Source code

Revision control

Copy as Markdown

Other Tools

// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "jit/arm64/vixl/MacroAssembler-vixl.h"
#include <ctype.h>
#include <limits>
namespace vixl {
MacroAssembler::MacroAssembler()
: js::jit::Assembler(),
sp_(x28),
tmp_list_(ip0, ip1),
fptmp_list_(d31)
{
}
void MacroAssembler::FinalizeCode() {
Assembler::FinalizeCode();
}
int MacroAssembler::MoveImmediateHelper(MacroAssembler* masm,
const Register &rd,
uint64_t imm) {
bool emit_code = (masm != NULL);
VIXL_ASSERT(IsUint32(imm) || IsInt32(imm) || rd.Is64Bits());
// The worst case for size is mov 64-bit immediate to sp:
// * up to 4 instructions to materialise the constant
// * 1 instruction to move to sp
MacroEmissionCheckScope guard(masm);
// Immediates on Aarch64 can be produced using an initial value, and zero to
// three move keep operations.
//
// Initial values can be generated with:
// 1. 64-bit move zero (movz).
// 2. 32-bit move inverted (movn).
// 3. 64-bit move inverted.
// 4. 32-bit orr immediate.
// 5. 64-bit orr immediate.
// Move-keep may then be used to modify each of the 16-bit half words.
//
// The code below supports all five initial value generators, and
// applying move-keep operations to move-zero and move-inverted initial
// values.
// Try to move the immediate in one instruction, and if that fails, switch to
// using multiple instructions.
if (OneInstrMoveImmediateHelper(masm, rd, imm)) {
return 1;
} else {
int instruction_count = 0;
unsigned reg_size = rd.size();
// Generic immediate case. Imm will be represented by
// [imm3, imm2, imm1, imm0], where each imm is 16 bits.
// A move-zero or move-inverted is generated for the first non-zero or
// non-0xffff immX, and a move-keep for subsequent non-zero immX.
uint64_t ignored_halfword = 0;
bool invert_move = false;
// If the number of 0xffff halfwords is greater than the number of 0x0000
// halfwords, it's more efficient to use move-inverted.
if (CountClearHalfWords(~imm, reg_size) >
CountClearHalfWords(imm, reg_size)) {
ignored_halfword = 0xffff;
invert_move = true;
}
// Mov instructions can't move values into the stack pointer, so set up a
// temporary register, if needed.
UseScratchRegisterScope temps;
Register temp;
if (emit_code) {
temps.Open(masm);
temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
}
// Iterate through the halfwords. Use movn/movz for the first non-ignored
// halfword, and movk for subsequent halfwords.
VIXL_ASSERT((reg_size % 16) == 0);
bool first_mov_done = false;
for (unsigned i = 0; i < (temp.size() / 16); i++) {
uint64_t imm16 = (imm >> (16 * i)) & 0xffff;
if (imm16 != ignored_halfword) {
if (!first_mov_done) {
if (invert_move) {
if (emit_code) masm->movn(temp, ~imm16 & 0xffff, 16 * i);
instruction_count++;
} else {
if (emit_code) masm->movz(temp, imm16, 16 * i);
instruction_count++;
}
first_mov_done = true;
} else {
// Construct a wider constant.
if (emit_code) masm->movk(temp, imm16, 16 * i);
instruction_count++;
}
}
}
VIXL_ASSERT(first_mov_done);
// Move the temporary if the original destination register was the stack
// pointer.
if (rd.IsSP()) {
if (emit_code) masm->mov(rd, temp);
instruction_count++;
}
return instruction_count;
}
}
bool MacroAssembler::OneInstrMoveImmediateHelper(MacroAssembler* masm,
const Register& dst,
int64_t imm) {
bool emit_code = masm != NULL;
unsigned n, imm_s, imm_r;
int reg_size = dst.size();
if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
// Immediate can be represented in a move zero instruction. Movz can't write
// to the stack pointer.
if (emit_code) {
masm->movz(dst, imm);
}
return true;
} else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
// Immediate can be represented in a move negative instruction. Movn can't
// write to the stack pointer.
if (emit_code) {
masm->movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
}
return true;
} else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
// Immediate can be represented in a logical orr instruction.
VIXL_ASSERT(!dst.IsZero());
if (emit_code) {
masm->LogicalImmediate(
dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
}
return true;
}
return false;
}
void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
VIXL_ASSERT((reg.Is(NoReg) || (type >= kBranchTypeFirstUsingReg)) &&
((bit == -1) || (type >= kBranchTypeFirstUsingBit)));
if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
B(static_cast<Condition>(type), label);
} else {
switch (type) {
case always: B(label); break;
case never: break;
case reg_zero: Cbz(reg, label); break;
case reg_not_zero: Cbnz(reg, label); break;
case reg_bit_clear: Tbz(reg, bit, label); break;
case reg_bit_set: Tbnz(reg, bit, label); break;
default:
VIXL_UNREACHABLE();
}
}
}
void MacroAssembler::B(Label* label) {
SingleEmissionCheckScope guard(this);
b(label);
}
void MacroAssembler::B(Label* label, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
EmissionCheckScope guard(this, 2 * kInstructionSize);
if (label->bound() && LabelIsOutOfRange(label, CondBranchType)) {
Label done;
b(&done, InvertCondition(cond));
b(label);
bind(&done);
} else {
b(label, cond);
}
}
void MacroAssembler::Cbnz(const Register& rt, Label* label) {
VIXL_ASSERT(!rt.IsZero());
EmissionCheckScope guard(this, 2 * kInstructionSize);
if (label->bound() && LabelIsOutOfRange(label, CondBranchType)) {
Label done;
cbz(rt, &done);
b(label);
bind(&done);
} else {
cbnz(rt, label);
}
}
void MacroAssembler::Cbz(const Register& rt, Label* label) {
VIXL_ASSERT(!rt.IsZero());
EmissionCheckScope guard(this, 2 * kInstructionSize);
if (label->bound() && LabelIsOutOfRange(label, CondBranchType)) {
Label done;
cbnz(rt, &done);
b(label);
bind(&done);
} else {
cbz(rt, label);
}
}
void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
VIXL_ASSERT(!rt.IsZero());
EmissionCheckScope guard(this, 2 * kInstructionSize);
if (label->bound() && LabelIsOutOfRange(label, TestBranchType)) {
Label done;
tbz(rt, bit_pos, &done);
b(label);
bind(&done);
} else {
tbnz(rt, bit_pos, label);
}
}
void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
VIXL_ASSERT(!rt.IsZero());
EmissionCheckScope guard(this, 2 * kInstructionSize);
if (label->bound() && LabelIsOutOfRange(label, TestBranchType)) {
Label done;
tbnz(rt, bit_pos, &done);
b(label);
bind(&done);
} else {
tbz(rt, bit_pos, label);
}
}
void MacroAssembler::And(const Register& rd,
const Register& rn,
const Operand& operand) {
LogicalMacro(rd, rn, operand, AND);
}
void MacroAssembler::Ands(const Register& rd,
const Register& rn,
const Operand& operand) {
LogicalMacro(rd, rn, operand, ANDS);
}
void MacroAssembler::Tst(const Register& rn,
const Operand& operand) {
Ands(AppropriateZeroRegFor(rn), rn, operand);
}
void MacroAssembler::Bic(const Register& rd,
const Register& rn,
const Operand& operand) {
LogicalMacro(rd, rn, operand, BIC);
}
void MacroAssembler::Bics(const Register& rd,
const Register& rn,
const Operand& operand) {
LogicalMacro(rd, rn, operand, BICS);
}
void MacroAssembler::Orr(const Register& rd,
const Register& rn,
const Operand& operand) {
LogicalMacro(rd, rn, operand, ORR);
}
void MacroAssembler::Orn(const Register& rd,
const Register& rn,
const Operand& operand) {
LogicalMacro(rd, rn, operand, ORN);
}
void MacroAssembler::Eor(const Register& rd,
const Register& rn,
const Operand& operand) {
LogicalMacro(rd, rn, operand, EOR);
}
void MacroAssembler::Eon(const Register& rd,
const Register& rn,
const Operand& operand) {
LogicalMacro(rd, rn, operand, EON);
}
void MacroAssembler::LogicalMacro(const Register& rd,
const Register& rn,
const Operand& operand,
LogicalOp op) {
// The worst case for size is logical immediate to sp:
// * up to 4 instructions to materialise the constant
// * 1 instruction to do the operation
// * 1 instruction to move to sp
MacroEmissionCheckScope guard(this);
UseScratchRegisterScope temps(this);
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
unsigned reg_size = rd.size();
// If the operation is NOT, invert the operation and immediate.
