Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/arm64/Lowering-arm64.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/arm64/Assembler-arm64.h"
#include "jit/Lowering.h"
#include "jit/MIR.h"
#include "wasm/WasmFeatures.h" // for wasm::ReportSimdAnalysis
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::FloorLog2;
LBoxAllocation LIRGeneratorARM64::useBoxFixed(MDefinition* mir, Register reg1,
Register, bool useAtStart) {
MOZ_ASSERT(mir->type() == MIRType::Value);
ensureDefined(mir);
return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart));
}
LAllocation LIRGeneratorARM64::useByteOpRegister(MDefinition* mir) {
return useRegister(mir);
}
LAllocation LIRGeneratorARM64::useByteOpRegisterAtStart(MDefinition* mir) {
return useRegisterAtStart(mir);
}
LAllocation LIRGeneratorARM64::useByteOpRegisterOrNonDoubleConstant(
MDefinition* mir) {
return useRegisterOrNonDoubleConstant(mir);
}
LDefinition LIRGeneratorARM64::tempByteOpRegister() { return temp(); }
LDefinition LIRGeneratorARM64::tempToUnbox() { return temp(); }
void LIRGenerator::visitBox(MBox* box) {
MDefinition* opd = box->getOperand(0);
// If the operand is a constant, emit near its uses.
if (opd->isConstant() && box->canEmitAtUses()) {
emitAtUses(box);
return;
}
if (opd->isConstant()) {
define(new (alloc()) LValue(opd->toConstant()->toJSValue()), box,
LDefinition(LDefinition::BOX));
} else {
LBox* ins = new (alloc()) LBox(useRegister(opd), opd->type());
define(ins, box, LDefinition(LDefinition::BOX));
}
}
void LIRGenerator::visitUnbox(MUnbox* unbox) {
MDefinition* box = unbox->getOperand(0);
MOZ_ASSERT(box->type() == MIRType::Value);
LUnboxBase* lir;
if (IsFloatingPointType(unbox->type())) {
lir = new (alloc())
LUnboxFloatingPoint(useRegisterAtStart(box), unbox->type());
} else if (unbox->fallible()) {
// If the unbox is fallible, load the Value in a register first to
// avoid multiple loads.
lir = new (alloc()) LUnbox(useRegisterAtStart(box));
} else {
// FIXME: It should be possible to useAtStart() here, but the DEBUG
// code in CodeGenerator::visitUnbox() needs to handle non-Register
// cases. ARM64 doesn't have an Operand type.
lir = new (alloc()) LUnbox(useRegisterAtStart(box));
}
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
define(lir, unbox);
}
void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
MOZ_ASSERT(opd->type() == MIRType::Value);
LReturn* ins = new (alloc()) LReturn(isGenerator);
ins->setOperand(0, useFixed(opd, JSReturnReg));
add(ins);
}
// x = !y
void LIRGeneratorARM64::lowerForALU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input) {
ins->setOperand(
0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
// z = x+y
void LIRGeneratorARM64::lowerForALU(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0,
ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs));
ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs)
: useRegisterOrConstantAtStart(rhs));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input) {
ins->setOperand(0, useRegisterAtStart(input));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template <size_t Temps>
void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegisterAtStart(lhs));
ins->setOperand(1, useRegisterAtStart(rhs));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs);
template void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, 1>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs);
void LIRGeneratorARM64::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir,
MDefinition* input) {
ins->setInt64Operand(0, useInt64RegisterAtStart(input));
defineInt64(ins, mir);
}
// These all currently have codegen that depends on reuse but only because the
// masm API depends on that. We need new three-address masm APIs, for both
// constant and variable rhs.
//
// MAdd => LAddI64
// MSub => LSubI64
// MBitAnd, MBitOr, MBitXor => LBitOpI64
void LIRGeneratorARM64::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES, useInt64RegisterOrConstantAtStart(rhs));
defineInt64(ins, mir);
}
void LIRGeneratorARM64::lowerForMulInt64(LMulI64* ins, MMul* mir,
MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(LMulI64::Lhs, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(LMulI64::Rhs, useInt64RegisterOrConstantAtStart(rhs));
defineInt64(ins, mir);
}
template <size_t Temps>
void LIRGeneratorARM64::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
static_assert(LShiftI64::Rhs == INT64_PIECES,
"Assume Rhs is located at INT64_PIECES.");
static_assert(LRotateI64::Count == INT64_PIECES,
"Assume Count is located at INT64_PIECES.");
ins->setOperand(INT64_PIECES, useRegisterOrConstantAtStart(rhs));
defineInt64(ins, mir);
}
template void LIRGeneratorARM64::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
template void LIRGeneratorARM64::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
void LIRGeneratorARM64::lowerForCompareI64AndBranch(MTest* mir, MCompare* comp,
JSOp op, MDefinition* left,
MDefinition* right,
MBasicBlock* ifTrue,
MBasicBlock* ifFalse) {
auto* lir = new (alloc())
LCompareI64AndBranch(comp, op, useInt64Register(left),
useInt64RegisterOrConstant(right), ifTrue, ifFalse);
