Source code
Revision control
Copy as Markdown
Other Tools
/* tinytest_demo.c -- Copyright 2009-2012 Nick Mathewson
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Welcome to the example file for tinytest! I'll show you how to set up
* some simple and not-so-simple testcases. */
/* Make sure you include these headers. */
#include "tinytest.h"
#include "tinytest_macros.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <time.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
/* ============================================================ */
/* First, let's see if strcmp is working. (All your test cases should be
* functions declared to take a single void * as an argument.) */
void
test_strcmp(void *data)
{
(void)data; /* This testcase takes no data. */
/* Let's make sure the empty string is equal to itself */
if (strcmp("","")) {
/* This macro tells tinytest to stop the current test
* and go straight to the "end" label. */
tt_abort_msg("The empty string was not equal to itself");
}
/* Pretty often, calling tt_abort_msg to indicate failure is more
heavy-weight than you want. Instead, just say: */
tt_assert(strcmp("testcase", "testcase") == 0);
/* Occasionally, you don't want to stop the current testcase just
because a single assertion has failed. In that case, use
tt_want: */
tt_want(strcmp("tinytest", "testcase") > 0);
/* You can use the tt_*_op family of macros to compare values and to
fail unless they have the relationship you want. They produce
more useful output than tt_assert, since they display the actual
values of the failing things.
Fail unless strcmp("abc, "abc") == 0 */
tt_int_op(strcmp("abc", "abc"), ==, 0);
/* Fail unless strcmp("abc, "abcd") is less than 0 */
tt_int_op(strcmp("abc", "abcd"), < , 0);
/* Incidentally, there's a test_str_op that uses strcmp internally. */
tt_str_op("abc", <, "abcd");
/* Every test-case function needs to finish with an "end:"
label and (optionally) code to clean up local variables. */
end:
;
}
/* ============================================================ */
/* Now let's mess with setup and teardown functions! These are handy if
you have a bunch of tests that all need a similar environment, and you
want to reconstruct that environment freshly for each one. */
/* First you declare a type to hold the environment info, and functions to
set it up and tear it down. */
struct data_buffer {
/* We're just going to have couple of character buffer. Using
setup/teardown functions is probably overkill for this case.
You could also do file descriptors, complicated handles, temporary
files, etc. */
char buffer1[512];
char buffer2[512];
};
/* The setup function needs to take a const struct testcase_t and return
void* */
void *
setup_data_buffer(const struct testcase_t *testcase)
{
struct data_buffer *db = malloc(sizeof(struct data_buffer));
/* If you had a complicated set of setup rules, you might behave
differently here depending on testcase->flags or
testcase->setup_data or even or testcase->name. */
/* Returning a NULL here would mean that we couldn't set up for this
test, so we don't need to test db for null. */
return db;
}
/* The clean function deallocates storage carefully and returns true on
success. */
int
clean_data_buffer(const struct testcase_t *testcase, void *ptr)
{
struct data_buffer *db = ptr;
if (db) {
free(db);
return 1;
}
return 0;
}
/* Finally, declare a testcase_setup_t with these functions. */
struct testcase_setup_t data_buffer_setup = {
setup_data_buffer, clean_data_buffer
};
/* Now let's write our test. */
void
test_memcpy(void *ptr)
{
/* This time, we use the argument. */
struct data_buffer *db = ptr;
/* We'll also introduce a local variable that might need cleaning up. */
char *mem = NULL;
/* Let's make sure that memcpy does what we'd like. */
strcpy(db->buffer1, "String 0");
memcpy(db->buffer2, db->buffer1, sizeof(db->buffer1));
tt_str_op(db->buffer1, ==, db->buffer2);
/* This one works if there's an internal NUL. */
tt_mem_op(db->buffer1, <, db->buffer2, sizeof(db->buffer1));
/* Now we've allocated memory that's referenced by a local variable.
The end block of the function will clean it up. */
mem = strdup("Hello world.");
tt_assert(mem);
/* Another rather trivial test. */
tt_str_op(db->buffer1, !=, mem);
end:
/* This time our end block has something to do. */
if (mem)
free(mem);
}
void
test_timeout(void *ptr)
{
time_t t1, t2;
(void)ptr;
t1 = time(NULL);
#ifdef _WIN32
Sleep(5000);
#else
sleep(5);
#endif
t2 = time(NULL);
tt_int_op(t2-t1, >=, 4);
tt_int_op(t2-t1, <=, 6);
end:
;
}
void
test_timeout_retry(void *ptr)
{
static int i = 0;
++i;
tt_int_op(i, !=, 1);
time_t t1, t2;
(void)ptr;
t1 = time(NULL);
#ifdef _WIN32
Sleep(5000);
#else
sleep(5);
#endif
t2 = time(NULL);
tt_int_op(t2-t1, >=, 4);
tt_int_op(t2-t1, <=, 6);
end:
;
}
/* ============================================================ */
/* Now we need to make sure that our tests get invoked. First, you take
a bunch of related tests and put them into an array of struct testcase_t.
*/
struct testcase_t demo_tests[] = {
/* Here's a really simple test: it has a name you can refer to it
with, and a function to invoke it. */
{ "strcmp", test_strcmp, },
/* The second test has a flag, "TT_FORK", to make it run in a
subprocess, and a pointer to the testcase_setup_t that configures
its environment. */
{ "memcpy", test_memcpy, TT_FORK, &data_buffer_setup },
/* This flag is off-by-default, since it takes a while to run. You
* can enable it manually by passing +demo/timeout at the command line.*/
{ "timeout", test_timeout, TT_OFF_BY_DEFAULT },
/* This test will be retried. (and it will not pass from the first
* time) */
{ "timeout_retry", test_timeout_retry, TT_RETRIABLE },
/* The array has to end with END_OF_TESTCASES. */
END_OF_TESTCASES
};
/* Next, we make an array of testgroups. This is mandatory. Unlike more
heavy-duty testing frameworks, groups can't nest. */
struct testgroup_t groups[] = {
/* Every group has a 'prefix', and an array of tests. That's it. */
{ "demo/", demo_tests },
END_OF_GROUPS
};
/* We can also define test aliases. These can be used for types of tests that
* cut across groups. */
const char *alltests[] = { "+..", NULL };
const char *slowtests[] = { "+demo/timeout", NULL };
struct testlist_alias_t aliases[] = {
{ "ALL", alltests },
{ "SLOW", slowtests },
END_OF_ALIASES
};
int
main(int c, const char **v)
{
/* Finally, just call tinytest_main(). It lets you specify verbose
or quiet output with --verbose and --quiet. You can list
specific tests:
tinytest-demo demo/memcpy
or use a ..-wildcard to select multiple tests with a common
prefix:
tinytest-demo demo/..
If you list no tests, you get them all by default, so that
"tinytest-demo" and "tinytest-demo .." mean the same thing.
*/
tinytest_set_aliases(aliases);
return tinytest_main(c, v, groups);
}