if ((op & NOT) == NOT) {
op = static_cast<LogicalOp>(op & ~NOT);
immediate = ~immediate;
}
// Ignore the top 32 bits of an immediate if we're moving to a W register.
if (rd.Is32Bits()) {
// Check that the top 32 bits are consistent.
VIXL_ASSERT(((immediate >> kWRegSize) == 0) ||
((immediate >> kWRegSize) == -1));
immediate &= kWRegMask;
}
VIXL_ASSERT(rd.Is64Bits() || IsUint32(immediate));
// Special cases for all set or all clear immediates.
if (immediate == 0) {
switch (op) {
case AND:
Mov(rd, 0);
return;
case ORR:
VIXL_FALLTHROUGH();
case EOR:
Mov(rd, rn);
return;
case ANDS:
VIXL_FALLTHROUGH();
case BICS:
break;
default:
VIXL_UNREACHABLE();
}
} else if ((rd.Is64Bits() && (immediate == -1)) ||
(rd.Is32Bits() && (immediate == 0xffffffff))) {
switch (op) {
case AND:
Mov(rd, rn);
return;
case ORR:
Mov(rd, immediate);
return;
case EOR:
Mvn(rd, rn);
return;
case ANDS:
VIXL_FALLTHROUGH();
case BICS:
break;
default:
VIXL_UNREACHABLE();
}
}
unsigned n, imm_s, imm_r;
if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
// Immediate can be encoded in the instruction.
LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
} else {
// Immediate can't be encoded: synthesize using move immediate.
Register temp = temps.AcquireSameSizeAs(rn);
// If the left-hand input is the stack pointer, we can't pre-shift the
// immediate, as the encoding won't allow the subsequent post shift.
PreShiftImmMode mode = rn.IsSP() ? kNoShift : kAnyShift;
Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate, mode);
// VIXL can acquire temp registers. Assert that the caller is aware.
VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn));
VIXL_ASSERT(!temp.Is(operand.maybeReg()));
if (rd.Is(sp)) {
// If rd is the stack pointer we cannot use it as the destination
// register so we use the temp register as an intermediate again.
Logical(temp, rn, imm_operand, op);
Mov(sp, temp);
} else {
Logical(rd, rn, imm_operand, op);
}
}
} else if (operand.IsExtendedRegister()) {
VIXL_ASSERT(operand.reg().size() <= rd.size());
// Add/sub extended supports shift <= 4. We want to support exactly the
// same modes here.
VIXL_ASSERT(operand.shift_amount() <= 4);
VIXL_ASSERT(operand.reg().Is64Bits() ||
((operand.extend() != UXTX) && (operand.extend() != SXTX)));
temps.Exclude(operand.reg());
Register temp = temps.AcquireSameSizeAs(rn);
// VIXL can acquire temp registers. Assert that the caller is aware.
VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn));
VIXL_ASSERT(!temp.Is(operand.maybeReg()));
EmitExtendShift(temp, operand.reg(), operand.extend(),
operand.shift_amount());
Logical(rd, rn, Operand(temp), op);
} else {
// The operand can be encoded in the instruction.
VIXL_ASSERT(operand.IsShiftedRegister());
Logical(rd, rn, operand, op);
}
}
void MacroAssembler::Mov(const Register& rd,
const Operand& operand,
DiscardMoveMode discard_mode) {
// The worst case for size is mov immediate with up to 4 instructions.
MacroEmissionCheckScope guard(this);
if (operand.IsImmediate()) {
// Call the macro assembler for generic immediates.
Mov(rd, operand.immediate());
} else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
// Emit a shift instruction if moving a shifted register. This operation
// could also be achieved using an orr instruction (like orn used by Mvn),
// but using a shift instruction makes the disassembly clearer.
EmitShift(rd, operand.reg(), operand.shift(), operand.shift_amount());
} else if (operand.IsExtendedRegister()) {
// Emit an extend instruction if moving an extended register. This handles
// extend with post-shift operations, too.
EmitExtendShift(rd, operand.reg(), operand.extend(),
operand.shift_amount());
} else {
// Otherwise, emit a register move only if the registers are distinct, or
// if they are not X registers.
//
// Note that mov(w0, w0) is not a no-op because it clears the top word of
// x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
// registers is not required to clear the top word of the X register. In
// this case, the instruction is discarded.
//
// If the sp is an operand, add #0 is emitted, otherwise, orr #0.
if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
(discard_mode == kDontDiscardForSameWReg))) {
mov(rd, operand.reg());
}
}
}
void MacroAssembler::Movi16bitHelper(const VRegister& vd, uint64_t imm) {
VIXL_ASSERT(IsUint16(imm));
int byte1 = (imm & 0xff);
int byte2 = ((imm >> 8) & 0xff);
if (byte1 == byte2) {
movi(vd.Is64Bits() ? vd.V8B() : vd.V16B(), byte1);
} else if (byte1 == 0) {
movi(vd, byte2, LSL, 8);
} else if (byte2 == 0) {
movi(vd, byte1);
} else if (byte1 == 0xff) {
mvni(vd, ~byte2 & 0xff, LSL, 8);
} else if (byte2 == 0xff) {
mvni(vd, ~byte1 & 0xff);
} else {
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireW();
movz(temp, imm);
dup(vd, temp);
}
}
void MacroAssembler::Movi32bitHelper(const VRegister& vd, uint64_t imm) {
VIXL_ASSERT(IsUint32(imm));
uint8_t bytes[sizeof(imm)];
memcpy(bytes, &imm, sizeof(imm));
// All bytes are either 0x00 or 0xff.
{
bool all0orff = true;
for (int i = 0; i < 4; ++i) {
if ((bytes[i] != 0) && (bytes[i] != 0xff)) {
all0orff = false;
break;
}
}
if (all0orff == true) {
movi(vd.Is64Bits() ? vd.V1D() : vd.V2D(), ((imm << 32) | imm));
return;
}
}
// Of the 4 bytes, only one byte is non-zero.
for (int i = 0; i < 4; i++) {
if ((imm & (0xff << (i * 8))) == imm) {
movi(vd, bytes[i], LSL, i * 8);
return;
}
}
// Of the 4 bytes, only one byte is not 0xff.
for (int i = 0; i < 4; i++) {
uint32_t mask = ~(0xff << (i * 8));
if ((imm & mask) == mask) {
mvni(vd, ~bytes[i] & 0xff, LSL, i * 8);
return;
}
}
// Immediate is of the form 0x00MMFFFF.
if ((imm & 0xff00ffff) == 0x0000ffff) {
movi(vd, bytes[2], MSL, 16);
return;
}
// Immediate is of the form 0x0000MMFF.
if ((imm & 0xffff00ff) == 0x000000ff) {
movi(vd, bytes[1], MSL, 8);
return;
}
// Immediate is of the form 0xFFMM0000.
if ((imm & 0xff00ffff) == 0xff000000) {
mvni(vd, ~bytes[2] & 0xff, MSL, 16);
return;
}
// Immediate is of the form 0xFFFFMM00.
if ((imm & 0xffff00ff) == 0xffff0000) {
mvni(vd, ~bytes[1] & 0xff, MSL, 8);
return;
}
// Top and bottom 16-bits are equal.
if (((imm >> 16) & 0xffff) == (imm & 0xffff)) {
Movi16bitHelper(vd.Is64Bits() ? vd.V4H() : vd.V8H(), imm & 0xffff);
return;
}
// Default case.