add(lir, mir);
}
void LIRGeneratorARM64::lowerForBitAndAndBranch(LBitAndAndBranch* baab,
MInstruction* mir,
MDefinition* lhs,
MDefinition* rhs) {
baab->setOperand(0, useRegisterAtStart(lhs));
baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
add(baab, mir);
}
void LIRGeneratorARM64::lowerWasmBuiltinTruncateToInt32(
MWasmBuiltinTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
if (opd->type() == MIRType::Double) {
define(new (alloc()) LWasmBuiltinTruncateDToInt32(
useRegister(opd), useFixed(ins->instance(), InstanceReg),
LDefinition::BogusTemp()),
ins);
return;
}
define(new (alloc()) LWasmBuiltinTruncateFToInt32(
useRegister(opd), useFixed(ins->instance(), InstanceReg),
LDefinition::BogusTemp()),
ins);
}
void LIRGeneratorARM64::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
lowerTypedPhiInput(phi, inputPosition, block, lirIndex);
}
void LIRGeneratorARM64::lowerForShift(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(ins, mir);
}
void LIRGeneratorARM64::lowerDivI(MDiv* div) {
if (div->isUnsigned()) {
lowerUDiv(div);
return;
}
if (div->rhs()->isConstant()) {
LAllocation lhs = useRegister(div->lhs());
int32_t rhs = div->rhs()->toConstant()->toInt32();
int32_t shift = mozilla::FloorLog2(mozilla::Abs(rhs));
if (rhs != 0 && uint32_t(1) << shift == mozilla::Abs(rhs)) {
LDivPowTwoI* lir = new (alloc()) LDivPowTwoI(lhs, shift, rhs < 0);
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
if (rhs != 0) {
LDivConstantI* lir = new (alloc()) LDivConstantI(lhs, rhs, temp());
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
}
LDivI* lir = new (alloc())
LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
}
void LIRGeneratorARM64::lowerNegI(MInstruction* ins, MDefinition* input) {
define(new (alloc()) LNegI(useRegisterAtStart(input)), ins);
}
void LIRGeneratorARM64::lowerNegI64(MInstruction* ins, MDefinition* input) {
defineInt64(new (alloc()) LNegI64(useInt64RegisterAtStart(input)), ins);
}
void LIRGeneratorARM64::lowerMulI(MMul* mul, MDefinition* lhs,
MDefinition* rhs) {
LMulI* lir = new (alloc()) LMulI;
if (mul->fallible()) {
assignSnapshot(lir, mul->bailoutKind());
}
lowerForALU(lir, mul, lhs, rhs);
}
void LIRGeneratorARM64::lowerModI(MMod* mod) {
if (mod->isUnsigned()) {
lowerUMod(mod);
return;
}
if (mod->rhs()->isConstant()) {
int32_t rhs = mod->rhs()->toConstant()->toInt32();
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LModPowTwoI* lir =
new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
} else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) {
LModMaskI* lir = new (alloc())
LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift + 1);
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
}
}
LModI* lir =
new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
}
void LIRGeneratorARM64::lowerDivI64(MDiv* div) {
if (div->isUnsigned()) {
lowerUDivI64(div);
return;
}
LDivOrModI64* lir = new (alloc())
LDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs()));
defineInt64(lir, div);
}
void LIRGeneratorARM64::lowerUDivI64(MDiv* div) {
LUDivOrModI64* lir = new (alloc())
LUDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs()));
defineInt64(lir, div);
}
void LIRGeneratorARM64::lowerUModI64(MMod* mod) {
LUDivOrModI64* lir = new (alloc())
LUDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs()));
defineInt64(lir, mod);
}
void LIRGeneratorARM64::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
MOZ_CRASH("We don't use runtime div for this architecture");
}
void LIRGeneratorARM64::lowerModI64(MMod* mod) {
if (mod->isUnsigned()) {
lowerUModI64(mod);
return;
}
LDivOrModI64* lir = new (alloc())
LDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs()));
defineInt64(lir, mod);
}
void LIRGeneratorARM64::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
MOZ_CRASH("We don't use runtime mod for this architecture");
}
void LIRGenerator::visitPowHalf(MPowHalf* ins) {
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType::Double);
LPowHalfD* lir = new (alloc()) LPowHalfD(useRegister(input));
define(lir, ins);
}
void LIRGeneratorARM64::lowerWasmSelectI(MWasmSelect* select) {
if (select->type() == MIRType::Simd128) {
LAllocation t = useRegisterAtStart(select->trueExpr());
LAllocation f = useRegister(select->falseExpr());
LAllocation c = useRegister(select->condExpr());
auto* lir = new (alloc()) LWasmSelect(t, f, c);
defineReuseInput(lir, select, LWasmSelect::TrueExprIndex);
} else {
LAllocation t = useRegisterAtStart(select->trueExpr());
LAllocation f = useRegisterAtStart(select->falseExpr());
LAllocation c = useRegisterAtStart(select->condExpr());
define(new (alloc()) LWasmSelect(t, f, c), select);
}
}
void LIRGeneratorARM64::lowerWasmSelectI64(MWasmSelect* select) {
LInt64Allocation t = useInt64RegisterAtStart(select->trueExpr());
LInt64Allocation f = useInt64RegisterAtStart(select->falseExpr());
LAllocation c = useRegisterAtStart(select->condExpr());
defineInt64(new (alloc()) LWasmSelectI64(t, f, c), select);
}
// On arm64 we specialize the cases: compare is {{U,}Int32, {U,}Int64},
// Float32, Double}, and select is {{U,}Int32, {U,}Int64}, Float32, Double},
// independently.
