Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use std::{cmp, mem};
use api::units::*;
use malloc_size_of::MallocSizeOfOps;
use crate::{
device::{CustomVAO, Device, DrawTarget, Program, ReadTarget, Texture, TextureFilter, UploadPBOPool, VBO},
gpu_cache::{GpuBlockData, GpuCacheUpdate, GpuCacheUpdateList},
internal_types::{FrameId, RenderTargetInfo, Swizzle},
prim_store::DeferredResolve,
profiler,
render_api::MemoryReport,
};
/// Enabling this toggle would force the GPU cache scattered texture to
/// be resized every frame, which enables GPU debuggers to see if this
/// is performed correctly.
const GPU_CACHE_RESIZE_TEST: bool = false;
/// Tracks the state of each row in the GPU cache texture.
struct CacheRow {
/// Mirrored block data on CPU for this row. We store a copy of
/// the data on the CPU side to improve upload batching.
cpu_blocks: Box<[GpuBlockData; super::MAX_VERTEX_TEXTURE_WIDTH]>,
/// The first offset in this row that is dirty.
min_dirty: u16,
/// The last offset in this row that is dirty.
max_dirty: u16,
}
impl CacheRow {
fn new() -> Self {
CacheRow {
cpu_blocks: Box::new([GpuBlockData::EMPTY; super::MAX_VERTEX_TEXTURE_WIDTH]),
min_dirty: super::MAX_VERTEX_TEXTURE_WIDTH as _,
max_dirty: 0,
}
}
fn is_dirty(&self) -> bool {
return self.min_dirty < self.max_dirty;
}
fn clear_dirty(&mut self) {
self.min_dirty = super::MAX_VERTEX_TEXTURE_WIDTH as _;
self.max_dirty = 0;
}
fn add_dirty(&mut self, block_offset: usize, block_count: usize) {
self.min_dirty = self.min_dirty.min(block_offset as _);
self.max_dirty = self.max_dirty.max((block_offset + block_count) as _);
}
fn dirty_blocks(&self) -> &[GpuBlockData] {
return &self.cpu_blocks[self.min_dirty as usize .. self.max_dirty as usize];
}
}
/// The bus over which CPU and GPU versions of the GPU cache
/// get synchronized.
enum GpuCacheBus {
/// PBO-based updates, currently operate on a row granularity.
/// Therefore, are subject to fragmentation issues.
PixelBuffer {
/// Per-row data.
rows: Vec<CacheRow>,
},
/// Shader-based scattering updates. Currently rendered by a set
/// of points into the GPU texture, each carrying a `GpuBlockData`.
Scatter {
/// Special program to run the scattered update.
program: Program,
/// VAO containing the source vertex buffers.
vao: CustomVAO,
/// VBO for positional data, supplied as normalized `u16`.
buf_position: VBO<[u16; 2]>,
/// VBO for gpu block data.
buf_value: VBO<GpuBlockData>,
/// Currently stored block count.
count: usize,
},
}
/// The device-specific representation of the cache texture in gpu_cache.rs
pub struct GpuCacheTexture {
texture: Option<Texture>,
bus: GpuCacheBus,
}
impl GpuCacheTexture {
/// Ensures that we have an appropriately-sized texture.
fn ensure_texture(&mut self, device: &mut Device, height: i32) {
// If we already have a texture that works, we're done.
if self.texture.as_ref().map_or(false, |t| t.get_dimensions().height >= height) {
if GPU_CACHE_RESIZE_TEST {
// Special debug mode - resize the texture even though it's fine.
} else {
return;
}
}
// Take the old texture, if any.
let blit_source = self.texture.take();
// Create the new texture.
assert!(height >= 2, "Height is too small for ANGLE");
let new_size = DeviceIntSize::new(super::MAX_VERTEX_TEXTURE_WIDTH as _, height);
// GpuCacheBus::Scatter always requires the texture to be a render target. For
// GpuCacheBus::PixelBuffer, we only create the texture with a render target if
// RGBAF32 render targets are actually supported, and only if glCopyImageSubData
// is not. glCopyImageSubData does not require a render target to copy the texture
// data, and if neither RGBAF32 render targets nor glCopyImageSubData is supported,
// we simply re-upload the entire contents rather than copying upon resize.
let supports_copy_image_sub_data = device.get_capabilities().supports_copy_image_sub_data;
let supports_color_buffer_float = device.get_capabilities().supports_color_buffer_float;
let rt_info = if matches!(self.bus, GpuCacheBus::PixelBuffer { .. })
&& (supports_copy_image_sub_data || !supports_color_buffer_float)
{
None
} else {
Some(RenderTargetInfo { has_depth: false })
};
let mut texture = device.create_texture(
api::ImageBufferKind::Texture2D,
api::ImageFormat::RGBAF32,
new_size.width,
new_size.height,
TextureFilter::Nearest,
rt_info,
);
// Copy the contents of the previous texture, if applicable.