{
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireW();
Mov(temp, imm);
dup(vd, temp);
}
}
void MacroAssembler::Movi64bitHelper(const VRegister& vd, uint64_t imm) {
// All bytes are either 0x00 or 0xff.
{
bool all0orff = true;
for (int i = 0; i < 8; ++i) {
int byteval = (imm >> (i * 8)) & 0xff;
if (byteval != 0 && byteval != 0xff) {
all0orff = false;
break;
}
}
if (all0orff == true) {
movi(vd, imm);
return;
}
}
// Top and bottom 32-bits are equal.
if (((imm >> 32) & 0xffffffff) == (imm & 0xffffffff)) {
Movi32bitHelper(vd.Is64Bits() ? vd.V2S() : vd.V4S(), imm & 0xffffffff);
return;
}
// Default case.
{
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireX();
Mov(temp, imm);
if (vd.Is1D()) {
mov(vd.D(), 0, temp);
} else {
dup(vd.V2D(), temp);
}
}
}
void MacroAssembler::Movi(const VRegister& vd,
uint64_t imm,
Shift shift,
int shift_amount) {
MacroEmissionCheckScope guard(this);
if (shift_amount != 0 || shift != LSL) {
movi(vd, imm, shift, shift_amount);
} else if (vd.Is8B() || vd.Is16B()) {
// 8-bit immediate.
VIXL_ASSERT(IsUint8(imm));
movi(vd, imm);
} else if (vd.Is4H() || vd.Is8H()) {
// 16-bit immediate.
Movi16bitHelper(vd, imm);
} else if (vd.Is2S() || vd.Is4S()) {
// 32-bit immediate.
Movi32bitHelper(vd, imm);
} else {
// 64-bit immediate.
Movi64bitHelper(vd, imm);
}
}
void MacroAssembler::Movi(const VRegister& vd,
uint64_t hi,
uint64_t lo) {
VIXL_ASSERT(vd.Is128Bits());
UseScratchRegisterScope temps(this);
// When hi == lo, the following generates good code.
//
// In situations where the constants are complex and hi != lo, the following
// can turn into up to 10 instructions: 2*(mov + 3*movk + dup/insert). To do
// any better, we could try to estimate whether splatting the high value and
// updating the low value would generate fewer instructions than vice versa
// (what we do now).
//
// (A PC-relative load from memory to the vector register (ADR + LD2) is going
// to have fairly high latency but is fairly compact; not clear what the best
// tradeoff is.)
Movi(vd.V2D(), lo);
if (hi != lo) {
Register temp = temps.AcquireX();
Mov(temp, hi);
Ins(vd.V2D(), 1, temp);
}
}
void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
// The worst case for size is mvn immediate with up to 4 instructions.
MacroEmissionCheckScope guard(this);
if (operand.IsImmediate()) {
// Call the macro assembler for generic immediates.
Mvn(rd, operand.immediate());
} else if (operand.IsExtendedRegister()) {
UseScratchRegisterScope temps(this);
temps.Exclude(operand.reg());
// Emit two instructions for the extend case. This differs from Mov, as
// the extend and invert can't be achieved in one instruction.
Register temp = temps.AcquireSameSizeAs(rd);
// VIXL can acquire temp registers. Assert that the caller is aware.
VIXL_ASSERT(!temp.Is(rd) && !temp.Is(operand.maybeReg()));
EmitExtendShift(temp, operand.reg(), operand.extend(),
operand.shift_amount());
mvn(rd, Operand(temp));
} else {
// Otherwise, register and shifted register cases can be handled by the
// assembler directly, using orn.
mvn(rd, operand);
}
}
void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
MoveImmediateHelper(this, rd, imm);
}
void MacroAssembler::Ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
if (operand.IsImmediate()) {
int64_t imm = operand.immediate();
if (imm < 0 && imm != std::numeric_limits<int64_t>::min()) {
ConditionalCompareMacro(rn, -imm, nzcv, cond, CCMN);
return;
}
}
ConditionalCompareMacro(rn, operand, nzcv, cond, CCMP);
}
void MacroAssembler::Ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
if (operand.IsImmediate()) {
int64_t imm = operand.immediate();
if (imm < 0 && imm != std::numeric_limits<int64_t>::min()) {
ConditionalCompareMacro(rn, -imm, nzcv, cond, CCMP);
return;
}
}
ConditionalCompareMacro(rn, operand, nzcv, cond, CCMN);
}
void MacroAssembler::ConditionalCompareMacro(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op) {
VIXL_ASSERT((cond != al) && (cond != nv));
// The worst case for size is ccmp immediate:
// * up to 4 instructions to materialise the constant
// * 1 instruction for ccmp
MacroEmissionCheckScope guard(this);
if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
(operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) {
// The immediate can be encoded in the instruction, or the operand is an
// unshifted register: call the assembler.
ConditionalCompare(rn, operand, nzcv, cond, op);
} else {
UseScratchRegisterScope temps(this);
// The operand isn't directly supported by the instruction: perform the
// operation on a temporary register.
Register temp = temps.AcquireSameSizeAs(rn);
VIXL_ASSERT(!temp.Is(rn) && !temp.Is(operand.maybeReg()));
Mov(temp, operand);
ConditionalCompare(rn, temp, nzcv, cond, op);
}
}
void MacroAssembler::Csel(const Register& rd,
const Register& rn,
const Operand& operand,
Condition cond) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT((cond != al) && (cond != nv));
// The worst case for size is csel immediate:
// * up to 4 instructions to materialise the constant
// * 1 instruction for csel
MacroEmissionCheckScope guard(this);
if (operand.IsImmediate()) {
// Immediate argument. Handle special cases of 0, 1 and -1 using zero
// register.
int64_t imm = operand.immediate();
Register zr = AppropriateZeroRegFor(rn);
if (imm == 0) {
csel(rd, rn, zr, cond);
} else if (imm == 1) {
csinc(rd, rn, zr, cond);
} else if (imm == -1) {
csinv(rd, rn, zr, cond);
} else {
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireSameSizeAs(rn);
VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn));
VIXL_ASSERT(!temp.Is(operand.maybeReg()));
Mov(temp, operand.immediate());
csel(rd, rn, temp, cond);
}
} else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
// Unshifted register argument.
csel(rd, rn, operand.reg(), cond);
} else {
// All other arguments.