bool LIRGeneratorARM64::canSpecializeWasmCompareAndSelect(
MCompare::CompareType compTy, MIRType insTy) {
return (insTy == MIRType::Int32 || insTy == MIRType::Int64 ||
insTy == MIRType::Float32 || insTy == MIRType::Double) &&
(compTy == MCompare::Compare_Int32 ||
compTy == MCompare::Compare_UInt32 ||
compTy == MCompare::Compare_Int64 ||
compTy == MCompare::Compare_UInt64 ||
compTy == MCompare::Compare_Float32 ||
compTy == MCompare::Compare_Double);
}
void LIRGeneratorARM64::lowerWasmCompareAndSelect(MWasmSelect* ins,
MDefinition* lhs,
MDefinition* rhs,
MCompare::CompareType compTy,
JSOp jsop) {
MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type()));
LAllocation rhsAlloc;
if (compTy == MCompare::Compare_Float32 ||
compTy == MCompare::Compare_Double) {
rhsAlloc = useRegisterAtStart(rhs);
} else if (compTy == MCompare::Compare_Int32 ||
compTy == MCompare::Compare_UInt32 ||
compTy == MCompare::Compare_Int64 ||
compTy == MCompare::Compare_UInt64) {
rhsAlloc = useRegisterOrConstantAtStart(rhs);
} else {
MOZ_CRASH("Unexpected type");
}
auto* lir = new (alloc())
LWasmCompareAndSelect(useRegisterAtStart(lhs), rhsAlloc, compTy, jsop,
useRegisterAtStart(ins->trueExpr()),
useRegisterAtStart(ins->falseExpr()));
define(lir, ins);
}
void LIRGenerator::visitAbs(MAbs* ins) {
define(allocateAbs(ins, useRegisterAtStart(ins->input())), ins);
}
LTableSwitch* LIRGeneratorARM64::newLTableSwitch(const LAllocation& in,
const LDefinition& inputCopy,
MTableSwitch* tableswitch) {
return new (alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch);
}
LTableSwitchV* LIRGeneratorARM64::newLTableSwitchV(MTableSwitch* tableswitch) {
return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(),
tempDouble(), temp(), tableswitch);
}
void LIRGeneratorARM64::lowerUrshD(MUrsh* mir) {
MDefinition* lhs = mir->lhs();
MDefinition* rhs = mir->rhs();
MOZ_ASSERT(lhs->type() == MIRType::Int32);
MOZ_ASSERT(rhs->type() == MIRType::Int32);
LUrshD* lir = new (alloc())
LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
define(lir, mir);
}
void LIRGeneratorARM64::lowerPowOfTwoI(MPow* mir) {
int32_t base = mir->input()->toConstant()->toInt32();
MDefinition* power = mir->power();
auto* lir = new (alloc()) LPowOfTwoI(useRegister(power), base);
assignSnapshot(lir, mir->bailoutKind());
define(lir, mir);
}
void LIRGeneratorARM64::lowerBigIntLsh(MBigIntLsh* ins) {
auto* lir = new (alloc()) LBigIntLsh(
useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorARM64::lowerBigIntRsh(MBigIntRsh* ins) {
auto* lir = new (alloc()) LBigIntRsh(
useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorARM64::lowerBigIntDiv(MBigIntDiv* ins) {
auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()),
useRegister(ins->rhs()), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorARM64::lowerBigIntMod(MBigIntMod* ins) {
auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()),
useRegister(ins->rhs()), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
#ifdef ENABLE_WASM_SIMD
bool LIRGeneratorARM64::canFoldReduceSimd128AndBranch(wasm::SimdOp op) {
switch (op) {
case wasm::SimdOp::V128AnyTrue:
case wasm::SimdOp::I8x16AllTrue:
case wasm::SimdOp::I16x8AllTrue:
case wasm::SimdOp::I32x4AllTrue:
case wasm::SimdOp::I64x2AllTrue:
return true;
default:
return false;
}
}
bool LIRGeneratorARM64::canEmitWasmReduceSimd128AtUses(
MWasmReduceSimd128* ins) {
if (!ins->canEmitAtUses()) {
return false;
}
// Only specific ops generating int32.
if (ins->type() != MIRType::Int32) {
return false;
}
if (!canFoldReduceSimd128AndBranch(ins->simdOp())) {
return false;
}
// If never used then defer (it will be removed).
MUseIterator iter(ins->usesBegin());
if (iter == ins->usesEnd()) {
return true;
}
// We require an MTest consumer.
