs are used if there are
// float arguments. If this is needed, we will have to guess.
MOZ_ASSERT(usedFloatArgs == 0);
if (GetIntArgReg(usedIntArgs, out)) {
return true;
}
// Unfortunately, we have to assume things about the point at which
// GetIntArgReg returns false, because we need to know how many registers it
// can allocate.
usedIntArgs -= NumIntArgRegs;
if (usedIntArgs >= NumCallTempNonArgRegs) {
return false;
}
*out = CallTempNonArgRegs[usedIntArgs];
return true;
}
} // namespace jit
} // namespace js
#endif /* jit_loong64_Assembler_loong64_h */