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireSameSizeAs(rn);
VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn));
VIXL_ASSERT(!temp.Is(operand.maybeReg()));
Mov(temp, operand);
csel(rd, rn, temp, cond);
}
}
void MacroAssembler::Add(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S) {
if (operand.IsImmediate()) {
int64_t imm = operand.immediate();
if (imm < 0 && imm != std::numeric_limits<int64_t>::min() &&
IsImmAddSub(-imm)) {
AddSubMacro(rd, rn, -imm, S, SUB);
return;
}
}
AddSubMacro(rd, rn, operand, S, ADD);
}
void MacroAssembler::Adds(const Register& rd,
const Register& rn,
const Operand& operand) {
Add(rd, rn, operand, SetFlags);
}
void MacroAssembler::Sub(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S) {
if (operand.IsImmediate()) {
int64_t imm = operand.immediate();
if (imm < 0 && imm != std::numeric_limits<int64_t>::min() &&
IsImmAddSub(-imm)) {
AddSubMacro(rd, rn, -imm, S, ADD);
return;
}
}
AddSubMacro(rd, rn, operand, S, SUB);
}
void MacroAssembler::Subs(const Register& rd,
const Register& rn,
const Operand& operand) {
Sub(rd, rn, operand, SetFlags);
}
void MacroAssembler::Cmn(const Register& rn, const Operand& operand) {
Adds(AppropriateZeroRegFor(rn), rn, operand);
}
void MacroAssembler::Cmp(const Register& rn, const Operand& operand) {
Subs(AppropriateZeroRegFor(rn), rn, operand);
}
void MacroAssembler::Fcmp(const FPRegister& fn, double value,
FPTrapFlags trap) {
// The worst case for size is:
// * 1 to materialise the constant, using literal pool if necessary
// * 1 instruction for fcmp{e}
MacroEmissionCheckScope guard(this);
if (value != 0.0) {
UseScratchRegisterScope temps(this);
FPRegister tmp = temps.AcquireSameSizeAs(fn);
VIXL_ASSERT(!tmp.Is(fn));
Fmov(tmp, value);
FPCompareMacro(fn, tmp, trap);
} else {
FPCompareMacro(fn, value, trap);
}
}
void MacroAssembler::Fcmpe(const FPRegister& fn, double value) {
Fcmp(fn, value, EnableTrap);
}
void MacroAssembler::Fmov(VRegister vd, double imm) {
// Floating point immediates are loaded through the literal pool.
MacroEmissionCheckScope guard(this);
if (vd.Is1S() || vd.Is2S() || vd.Is4S()) {
Fmov(vd, static_cast<float>(imm));
return;
}
VIXL_ASSERT(vd.Is1D() || vd.Is2D());
if (IsImmFP64(imm)) {
fmov(vd, imm);
} else {
uint64_t rawbits = DoubleToRawbits(imm);
if (vd.IsScalar()) {
if (rawbits == 0) {
fmov(vd, xzr);
} else {
Assembler::fImmPool64(vd, imm);
}
} else {
// TODO: consider NEON support for load literal.
Movi(vd, rawbits);
}
}
}
void MacroAssembler::Fmov(VRegister vd, float imm) {
// Floating point immediates are loaded through the literal pool.
MacroEmissionCheckScope guard(this);
if (vd.Is1D() || vd.Is2D()) {
Fmov(vd, static_cast<double>(imm));
return;
}
VIXL_ASSERT(vd.Is1S() || vd.Is2S() || vd.Is4S());
if (IsImmFP32(imm)) {
fmov(vd, imm);
} else {
uint32_t rawbits = FloatToRawbits(imm);
if (vd.IsScalar()) {
if (rawbits == 0) {
fmov(vd, wzr);
} else {
Assembler::fImmPool32(vd, imm);
}
} else {
// TODO: consider NEON support for load literal.
Movi(vd, rawbits);
}
}
}
void MacroAssembler::Neg(const Register& rd,
const Operand& operand) {
if (operand.IsImmediate()) {
int64_t imm = operand.immediate();
if (imm != std::numeric_limits<int64_t>::min()) {
Mov(rd, -imm);
return;
}
}
Sub(rd, AppropriateZeroRegFor(rd), operand);
}
void MacroAssembler::Negs(const Register& rd,
const Operand& operand) {
Subs(rd, AppropriateZeroRegFor(rd), operand);
}
bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
int64_t imm) {
return OneInstrMoveImmediateHelper(this, dst, imm);
}
Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
int64_t imm,
PreShiftImmMode mode) {
int reg_size = dst.size();
// Encode the immediate in a single move instruction, if possible.
if (TryOneInstrMoveImmediate(dst, imm)) {
// The move was successful; nothing to do here.
} else {
// Pre-shift the immediate to the least-significant bits of the register.
int shift_low = CountTrailingZeros(imm, reg_size);
if (mode == kLimitShiftForSP) {
// When applied to the stack pointer, the subsequent arithmetic operation
// can use the extend form to shift left by a maximum of four bits. Right
// shifts are not allowed, so we filter them out later before the new
// immediate is tested.
shift_low = std::min(shift_low, 4);
}
int64_t imm_low = imm >> shift_low;
// Pre-shift the immediate to the most-significant bits of the register,
// inserting set bits in the least-significant bits.
int shift_high = CountLeadingZeros(imm, reg_size);
int64_t imm_high = (imm << shift_high) | ((INT64_C(1) << shift_high) - 1);
if ((mode != kNoShift) && TryOneInstrMoveImmediate(dst, imm_low)) {
// The new immediate has been moved into the destination's low bits:
// return a new leftward-shifting operand.
return Operand(dst, LSL, shift_low);
} else if ((mode == kAnyShift) && TryOneInstrMoveImmediate(dst, imm_high)) {
// The new immediate has been moved into the destination's high bits:
// return a new rightward-shifting operand.
return Operand(dst, LSR, shift_high);
} else {
Mov(dst, imm);
}
}
return Operand(dst);
}
void MacroAssembler::ComputeAddress(const Register& dst,
const MemOperand& mem_op) {
// We cannot handle pre-indexing or post-indexing.
VIXL_ASSERT(mem_op.addrmode() == Offset);
Register base = mem_op.base();
if (mem_op.IsImmediateOffset()) {
Add(dst, base, mem_op.offset());
} else {
VIXL_ASSERT(mem_op.IsRegisterOffset());
Register reg_offset = mem_op.regoffset();
Shift shift = mem_op.shift();
Extend extend = mem_op.extend();
if (shift == NO_SHIFT) {
VIXL_ASSERT(extend != NO_EXTEND);
Add(dst, base, Operand(reg_offset, extend, mem_op.shift_amount()));
} else {
VIXL_ASSERT(extend == NO_EXTEND);
Add(dst, base, Operand(reg_offset, shift, mem_op.shift_amount()));
}
}
}
void MacroAssembler::AddSubMacro(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op) {
// Worst case is add/sub immediate:
// * up to 4 instructions to materialise the constant
// * 1 instruction for add/sub
MacroEmissionCheckScope guard(this);
if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
(S == LeaveFlags)) {
// The instruction would be a nop. Avoid generating useless code.
return;
}
if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) ||
(rn.IsZero() && !operand.IsShiftedRegister()) ||
(operand.IsShiftedRegister() && (operand.shift() == ROR))) {
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireSameSizeAs(rn);
if (operand.IsImmediate()) {
PreShiftImmMode mode = kAnyShift;
// If the destination or source register is the stack pointer, we can
// only pre-shift the immediate right by values supported in the add/sub
// extend encoding.
if (rd.IsSP()) {
// If the destination is SP and flags will be set, we can't pre-shift
// the immediate at all.
mode = (S == SetFlags) ? kNoShift : kLimitShiftForSP;
} else if (rn.IsSP()) {
mode = kLimitShiftForSP;
}
Operand imm_operand =
MoveImmediateForShiftedOp(temp, operand.immediate(), mode);
AddSub(rd, rn, imm_operand, S, op);
} else {
Mov(temp, operand);
AddSub(rd, rn, temp, S, op);
}
} else {
AddSub(rd, rn, operand, S, op);
}
}
void MacroAssembler::Adc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, ADC);
}
void MacroAssembler::Adcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarryMacro(rd, rn, operand, SetFlags, ADC);
}
void MacroAssembler::Sbc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, SBC);
}
void MacroAssembler::Sbcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarryMacro(rd, rn, operand, SetFlags, SBC);
}
void MacroAssembler::Ngc(const Register& rd,
const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
Sbc(rd, zr, operand);
}
void MacroAssembler::Ngcs(const Register& rd,
const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
Sbcs(rd, zr, operand);
}
void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op) {
VIXL_ASSERT(rd.size() == rn.size());
// Worst case is addc/subc immediate:
// * up to 4 instructions to materialise the constant
// * 1 instruction for add/sub
MacroEmissionCheckScope guard(this);
UseScratchRegisterScope temps(this);
if (operand.IsImmediate() ||
(operand.IsShiftedRegister() && (operand.shift() == ROR))) {
// Add/sub with carry (immediate or ROR shifted register.)