MNode* node = iter->consumer();
if (!node->isDefinition() || !node->toDefinition()->isTest()) {
return false;
}
// Defer only if there's only one use.
iter++;
return iter == ins->usesEnd();
}
#endif
void LIRGenerator::visitWasmNeg(MWasmNeg* ins) {
switch (ins->type()) {
case MIRType::Int32:
define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
break;
case MIRType::Float32:
define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
break;
case MIRType::Double:
define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
break;
default:
MOZ_CRASH("unexpected type");
}
}
void LIRGeneratorARM64::lowerUDiv(MDiv* div) {
LAllocation lhs = useRegister(div->lhs());
if (div->rhs()->isConstant()) {
// NOTE: the result of toInt32 is coerced to uint32_t.
uint32_t rhs = div->rhs()->toConstant()->toInt32();
int32_t shift = mozilla::FloorLog2(rhs);
if (rhs != 0 && uint32_t(1) << shift == rhs) {
LDivPowTwoI* lir = new (alloc()) LDivPowTwoI(lhs, shift, false);
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
LUDivConstantI* lir = new (alloc()) LUDivConstantI(lhs, rhs, temp());
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
// Generate UDiv
LAllocation rhs = useRegister(div->rhs());
LDefinition remainder = LDefinition::BogusTemp();
if (!div->canTruncateRemainder()) {
remainder = temp();
}
LUDiv* lir = new (alloc()) LUDiv(lhs, rhs, remainder);
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
}
void LIRGeneratorARM64::lowerUMod(MMod* mod) {
LUMod* lir = new (alloc())
LUMod(useRegister(mod->getOperand(0)), useRegister(mod->getOperand(1)));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
}
void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToDouble* lir =
new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToFloat32* lir =
new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
MOZ_ASSERT_IF(ins->needsBoundsCheck(),
boundsCheckLimit->type() == MIRType::Int32);
LAllocation baseAlloc = useRegisterAtStart(base);
LAllocation limitAlloc = ins->needsBoundsCheck()
? useRegisterAtStart(boundsCheckLimit)
: LAllocation();
// We have no memory-base value, meaning that HeapReg is to be used as the
// memory base. This follows from the definition of
// FunctionCompiler::maybeLoadMemoryBase() in WasmIonCompile.cpp.
MOZ_ASSERT(!ins->hasMemoryBase());
auto* lir =
new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc, LAllocation());
define(lir, ins);
}
void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
MOZ_ASSERT_IF(ins->needsBoundsCheck(),
boundsCheckLimit->type() == MIRType::Int32);
LAllocation baseAlloc = useRegisterAtStart(base);
LAllocation limitAlloc = ins->needsBoundsCheck()
? useRegisterAtStart(boundsCheckLimit)
: LAllocation();
// See comment in LIRGenerator::visitAsmJSStoreHeap just above.
MOZ_ASSERT(!ins->hasMemoryBase());
add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()),
limitAlloc, LAllocation()),
ins);
}
void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
MDefinition* base = ins->base();
// See comment in visitWasmLoad re the type of 'base'.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
LAllocation memoryBase = ins->hasMemoryBase()
? LAllocation(useRegister(ins->memoryBase()))
: LGeneralReg(HeapReg);
// Note, the access type may be Int64 here.
LWasmCompareExchangeHeap* lir = new (alloc())
LWasmCompareExchangeHeap(useRegister(base), useRegister(ins->oldValue()),
useRegister(ins->newValue()), memoryBase);
define(lir, ins);
}
void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
MDefinition* base = ins->base();
// See comment in visitWasmLoad re the type of 'base'.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
LAllocation memoryBase = ins->hasMemoryBase()
? LAllocation(useRegister(ins->memoryBase()))
: LGeneralReg(HeapReg);
// Note, the access type may be Int64 here.
LWasmAtomicExchangeHeap* lir = new (alloc()) LWasmAtomicExchangeHeap(
useRegister(base), useRegister(ins->value()), memoryBase);
define(lir, ins);
}
void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
MDefinition* base = ins->base();
// See comment in visitWasmLoad re the type of 'base'.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
LAllocation memoryBase = ins->hasMemoryBase()
? LAllocation(useRegister(ins->memoryBase()))
: LGeneralReg(HeapReg);
// Note, the access type may be Int64 here.
if (!ins->hasUses()) {
LWasmAtomicBinopHeapForEffect* lir = new (alloc())
LWasmAtomicBinopHeapForEffect(useRegister(base),
useRegister(ins->value()),
/* flagTemp= */ temp(), memoryBase);
add(lir, ins);
return;
}
LWasmAtomicBinopHeap* lir = new (alloc())
LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()),
/* temp= */ LDefinition::BogusTemp(),
/* flagTemp= */ temp(), memoryBase);
define(lir, ins);
}
void LIRGeneratorARM64::lowerTruncateDToInt32(MTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double);
define(new (alloc())
LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()),
ins);
}
void LIRGeneratorARM64::lowerTruncateFToInt32(MTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Float32);
define(new (alloc())
LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()),
ins);
}
void LIRGenerator::visitAtomicTypedArrayElementBinop(
MAtomicTypedArrayElementBinop* ins) {
MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
LAllocation value = useRegister(ins->value());
if (Scalar::isBigIntType(ins->arrayType())) {
LInt64Definition temp1 = tempInt64();
LInt64Definition temp2 = tempInt64();
// Case 1: the result of the operation is not used.