Register temp = temps.AcquireSameSizeAs(rn);
VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn) && !temp.Is(operand.maybeReg()));
Mov(temp, operand);
AddSubWithCarry(rd, rn, Operand(temp), S, op);
} else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
// Add/sub with carry (shifted register).
VIXL_ASSERT(operand.reg().size() == rd.size());
VIXL_ASSERT(operand.shift() != ROR);
VIXL_ASSERT(IsUintN(rd.size() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2,
operand.shift_amount()));
temps.Exclude(operand.reg());
Register temp = temps.AcquireSameSizeAs(rn);
VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn) && !temp.Is(operand.maybeReg()));
EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
AddSubWithCarry(rd, rn, Operand(temp), S, op);
} else if (operand.IsExtendedRegister()) {
// Add/sub with carry (extended register).
VIXL_ASSERT(operand.reg().size() <= rd.size());
// Add/sub extended supports a shift <= 4. We want to support exactly the
// same modes.
VIXL_ASSERT(operand.shift_amount() <= 4);
VIXL_ASSERT(operand.reg().Is64Bits() ||
((operand.extend() != UXTX) && (operand.extend() != SXTX)));
temps.Exclude(operand.reg());
Register temp = temps.AcquireSameSizeAs(rn);
VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn) && !temp.Is(operand.maybeReg()));
EmitExtendShift(temp, operand.reg(), operand.extend(),
operand.shift_amount());
AddSubWithCarry(rd, rn, Operand(temp), S, op);
} else {
// The addressing mode is directly supported by the instruction.
AddSubWithCarry(rd, rn, operand, S, op);
}
}
#define DEFINE_FUNCTION(FN, REGTYPE, REG, OP) \
js::wasm::FaultingCodeOffset MacroAssembler::FN(const REGTYPE REG, \
const MemOperand& addr) { \
return LoadStoreMacro(REG, addr, OP); \
}
LS_MACRO_LIST(DEFINE_FUNCTION)
#undef DEFINE_FUNCTION
js::wasm::FaultingCodeOffset MacroAssembler::LoadStoreMacro(
const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op) {
// Worst case is ldr/str pre/post index:
// * 1 instruction for ldr/str
// * up to 4 instructions to materialise the constant
// * 1 instruction to update the base
MacroEmissionCheckScope guard(this);
int64_t offset = addr.offset();
unsigned access_size = CalcLSDataSize(op);
// Check if an immediate offset fits in the immediate field of the
// appropriate instruction. If not, emit two instructions to perform
// the operation.
js::wasm::FaultingCodeOffset fco;
if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, access_size) &&
!IsImmLSUnscaled(offset)) {
// Immediate offset that can't be encoded using unsigned or unscaled
// addressing modes.
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireSameSizeAs(addr.base());
VIXL_ASSERT(!temp.Is(rt));
VIXL_ASSERT(!temp.Is(addr.base()) && !temp.Is(addr.regoffset()));
Mov(temp, addr.offset());
{
js::jit::AutoForbidPoolsAndNops afp(this, 1);
fco = js::wasm::FaultingCodeOffset(currentOffset());
LoadStore(rt, MemOperand(addr.base(), temp), op);
}
} else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
// Post-index beyond unscaled addressing range.
{
js::jit::AutoForbidPoolsAndNops afp(this, 1);
fco = js::wasm::FaultingCodeOffset(currentOffset());
LoadStore(rt, MemOperand(addr.base()), op);
}
Add(addr.base(), addr.base(), Operand(offset));
} else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
// Pre-index beyond unscaled addressing range.
Add(addr.base(), addr.base(), Operand(offset));
{
js::jit::AutoForbidPoolsAndNops afp(this, 1);
fco = js::wasm::FaultingCodeOffset(currentOffset());
LoadStore(rt, MemOperand(addr.base()), op);
}
} else {
// Encodable in one load/store instruction.
js::jit::AutoForbidPoolsAndNops afp(this, 1);
fco = js::wasm::FaultingCodeOffset(currentOffset());
LoadStore(rt, addr, op);
}
return fco;
}
#define DEFINE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
void MacroAssembler::FN(const REGTYPE REG, \
const REGTYPE REG2, \
const MemOperand& addr) { \
LoadStorePairMacro(REG, REG2, addr, OP); \
}
LSPAIR_MACRO_LIST(DEFINE_FUNCTION)
#undef DEFINE_FUNCTION
void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairOp op) {
// TODO(all): Should we support register offset for load-store-pair?
VIXL_ASSERT(!addr.IsRegisterOffset());
// Worst case is ldp/stp immediate:
// * 1 instruction for ldp/stp
// * up to 4 instructions to materialise the constant
// * 1 instruction to update the base
MacroEmissionCheckScope guard(this);
int64_t offset = addr.offset();
unsigned access_size = CalcLSPairDataSize(op);
// Check if the offset fits in the immediate field of the appropriate
// instruction. If not, emit two instructions to perform the operation.
if (IsImmLSPair(offset, access_size)) {
// Encodable in one load/store pair instruction.
LoadStorePair(rt, rt2, addr, op);
} else {
Register base = addr.base();
if (addr.IsImmediateOffset()) {
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireSameSizeAs(base);
Add(temp, base, offset);
LoadStorePair(rt, rt2, MemOperand(temp), op);
} else if (addr.IsPostIndex()) {
LoadStorePair(rt, rt2, MemOperand(base), op);
Add(base, base, offset);
} else {
VIXL_ASSERT(addr.IsPreIndex());
Add(base, base, offset);
LoadStorePair(rt, rt2, MemOperand(base), op);
}
}
}
void MacroAssembler::Prfm(PrefetchOperation op, const MemOperand& addr) {
MacroEmissionCheckScope guard(this);
// There are no pre- or post-index modes for prfm.
VIXL_ASSERT(addr.IsImmediateOffset() || addr.IsRegisterOffset());
// The access size is implicitly 8 bytes for all prefetch operations.
unsigned size = kXRegSizeInBytesLog2;
// Check if an immediate offset fits in the immediate field of the
// appropriate instruction. If not, emit two instructions to perform
// the operation.
if (addr.IsImmediateOffset() && !IsImmLSScaled(addr.offset(), size) &&
!IsImmLSUnscaled(addr.offset())) {
// Immediate offset that can't be encoded using unsigned or unscaled
// addressing modes.
UseScratchRegisterScope temps(this);
Register temp = temps.AcquireSameSizeAs(addr.base());
Mov(temp, addr.offset());
Prefetch(op, MemOperand(addr.base(), temp));
} else {
// Simple register-offsets are encodable in one instruction.
Prefetch(op, addr);
}
}
void MacroAssembler::PushStackPointer() {
PrepareForPush(1, 8);
// Pushing a stack pointer leads to implementation-defined
// behavior, which may be surprising. In particular,
// str x28, [x28, #-8]!
// pre-decrements the stack pointer, storing the decremented value.
// Additionally, sp is read as xzr in this context, so it cannot be pushed.
// So we must use a scratch register.
UseScratchRegisterScope temps(this);
Register scratch = temps.AcquireX();
Mov(scratch, GetStackPointer64());
str(scratch, MemOperand(GetStackPointer64(), -8, PreIndex));
}
void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
const CPURegister& src2, const CPURegister& src3) {
VIXL_ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
VIXL_ASSERT(src0.IsValid());
int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
int size = src0.SizeInBytes();
if (src0.Is(GetStackPointer64())) {
VIXL_ASSERT(count == 1);
VIXL_ASSERT(size == 8);
PushStackPointer();
return;
}
PrepareForPush(count, size);
PushHelper(count, size, src0, src1, src2, src3);
}
void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
const CPURegister& dst2, const CPURegister& dst3) {
// It is not valid to pop into the same register more than once in one
// instruction, not even into the zero register.
VIXL_ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
VIXL_ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
VIXL_ASSERT(dst0.IsValid());
int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
int size = dst0.SizeInBytes();
PrepareForPop(count, size);
PopHelper(count, size, dst0, dst1, dst2, dst3);
}
void MacroAssembler::PushCPURegList(CPURegList registers) {
VIXL_ASSERT(!registers.Overlaps(*TmpList()));
VIXL_ASSERT(!registers.Overlaps(*FPTmpList()));
int reg_size = registers.RegisterSizeInBytes();
PrepareForPush(registers.Count(), reg_size);
// Bump the stack pointer and store two registers at the bottom.
int size = registers.TotalSizeInBytes();
const CPURegister& bottom_0 = registers.PopLowestIndex();
const CPURegister& bottom_1 = registers.PopLowestIndex();
if (bottom_0.IsValid() && bottom_1.IsValid()) {
Stp(bottom_0, bottom_1, MemOperand(GetStackPointer64(), -size, PreIndex));
} else if (bottom_0.IsValid()) {
Str(bottom_0, MemOperand(GetStackPointer64(), -size, PreIndex));
}
int offset = 2 * reg_size;
while (!registers.IsEmpty()) {
const CPURegister& src0 = registers.PopLowestIndex();
const CPURegister& src1 = registers.PopLowestIndex();
if (src1.IsValid()) {
Stp(src0, src1, MemOperand(GetStackPointer64(), offset));
} else {
Str(src0, MemOperand(GetStackPointer64(), offset));
}
offset += 2 * reg_size;
}
}
void MacroAssembler::PopCPURegList(CPURegList registers) {
VIXL_ASSERT(!registers.Overlaps(*TmpList()));
VIXL_ASSERT(!registers.Overlaps(*FPTmpList()));
int reg_size = registers.RegisterSizeInBytes();
PrepareForPop(registers.Count(), reg_size);
int size = registers.TotalSizeInBytes();
const CPURegister& bottom_0 = registers.PopLowestIndex();
const CPURegister& bottom_1 = registers.PopLowestIndex();
int offset = 2 * reg_size;
while (!registers.IsEmpty()) {
const CPURegister& dst0 = registers.PopLowestIndex();
const CPURegister& dst1 = registers.PopLowestIndex();
if (dst1.IsValid()) {
Ldp(dst0, dst1, MemOperand(GetStackPointer64(), offset));
} else {
Ldr(dst0, MemOperand(GetStackPointer64(), offset));
}
offset += 2 * reg_size;
}
// Load the two registers at the bottom and drop the stack pointer.
if (bottom_0.IsValid() && bottom_1.IsValid()) {
Ldp(bottom_0, bottom_1, MemOperand(GetStackPointer64(), size, PostIndex));
} else if (bottom_0.IsValid()) {
Ldr(bottom_0, MemOperand(GetStackPointer64(), size, PostIndex));
}
}
void MacroAssembler::PushMultipleTimes(int count, Register src) {
int size = src.SizeInBytes();
PrepareForPush(count, size);
// Push up to four registers at a time if possible because if the current
// stack pointer is sp and the register size is 32, registers must be pushed
// in blocks of four in order to maintain the 16-byte alignment for sp.
while (count >= 4) {
PushHelper(4, size, src, src, src, src);
count -= 4;
}
if (count >= 2) {
PushHelper(2, size, src, src, NoReg, NoReg);
count -= 2;
}
if (count == 1) {
PushHelper(1, size, src, NoReg, NoReg, NoReg);
count -= 1;
}
VIXL_ASSERT(count == 0);
}
void MacroAssembler::PushHelper(int count, int size,
const CPURegister& src0,
const CPURegister& src1,
const CPURegister& src2,
const CPURegister& src3) {
// Ensure that we don't unintentionally modify scratch or debug registers.
// Worst case for size is 2 stp.
InstructionAccurateScope scope(this, 2,
InstructionAccurateScope::kMaximumSize);
VIXL_ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
VIXL_ASSERT(size == src0.SizeInBytes());
// Pushing the stack pointer has unexpected behavior. See PushStackPointer().
VIXL_ASSERT(!src0.Is(GetStackPointer64()) && !src0.Is(sp));
VIXL_ASSERT(!src1.Is(GetStackPointer64()) && !src1.Is(sp));
VIXL_ASSERT(!src2.Is(GetStackPointer64()) && !src2.Is(sp));
VIXL_ASSERT(!src3.Is(GetStackPointer64()) && !src3.Is(sp));
// The JS engine should never push 4 bytes.
VIXL_ASSERT(size >= 8);
// When pushing multiple registers, the store order is chosen such that
// Push(a, b) is equivalent to Push(a) followed by Push(b).
switch (count) {
case 1:
VIXL_ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
str(src0, MemOperand(GetStackPointer64(), -1 * size, PreIndex));
break;
case 2:
VIXL_ASSERT(src2.IsNone() && src3.IsNone());
stp(src1, src0, MemOperand(GetStackPointer64(), -2 * size, PreIndex));
break;
case 3:
VIXL_ASSERT(src3.IsNone());
stp(src2, src1, MemOperand(GetStackPointer64(), -3 * size, PreIndex));
str(src0, MemOperand(GetStackPointer64(), 2 * size));
break;
case 4:
// Skip over 4 * size, then fill in the gap. This allows four W registers
// to be pushed using sp, whilst maintaining 16-byte alignment for sp at
// all times.
stp(src3, src2, MemOperand(GetStackPointer64(), -4 * size, PreIndex));
stp(src1, src0, MemOperand(GetStackPointer64(), 2 * size));
break;
default:
VIXL_UNREACHABLE();
}
}
void MacroAssembler::PopHelper(int count, int size,
const CPURegister& dst0,
const CPURegister& dst1,
const CPURegister& dst2,
const CPURegister& dst3) {
// Ensure that we don't unintentionally modify scratch or debug registers.
// Worst case for size is 2 ldp.
InstructionAccurateScope scope(this, 2,
InstructionAccurateScope::kMaximumSize);
VIXL_ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
VIXL_ASSERT(size == dst0.SizeInBytes());
// When popping multiple registers, the load order is chosen such that
// Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
switch (count) {
case 1:
VIXL_ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
ldr(dst0, MemOperand(GetStackPointer64(), 1 * size, PostIndex));
break;
case 2:
VIXL_ASSERT(dst2.IsNone() && dst3.IsNone());
ldp(dst0, dst1, MemOperand(GetStackPointer64(), 2 * size, PostIndex));
break;
case 3:
VIXL_ASSERT(dst3.IsNone());
ldr(dst2, MemOperand(GetStackPointer64(), 2 * size));
ldp(dst0, dst1, MemOperand(GetStackPointer64(), 3 * size, PostIndex));
break;
case 4:
// Load the higher addresses first, then load the lower addresses and skip
// the whole block in the second instruction. This allows four W registers
// to be popped using sp, whilst maintaining 16-byte alignment for sp at
// all times.
ldp(dst2, dst3, MemOperand(GetStackPointer64(), 2 * size));
ldp(dst0, dst1, MemOperand(GetStackPointer64(), 4 * size, PostIndex));
break;
default:
VIXL_UNREACHABLE();
}
}
void MacroAssembler::PrepareForPush(int count, int size) {
if (sp.Is(GetStackPointer64())) {
// If the current stack pointer is sp, then it must be aligned to 16 bytes
// on entry and the total size of the specified registers must also be a
// multiple of 16 bytes.