//
// We can omit allocating the result BigInt.
if (ins->isForEffect()) {
auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64(
elements, index, value, temp1, temp2);
add(lir, ins);
return;
}
// Case 2: the result of the operation is used.
auto* lir = new (alloc())
LAtomicTypedArrayElementBinop64(elements, index, value, temp1, temp2);
define(lir, ins);
assignSafepoint(lir, ins);
return;
}
if (ins->isForEffect()) {
auto* lir = new (alloc())
LAtomicTypedArrayElementBinopForEffect(elements, index, value, temp());
add(lir, ins);
return;
}
LDefinition tempDef1 = temp();
LDefinition tempDef2 = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
tempDef2 = temp();
}
LAtomicTypedArrayElementBinop* lir = new (alloc())
LAtomicTypedArrayElementBinop(elements, index, value, tempDef1, tempDef2);
define(lir, ins);
}
void LIRGenerator::visitCompareExchangeTypedArrayElement(
MCompareExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation newval = useRegister(ins->newval());
const LAllocation oldval = useRegister(ins->oldval());
if (Scalar::isBigIntType(ins->arrayType())) {
LInt64Definition temp1 = tempInt64();
LInt64Definition temp2 = tempInt64();
auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64(
elements, index, oldval, newval, temp1, temp2);
define(lir, ins);
assignSafepoint(lir, ins);
return;
}
// If the target is an FPReg then we need a temporary at the CodeGenerator
// level for creating the result.
LDefinition outTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
outTemp = temp();
}
LCompareExchangeTypedArrayElement* lir =
new (alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval,
newval, outTemp);
define(lir, ins);
}
void LIRGenerator::visitAtomicExchangeTypedArrayElement(
MAtomicExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation value = useRegister(ins->value());
if (Scalar::isBigIntType(ins->arrayType())) {
LInt64Definition temp1 = tempInt64();
LDefinition temp2 = temp();
auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64(
elements, index, value, temp1, temp2);
define(lir, ins);
assignSafepoint(lir, ins);
return;
}
MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
tempDef = temp();
}
LAtomicExchangeTypedArrayElement* lir = new (alloc())
LAtomicExchangeTypedArrayElement(elements, index, value, tempDef);
define(lir, ins);
}
void LIRGeneratorARM64::lowerAtomicLoad64(MLoadUnboxedScalar* ins) {
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->storageType());
auto* lir = new (alloc()) LAtomicLoad64(elements, index, temp(), tempInt64());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorARM64::lowerAtomicStore64(MStoreUnboxedScalar* ins) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->writeType());
LAllocation value = useRegister(ins->value());
add(new (alloc()) LAtomicStore64(elements, index, value, tempInt64()), ins);
}
void LIRGenerator::visitSubstr(MSubstr* ins) {
LSubstr* lir = new (alloc())
LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
useRegister(ins->length()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd)), ins);
}
void LIRGeneratorARM64::lowerWasmBuiltinTruncateToInt64(
MWasmBuiltinTruncateToInt64* ins) {
MOZ_CRASH("We don't use WasmBuiltinTruncateToInt64 for arm64");
}
void LIRGeneratorARM64::lowerBuiltinInt64ToFloatingPoint(
MBuiltinInt64ToFloatingPoint* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
MDefinition* base = ins->base();
// 'base' is a GPR but may be of either type. If it is 32-bit it is
// zero-extended and can act as 64-bit.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
LAllocation ptr = useRegisterOrConstantAtStart(base);
if (ins->type() == MIRType::Int64) {
auto* lir = new (alloc()) LWasmLoadI64(ptr, memoryBase);
defineInt64(lir, ins);
} else {
auto* lir = new (alloc()) LWasmLoad(ptr, memoryBase);
define(lir, ins);
}
}
void LIRGenerator::visitWasmStore(MWasmStore* ins) {
MDefinition* base = ins->base();
// See comment in visitWasmLoad re the type of 'base'.
MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
MDefinition* value = ins->value();
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
if (ins->access().type() == Scalar::Int64) {
LAllocation baseAlloc = useRegisterOrConstantAtStart(base);
LInt64Allocation valueAlloc = useInt64RegisterAtStart(value);
auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc, memoryBase);
add(lir, ins);
return;
}
LAllocation baseAlloc = useRegisterOrConstantAtStart(base);
LAllocation valueAlloc = useRegisterAtStart(value);
auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc, memoryBase);
add(lir, ins);
}
void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Int64);
MOZ_ASSERT(IsFloatingPointType(ins->type()));
define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd)), ins);
}
void LIRGenerator::visitCopySign(MCopySign* ins) {
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(IsFloatingPointType(lhs->type()));
MOZ_ASSERT(lhs->type() == rhs->type());
MOZ_ASSERT(lhs->type() == ins->type());
LInstructionHelper<1, 2, 2>* lir;
if (lhs->type() == MIRType::Double) {
lir = new (alloc()) LCopySignD();
} else {
lir = new (alloc()) LCopySignF();
}
lir->setOperand(0, useRegisterAtStart(lhs));
lir->setOperand(1, willHaveDifferentLIRNodes(lhs, rhs)
? useRegister(rhs)
: useRegisterAtStart(rhs));
// The copySignDouble and copySignFloat32 are optimized for lhs == output.
// It also prevents rhs == output when lhs != output, avoids clobbering.
defineReuseInput(lir, ins, 0);
}
void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
defineInt64(
new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins);
}
void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
defineInt64(new (alloc())
LSignExtendInt64(useInt64RegisterAtStart(ins->input())),
ins);
}
void LIRGenerator::visitWasmTernarySimd128(MWasmTernarySimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MOZ_ASSERT(ins->v0()->type() == MIRType::Simd128);
MOZ_ASSERT(ins->v1()->type() == MIRType::Simd128);
MOZ_ASSERT(ins->v2()->type() == MIRType::Simd128);
MOZ_ASSERT(ins->type() == MIRType::Simd128);
switch (ins->simdOp()) {
case wasm::SimdOp::V128Bitselect: {
auto* lir = new (alloc()) LWasmTernarySimd128(
ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()),
useRegisterAtStart(ins->v2()));
// On ARM64, control register is used as output at machine instruction.
defineReuseInput(lir, ins, LWasmTernarySimd128::V2);
break;
}
case wasm::SimdOp::F32x4RelaxedMadd:
case wasm::SimdOp::F32x4RelaxedNmadd:
case wasm::SimdOp::F64x2RelaxedMadd:
case wasm::SimdOp::F64x2RelaxedNmadd: {
auto* lir = new (alloc()) LWasmTernarySimd128(
ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()),
useRegisterAtStart(ins->v2()));
defineReuseInput(lir, ins, LWasmTernarySimd128::V2);
break;
}
case wasm::SimdOp::I32x4DotI8x16I7x16AddS: {
auto* lir = new (alloc()) LWasmTernarySimd128(
ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()),
useRegisterAtStart(ins->v2()), tempSimd128());
defineReuseInput(lir, ins, LWasmTernarySimd128::V2);
break;
}
case wasm::SimdOp::I8x16RelaxedLaneSelect:
case wasm::SimdOp::I16x8RelaxedLaneSelect:
case wasm::SimdOp::I32x4RelaxedLaneSelect:
case wasm::SimdOp::I64x2RelaxedLaneSelect: {
auto* lir = new (alloc()) LWasmTernarySimd128(
ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()),
useRegisterAtStart(ins->v2()));
defineReuseInput(lir, ins, LWasmTernarySimd128::V2);
break;
}
default:
MOZ_CRASH("NYI");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
wasm::SimdOp op = ins->simdOp();
MOZ_ASSERT(lhs->type() == MIRType::Simd128);
MOZ_ASSERT(rhs->type() == MIRType::Simd128);
MOZ_ASSERT(ins->type() == MIRType::Simd128);
LAllocation lhsAlloc = useRegisterAtStart(lhs);
LAllocation rhsAlloc = useRegisterAtStart(rhs);
LDefinition tempReg0 = LDefinition::BogusTemp();
LDefinition tempReg1 = LDefinition::BogusTemp();
if (op == wasm::SimdOp::I64x2Mul) {
tempReg0 = tempSimd128();
tempReg1 = tempSimd128();
}
auto* lir = new (alloc())
LWasmBinarySimd128(op, lhsAlloc, rhsAlloc, tempReg0, tempReg1);
define(lir, ins);
#else
MOZ_CRASH("No SIMD");
#endif
}
#ifdef ENABLE_WASM_SIMD
bool MWasmTernarySimd128::specializeBitselectConstantMaskAsShuffle(
int8_t shuffle[16]) {
return false;
}
bool MWasmTernarySimd128::canRelaxBitselect() { return false; }
bool MWasmBinarySimd128::canPmaddubsw() { return false; }
#endif
bool MWasmBinarySimd128::specializeForConstantRhs() {
// Probably many we want to do here
return false;
}
void LIRGenerator::visitWasmBinarySimd128WithConstant(
MWasmBinarySimd128WithConstant* ins) {
MOZ_CRASH("binary SIMD with constant NYI");
}
void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(lhs->type() == MIRType::Simd128);
MOZ_ASSERT(rhs->type() == MIRType::Int32);
MOZ_ASSERT(ins->type() == MIRType::Simd128);
if (rhs->isConstant()) {
int32_t shiftCount = rhs->toConstant()->toInt32();
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16Shl:
case wasm::SimdOp::I8x16ShrU:
case wasm::SimdOp::I8x16ShrS:
shiftCount &= 7;
break;
case wasm::SimdOp::I16x8Shl:
case wasm::SimdOp::I16x8ShrU:
case wasm::SimdOp::I16x8ShrS:
shiftCount &= 15;
break;
case wasm::SimdOp::I32x4Shl:
case wasm::SimdOp::I32x4ShrU:
case wasm::SimdOp::I32x4ShrS:
shiftCount &= 31;
break;
case wasm::SimdOp::I64x2Shl:
case wasm::SimdOp::I64x2ShrU:
case wasm::SimdOp::I64x2ShrS:
shiftCount &= 63;
break;
default:
MOZ_CRASH("Unexpected shift operation");
}
# ifdef DEBUG
js::wasm::ReportSimdAnalysis("shift -> constant shift");
# endif
auto* lir = new (alloc())
LWasmConstantShiftSimd128(useRegisterAtStart(lhs), shiftCount);
define(lir, ins);
return;
}
# ifdef DEBUG
js::wasm::ReportSimdAnalysis("shift -> variable shift");
# endif
LAllocation lhsDestAlloc = useRegisterAtStart(lhs);
LAllocation rhsAlloc = useRegisterAtStart(rhs);
auto* lir = new (alloc()) LWasmVariableShiftSimd128(lhsDestAlloc, rhsAlloc,
LDefinition::BogusTemp());
define(lir, ins);
#else
MOZ_CRASH("No SIMD");
#endif
}
void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MOZ_ASSERT(ins->lhs()->type() == MIRType::Simd128);
MOZ_ASSERT(ins->rhs()->type() == MIRType::Simd128);
MOZ_ASSERT(ins->type() == MIRType::Simd128);
SimdShuffle s = ins->shuffle();
switch (s.opd) {
case SimdShuffle::Operand::LEFT:
case SimdShuffle::Operand::RIGHT: {
LAllocation src;
switch (*s.permuteOp) {
case SimdPermuteOp::MOVE:
case SimdPermuteOp::BROADCAST_8x16:
case SimdPermuteOp::BROADCAST_16x8:
case SimdPermuteOp::PERMUTE_8x16:
case SimdPermuteOp::PERMUTE_16x8:
case SimdPermuteOp::PERMUTE_32x4:
case SimdPermuteOp::ROTATE_RIGHT_8x16:
case SimdPermuteOp::SHIFT_LEFT_8x16:
case SimdPermuteOp::SHIFT_RIGHT_8x16:
case SimdPermuteOp::REVERSE_16x8:
case SimdPermuteOp::REVERSE_32x4:
case SimdPermuteOp::REVERSE_64x2:
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_16x8:
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_32x4:
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_64x2:
case SimdPermuteOp::ZERO_EXTEND_16x8_TO_32x4:
case SimdPermuteOp::ZERO_EXTEND_16x8_TO_64x2:
case SimdPermuteOp::ZERO_EXTEND_32x4_TO_64x2:
break;
default:
MOZ_CRASH("Unexpected operator");
}
if (s.opd == SimdShuffle::Operand::LEFT) {
src = useRegisterAtStart(ins->lhs());
} else {
src = useRegisterAtStart(ins->rhs());
}
auto* lir =
new (alloc()) LWasmPermuteSimd128(src, *s.permuteOp, s.control);
define(lir, ins);
break;
}
case SimdShuffle::Operand::BOTH:
case SimdShuffle::Operand::BOTH_SWAPPED: {
LDefinition temp = LDefinition::BogusTemp();
LAllocation lhs;
LAllocation rhs;
if (s.opd == SimdShuffle::Operand::BOTH) {
lhs = useRegisterAtStart(ins->lhs());
rhs = useRegisterAtStart(ins->rhs());
} else {
lhs = useRegisterAtStart(ins->rhs());
rhs = useRegisterAtStart(ins->lhs());
}
auto* lir = new (alloc())
LWasmShuffleSimd128(lhs, rhs, temp, *s.shuffleOp, s.control);
define(lir, ins);
break;
}
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MOZ_ASSERT(ins->lhs()->type() == MIRType::Simd128);
MOZ_ASSERT(ins->type() == MIRType::Simd128);
// Optimal code generation reuses the lhs register because the rhs scalar is
// merged into a vector lhs.
LAllocation lhs = useRegisterAtStart(ins->lhs());
if (ins->rhs()->type() == MIRType::Int64) {
auto* lir = new (alloc())
LWasmReplaceInt64LaneSimd128(lhs, useInt64Register(ins->rhs()));
defineReuseInput(lir, ins, 0);
} else {
auto* lir =
new (alloc()) LWasmReplaceLaneSimd128(lhs, useRegister(ins->rhs()));
defineReuseInput(lir, ins, 0);
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MOZ_ASSERT(ins->type() == MIRType::Simd128);
switch (ins->input()->type()) {
case MIRType::Int64: {
// 64-bit integer splats.
// Load-and-(sign|zero)extend.
auto* lir = new (alloc())
LWasmInt64ToSimd128(useInt64RegisterAtStart(ins->input()));
define(lir, ins);
break;
}
case MIRType::Float32:
case MIRType::Double: {
// Floating-point splats.
auto* lir =
new (alloc()) LWasmScalarToSimd128(useRegisterAtStart(ins->input()));
define(lir, ins);
break;
}
default: {
// 32-bit integer splats.