VIXL_ASSERT((count * size) % 16 == 0);
} else {
// Even if the current stack pointer is not the system stack pointer (sp),
// the system stack pointer will still be modified in order to comply with
// ABI rules about accessing memory below the system stack pointer.
BumpSystemStackPointer(count * size);
}
}
void MacroAssembler::PrepareForPop(int count, int size) {
USE(count, size);
if (sp.Is(GetStackPointer64())) {
// If the current stack pointer is sp, then it must be aligned to 16 bytes
// on entry and the total size of the specified registers must also be a
// multiple of 16 bytes.
VIXL_ASSERT((count * size) % 16 == 0);
}
}
void MacroAssembler::Poke(const Register& src, const Operand& offset) {
if (offset.IsImmediate()) {
VIXL_ASSERT(offset.immediate() >= 0);
}
Str(src, MemOperand(GetStackPointer64(), offset));
}
void MacroAssembler::Peek(const Register& dst, const Operand& offset) {
if (offset.IsImmediate()) {
VIXL_ASSERT(offset.immediate() >= 0);
}
Ldr(dst, MemOperand(GetStackPointer64(), offset));
}
void MacroAssembler::Claim(const Operand& size) {
if (size.IsZero()) {
return;
}
if (size.IsImmediate()) {
VIXL_ASSERT(size.immediate() > 0);
if (sp.Is(GetStackPointer64())) {
VIXL_ASSERT((size.immediate() % 16) == 0);
}
}
Sub(GetStackPointer64(), GetStackPointer64(), size);
// Make sure the real stack pointer reflects the claimed stack space.
// We can't use stack memory below the stack pointer, it could be clobbered by
// interupts and signal handlers.
if (!sp.Is(GetStackPointer64())) {
Mov(sp, GetStackPointer64());
}
}
void MacroAssembler::Drop(const Operand& size) {
if (size.IsZero()) {
return;
}
if (size.IsImmediate()) {
VIXL_ASSERT(size.immediate() > 0);
if (sp.Is(GetStackPointer64())) {
VIXL_ASSERT((size.immediate() % 16) == 0);
}
}
Add(GetStackPointer64(), GetStackPointer64(), size);
}
void MacroAssembler::PushCalleeSavedRegisters() {
// Ensure that the macro-assembler doesn't use any scratch registers.
// 10 stp will be emitted.
// TODO(all): Should we use GetCalleeSaved and SavedFP.
InstructionAccurateScope scope(this, 10);
// This method must not be called unless the current stack pointer is sp.
VIXL_ASSERT(sp.Is(GetStackPointer64()));
MemOperand tos(sp, -2 * static_cast<int>(kXRegSizeInBytes), PreIndex);
stp(x29, x30, tos);
stp(x27, x28, tos);
stp(x25, x26, tos);
stp(x23, x24, tos);
stp(x21, x22, tos);
stp(x19, x20, tos);
stp(d14, d15, tos);
stp(d12, d13, tos);
stp(d10, d11, tos);
stp(d8, d9, tos);
}
void MacroAssembler::PopCalleeSavedRegisters() {
// Ensure that the macro-assembler doesn't use any scratch registers.
// 10 ldp will be emitted.
// TODO(all): Should we use GetCalleeSaved and SavedFP.
InstructionAccurateScope scope(this, 10);
// This method must not be called unless the current stack pointer is sp.
VIXL_ASSERT(sp.Is(GetStackPointer64()));
MemOperand tos(sp, 2 * kXRegSizeInBytes, PostIndex);
ldp(d8, d9, tos);
ldp(d10, d11, tos);
ldp(d12, d13, tos);
ldp(d14, d15, tos);
ldp(x19, x20, tos);
ldp(x21, x22, tos);
ldp(x23, x24, tos);
ldp(x25, x26, tos);
ldp(x27, x28, tos);
ldp(x29, x30, tos);
}
void MacroAssembler::LoadCPURegList(CPURegList registers,
const MemOperand& src) {
LoadStoreCPURegListHelper(kLoad, registers, src);
}
void MacroAssembler::StoreCPURegList(CPURegList registers,
const MemOperand& dst) {
LoadStoreCPURegListHelper(kStore, registers, dst);
}
void MacroAssembler::LoadStoreCPURegListHelper(LoadStoreCPURegListAction op,
CPURegList registers,
const MemOperand& mem) {
// We do not handle pre-indexing or post-indexing.
VIXL_ASSERT(!(mem.IsPreIndex() || mem.IsPostIndex()));
VIXL_ASSERT(!registers.Overlaps(tmp_list_));
VIXL_ASSERT(!registers.Overlaps(fptmp_list_));
VIXL_ASSERT(!registers.IncludesAliasOf(sp));
UseScratchRegisterScope temps(this);
MemOperand loc = BaseMemOperandForLoadStoreCPURegList(registers,
mem,
&temps);
while (registers.Count() >= 2) {
const CPURegister& dst0 = registers.PopLowestIndex();
const CPURegister& dst1 = registers.PopLowestIndex();
if (op == kStore) {
Stp(dst0, dst1, loc);
} else {
VIXL_ASSERT(op == kLoad);
Ldp(dst0, dst1, loc);
}
loc.AddOffset(2 * registers.RegisterSizeInBytes());
}
if (!registers.IsEmpty()) {
if (op == kStore) {
Str(registers.PopLowestIndex(), loc);
} else {
VIXL_ASSERT(op == kLoad);
Ldr(registers.PopLowestIndex(), loc);
}
}
}
MemOperand MacroAssembler::BaseMemOperandForLoadStoreCPURegList(
const CPURegList& registers,
const MemOperand& mem,
UseScratchRegisterScope* scratch_scope) {
// If necessary, pre-compute the base address for the accesses.
if (mem.IsRegisterOffset()) {
Register reg_base = scratch_scope->AcquireX();
ComputeAddress(reg_base, mem);
return MemOperand(reg_base);
} else if (mem.IsImmediateOffset()) {
int reg_size = registers.RegisterSizeInBytes();
int total_size = registers.TotalSizeInBytes();
int64_t min_offset = mem.offset();
int64_t max_offset = mem.offset() + std::max(0, total_size - 2 * reg_size);
if ((registers.Count() >= 2) &&
(!Assembler::IsImmLSPair(min_offset, WhichPowerOf2(reg_size)) ||
!Assembler::IsImmLSPair(max_offset, WhichPowerOf2(reg_size)))) {
Register reg_base = scratch_scope->AcquireX();
ComputeAddress(reg_base, mem);
return MemOperand(reg_base);
}
}
return mem;
}
void MacroAssembler::BumpSystemStackPointer(const Operand& space) {
VIXL_ASSERT(!sp.Is(GetStackPointer64()));
// TODO: Several callers rely on this not using scratch registers, so we use
// the assembler directly here. However, this means that large immediate
// values of 'space' cannot be handled.
InstructionAccurateScope scope(this, 1);
sub(sp, GetStackPointer64(), space);
}
void MacroAssembler::Trace(TraceParameters parameters, TraceCommand command) {
#ifdef JS_SIMULATOR_ARM64
// The arguments to the trace pseudo instruction need to be contiguous in
// memory, so make sure we don't try to emit a literal pool.