auto* lir =
new (alloc()) LWasmScalarToSimd128(useRegisterAtStart(ins->input()));
define(lir, ins);
break;
}
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MOZ_ASSERT(ins->input()->type() == MIRType::Simd128);
MOZ_ASSERT(ins->type() == MIRType::Simd128);
LDefinition tempReg = LDefinition::BogusTemp();
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16Neg:
case wasm::SimdOp::I16x8Neg:
case wasm::SimdOp::I32x4Neg:
case wasm::SimdOp::I64x2Neg:
case wasm::SimdOp::F32x4Neg:
case wasm::SimdOp::F64x2Neg:
case wasm::SimdOp::F32x4Abs:
case wasm::SimdOp::F64x2Abs:
case wasm::SimdOp::V128Not:
case wasm::SimdOp::F32x4Sqrt:
case wasm::SimdOp::F64x2Sqrt:
case wasm::SimdOp::I8x16Abs:
case wasm::SimdOp::I16x8Abs:
case wasm::SimdOp::I32x4Abs:
case wasm::SimdOp::I64x2Abs:
case wasm::SimdOp::I32x4TruncSatF32x4S:
case wasm::SimdOp::F32x4ConvertI32x4U:
case wasm::SimdOp::I32x4TruncSatF32x4U:
case wasm::SimdOp::I16x8ExtendLowI8x16S:
case wasm::SimdOp::I16x8ExtendHighI8x16S:
case wasm::SimdOp::I16x8ExtendLowI8x16U:
case wasm::SimdOp::I16x8ExtendHighI8x16U:
case wasm::SimdOp::I32x4ExtendLowI16x8S:
case wasm::SimdOp::I32x4ExtendHighI16x8S:
case wasm::SimdOp::I32x4ExtendLowI16x8U:
case wasm::SimdOp::I32x4ExtendHighI16x8U:
case wasm::SimdOp::I64x2ExtendLowI32x4S:
case wasm::SimdOp::I64x2ExtendHighI32x4S:
case wasm::SimdOp::I64x2ExtendLowI32x4U:
case wasm::SimdOp::I64x2ExtendHighI32x4U:
case wasm::SimdOp::F32x4ConvertI32x4S:
case wasm::SimdOp::F32x4Ceil:
case wasm::SimdOp::F32x4Floor:
case wasm::SimdOp::F32x4Trunc:
case wasm::SimdOp::F32x4Nearest:
case wasm::SimdOp::F64x2Ceil:
case wasm::SimdOp::F64x2Floor:
case wasm::SimdOp::F64x2Trunc:
case wasm::SimdOp::F64x2Nearest:
case wasm::SimdOp::F32x4DemoteF64x2Zero:
case wasm::SimdOp::F64x2PromoteLowF32x4:
case wasm::SimdOp::F64x2ConvertLowI32x4S:
case wasm::SimdOp::F64x2ConvertLowI32x4U:
case wasm::SimdOp::I16x8ExtaddPairwiseI8x16S:
case wasm::SimdOp::I16x8ExtaddPairwiseI8x16U:
case wasm::SimdOp::I32x4ExtaddPairwiseI16x8S:
case wasm::SimdOp::I32x4ExtaddPairwiseI16x8U:
case wasm::SimdOp::I8x16Popcnt:
case wasm::SimdOp::I32x4RelaxedTruncF32x4S:
case wasm::SimdOp::I32x4RelaxedTruncF32x4U:
case wasm::SimdOp::I32x4RelaxedTruncF64x2SZero:
case wasm::SimdOp::I32x4RelaxedTruncF64x2UZero:
break;
case wasm::SimdOp::I32x4TruncSatF64x2SZero:
case wasm::SimdOp::I32x4TruncSatF64x2UZero:
tempReg = tempSimd128();
break;
default:
MOZ_CRASH("Unary SimdOp not implemented");
}
LUse input = useRegisterAtStart(ins->input());
LWasmUnarySimd128* lir = new (alloc()) LWasmUnarySimd128(input, tempReg);
define(lir, ins);
#else
MOZ_CRASH("No SIMD");
#endif
}
void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
if (canEmitWasmReduceSimd128AtUses(ins)) {
emitAtUses(ins);
return;
}
// Reductions (any_true, all_true, bitmask, extract_lane) uniformly prefer
// useRegisterAtStart:
//
// - In most cases, the input type differs from the output type, so there's no
// conflict and it doesn't really matter.
//
// - For extract_lane(0) on F32x4 and F64x2, input == output results in zero
// code being generated.
//
// - For extract_lane(k > 0) on F32x4 and F64x2, allowing the input register
// to be targeted lowers register pressure if it's the last use of the
// input.
if (ins->type() == MIRType::Int64) {
auto* lir = new (alloc())
LWasmReduceSimd128ToInt64(useRegisterAtStart(ins->input()));
defineInt64(lir, ins);
} else {
LDefinition tempReg = LDefinition::BogusTemp();
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16Bitmask:
case wasm::SimdOp::I16x8Bitmask:
case wasm::SimdOp::I32x4Bitmask:
case wasm::SimdOp::I64x2Bitmask:
tempReg = tempSimd128();
break;
default:
break;
}
// Ideally we would reuse the input register for floating extract_lane if
// the lane is zero, but constraints in the register allocator require the
// input and output register types to be the same.
auto* lir = new (alloc())
LWasmReduceSimd128(useRegisterAtStart(ins->input()), tempReg);
define(lir, ins);
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
// On 64-bit systems, the base pointer can be 32 bits or 64 bits. Either way,
// it fits in a GPR so we can ignore the Register/Register64 distinction here.
// Optimal allocation here reuses the value input for the output register
// because codegen otherwise has to copy the input to the output; this is
// because load-lane is implemented as load + replace-lane. Bug 1706106 may
// change all of that, so leave it alone for now.
LUse base = useRegisterAtStart(ins->base());
LUse inputUse = useRegisterAtStart(ins->value());
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
LWasmLoadLaneSimd128* lir =
new (alloc()) LWasmLoadLaneSimd128(base, inputUse, temp(), memoryBase);
define(lir, ins);
#else
MOZ_CRASH("No SIMD");
#endif
}
void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
// See comment above about the base pointer.
LUse base = useRegisterAtStart(ins->base());
LUse input = useRegisterAtStart(ins->value());
LAllocation memoryBase =
ins->hasMemoryBase() ? LAllocation(useRegisterAtStart(ins->memoryBase()))
: LGeneralReg(HeapReg);
LWasmStoreLaneSimd128* lir =
new (alloc()) LWasmStoreLaneSimd128(base, input, temp(), memoryBase);
add(lir, ins);
#else
MOZ_CRASH("No SIMD");
#endif
}