InstructionAccurateScope scope(this, kTraceLength / kInstructionSize);
Label start;
bind(&start);
// Refer to simulator-a64.h for a description of the marker and its
// arguments.
hlt(kTraceOpcode);
// VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceParamsOffset);
dc32(parameters);
// VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceCommandOffset);
dc32(command);
#else
// Emit nothing on real hardware.
USE(parameters, command);
#endif
}
void MacroAssembler::Log(TraceParameters parameters) {
#ifdef JS_SIMULATOR_ARM64
// The arguments to the log pseudo instruction need to be contiguous in
// memory, so make sure we don't try to emit a literal pool.
InstructionAccurateScope scope(this, kLogLength / kInstructionSize);
Label start;
bind(&start);
// Refer to simulator-a64.h for a description of the marker and its
// arguments.
hlt(kLogOpcode);
// VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kLogParamsOffset);
dc32(parameters);
#else
// Emit nothing on real hardware.
USE(parameters);
#endif
}
void MacroAssembler::EnableInstrumentation() {
VIXL_ASSERT(!isprint(InstrumentStateEnable));
InstructionAccurateScope scope(this, 1);
movn(xzr, InstrumentStateEnable);
}
void MacroAssembler::DisableInstrumentation() {
VIXL_ASSERT(!isprint(InstrumentStateDisable));
InstructionAccurateScope scope(this, 1);
movn(xzr, InstrumentStateDisable);
}
void MacroAssembler::AnnotateInstrumentation(const char* marker_name) {
VIXL_ASSERT(strlen(marker_name) == 2);
// We allow only printable characters in the marker names. Unprintable
// characters are reserved for controlling features of the instrumentation.
VIXL_ASSERT(isprint(marker_name[0]) && isprint(marker_name[1]));
InstructionAccurateScope scope(this, 1);
movn(xzr, (marker_name[1] << 8) | marker_name[0]);
}
void UseScratchRegisterScope::Open(MacroAssembler* masm) {
VIXL_ASSERT(!initialised_);
available_ = masm->TmpList();
availablefp_ = masm->FPTmpList();
old_available_ = available_->list();
old_availablefp_ = availablefp_->list();
VIXL_ASSERT(available_->type() == CPURegister::kRegister);
VIXL_ASSERT(availablefp_->type() == CPURegister::kVRegister);
#ifdef DEBUG
initialised_ = true;
#endif
}
void UseScratchRegisterScope::Close() {
if (available_) {
available_->set_list(old_available_);
available_ = NULL;
}
if (availablefp_) {
availablefp_->set_list(old_availablefp_);
availablefp_ = NULL;
}
#ifdef DEBUG
initialised_ = false;
#endif
}
UseScratchRegisterScope::UseScratchRegisterScope(MacroAssembler* masm) {
#ifdef DEBUG
initialised_ = false;
#endif
Open(masm);
}
// This allows deferred (and optional) initialisation of the scope.
UseScratchRegisterScope::UseScratchRegisterScope()
: available_(NULL), availablefp_(NULL),
old_available_(0), old_availablefp_(0) {
#ifdef DEBUG
initialised_ = false;
#endif
}
UseScratchRegisterScope::~UseScratchRegisterScope() {
Close();
}
bool UseScratchRegisterScope::IsAvailable(const CPURegister& reg) const {
return available_->IncludesAliasOf(reg) || availablefp_->IncludesAliasOf(reg);
}
Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
int code = AcquireNextAvailable(available_).code();
return Register(code, reg.size());
}
FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
int code = AcquireNextAvailable(availablefp_).code();
return FPRegister(code, reg.size());
}
void UseScratchRegisterScope::Release(const CPURegister& reg) {
VIXL_ASSERT(initialised_);
if (reg.IsRegister()) {
ReleaseByCode(available_, reg.code());
} else if (reg.IsFPRegister()) {
ReleaseByCode(availablefp_, reg.code());
} else {
VIXL_ASSERT(reg.IsNone());
}
}
void UseScratchRegisterScope::Include(const CPURegList& list) {
VIXL_ASSERT(initialised_);
if (list.type() == CPURegister::kRegister) {
// Make sure that neither sp nor xzr are included the list.
IncludeByRegList(available_, list.list() & ~(xzr.Bit() | sp.Bit()));
} else {
VIXL_ASSERT(list.type() == CPURegister::kVRegister);
IncludeByRegList(availablefp_, list.list());
}
}
void UseScratchRegisterScope::Include(const Register& reg1,
const Register& reg2,
const Register& reg3,
const Register& reg4) {
VIXL_ASSERT(initialised_);
RegList include = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
// Make sure that neither sp nor xzr are included the list.
include &= ~(xzr.Bit() | sp.Bit());
IncludeByRegList(available_, include);
}
void UseScratchRegisterScope::Include(const FPRegister& reg1,
const FPRegister& reg2,
const FPRegister& reg3,
const FPRegister& reg4) {
RegList include = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
IncludeByRegList(availablefp_, include);
}
void UseScratchRegisterScope::Exclude(const CPURegList& list) {
if (list.type() == CPURegister::kRegister) {
ExcludeByRegList(available_, list.list());
} else {
VIXL_ASSERT(list.type() == CPURegister::kVRegister);
ExcludeByRegList(availablefp_, list.list());
}
}
void UseScratchRegisterScope::Exclude(const Register& reg1,
const Register& reg2,
const Register& reg3,
const Register& reg4) {
RegList exclude = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
ExcludeByRegList(available_, exclude);
}
void UseScratchRegisterScope::Exclude(const FPRegister& reg1,
const FPRegister& reg2,
const FPRegister& reg3,
const FPRegister& reg4) {
RegList excludefp = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
ExcludeByRegList(availablefp_, excludefp);
}
void UseScratchRegisterScope::Exclude(const CPURegister& reg1,
const CPURegister& reg2,
const CPURegister& reg3,
const CPURegister& reg4) {
RegList exclude = 0;
RegList excludefp = 0;
const CPURegister regs[] = {reg1, reg2, reg3, reg4};
for (unsigned i = 0; i < (sizeof(regs) / sizeof(regs[0])); i++) {
if (regs[i].IsRegister()) {
exclude |= regs[i].Bit();
} else if (regs[i].IsFPRegister()) {
excludefp |= regs[i].Bit();
} else {
VIXL_ASSERT(regs[i].IsNone());
}
}
ExcludeByRegList(available_, exclude);
ExcludeByRegList(availablefp_, excludefp);
}
void UseScratchRegisterScope::ExcludeAll() {
ExcludeByRegList(available_, available_->list());
ExcludeByRegList(availablefp_, availablefp_->list());
}
CPURegister UseScratchRegisterScope::AcquireNextAvailable(
CPURegList* available) {
VIXL_CHECK(!available->IsEmpty());
CPURegister result = available->PopLowestIndex();
VIXL_ASSERT(!AreAliased(result, xzr, sp));
return result;
}
void UseScratchRegisterScope::ReleaseByCode(CPURegList* available, int code) {
ReleaseByRegList(available, static_cast<RegList>(1) << code);
}
void UseScratchRegisterScope::ReleaseByRegList(CPURegList* available,
RegList regs) {
available->set_list(available->list() | regs);
}
void UseScratchRegisterScope::IncludeByRegList(CPURegList* available,
RegList regs) {
available->set_list(available->list() | regs);
}
void UseScratchRegisterScope::ExcludeByRegList(CPURegList* available,
RegList exclude) {
available->set_list(available->list() & ~exclude);
}
} // namespace vixl