if let Some(blit_source) = blit_source {
if !supports_copy_image_sub_data && !supports_color_buffer_float {
// Cannot copy texture, so must re-upload everything.
match self.bus {
GpuCacheBus::PixelBuffer { ref mut rows } => {
for row in rows {
row.add_dirty(0, super::MAX_VERTEX_TEXTURE_WIDTH);
}
}
GpuCacheBus::Scatter { .. } => {
panic!("Texture must be copyable to use scatter GPU cache bus method");
}
}
} else {
device.copy_entire_texture(&mut texture, &blit_source);
}
device.delete_texture(blit_source);
}
self.texture = Some(texture);
}
pub fn new(device: &mut Device, use_scatter: bool) -> Result<Self, super::RendererError> {
use super::desc::GPU_CACHE_UPDATE;
let bus = if use_scatter {
assert!(
device.get_capabilities().supports_color_buffer_float,
"GpuCache scatter method requires EXT_color_buffer_float",
);
let program = device.create_program_linked(
"gpu_cache_update",
&[],
&GPU_CACHE_UPDATE,
)?;
let buf_position = device.create_vbo();
let buf_value = device.create_vbo();
//Note: the vertex attributes have to be supplied in the same order
// as for program creation, but each assigned to a different stream.
let vao = device.create_custom_vao(&[
buf_position.stream_with(&GPU_CACHE_UPDATE.vertex_attributes[0..1]),
buf_value .stream_with(&GPU_CACHE_UPDATE.vertex_attributes[1..2]),
]);
GpuCacheBus::Scatter {
program,
vao,
buf_position,
buf_value,
count: 0,
}
} else {
GpuCacheBus::PixelBuffer {
rows: Vec::new(),
}
};
Ok(GpuCacheTexture {
texture: None,
bus,
})
}
pub fn deinit(mut self, device: &mut Device) {
if let Some(t) = self.texture.take() {
device.delete_texture(t);
}
if let GpuCacheBus::Scatter { program, vao, buf_position, buf_value, .. } = self.bus {
device.delete_program(program);
device.delete_custom_vao(vao);
device.delete_vbo(buf_position);
device.delete_vbo(buf_value);
}
}
pub fn get_height(&self) -> i32 {
self.texture.as_ref().map_or(0, |t| t.get_dimensions().height)
}
#[cfg(feature = "capture")]
pub fn get_texture(&self) -> &Texture {
self.texture.as_ref().unwrap()
}
fn prepare_for_updates(
&mut self,
device: &mut Device,
total_block_count: usize,
max_height: i32,
) {
self.ensure_texture(device, max_height);
match self.bus {
GpuCacheBus::PixelBuffer { .. } => {},
GpuCacheBus::Scatter {
ref mut buf_position,
ref mut buf_value,
ref mut count,
..
} => {
*count = 0;
if total_block_count > buf_value.allocated_count() {
device.allocate_vbo(buf_position, total_block_count, super::ONE_TIME_USAGE_HINT);
device.allocate_vbo(buf_value, total_block_count, super::ONE_TIME_USAGE_HINT);
}
}
}
}
pub fn invalidate(&mut self) {
match self.bus {
GpuCacheBus::PixelBuffer { ref mut rows, .. } => {
info!("Invalidating GPU caches");
for row in rows {
row.add_dirty(0, super::MAX_VERTEX_TEXTURE_WIDTH);
}
}
GpuCacheBus::Scatter { .. } => {
warn!("Unable to invalidate scattered GPU cache");
}
}
}
fn update(&mut self, device: &mut Device, updates: &GpuCacheUpdateList) {
match self.bus {
GpuCacheBus::PixelBuffer { ref mut rows, .. } => {
for update in &updates.updates {
match *update {
GpuCacheUpdate::Copy {
block_index,
block_count,
address,
} => {
let row = address.v as usize;
// Ensure that the CPU-side shadow copy of the GPU cache data has enough
// rows to apply this patch.
while rows.len() <= row {
// Add a new row.
rows.push(CacheRow::new());
}
// Copy the blocks from the patch array in the shadow CPU copy.
let block_offset = address.u as usize;
let data = &mut rows[row].cpu_blocks;
for i in 0 .. block_count {
data[block_offset + i] = updates.blocks[block_index + i];
}
// This row is dirty (needs to be updated in GPU texture).
rows[row].add_dirty(block_offset, block_count);
}
}
}
}
GpuCacheBus::Scatter {
ref buf_position,
ref buf_value,
ref mut count,
..
} => {
//TODO: re-use this heap allocation
// Unused positions will be left as 0xFFFF, which translates to
// (1.0, 1.0) in the vertex output position and gets culled out
let mut position_data = vec![[!0u16; 2]; updates.blocks.len()];
let size = self.texture.as_ref().unwrap().get_dimensions().to_usize();
for update in &updates.updates {
match *update {
GpuCacheUpdate::Copy {
block_index,
block_count,
address,
} => {
// Convert the absolute texel position into normalized
let y = ((2*address.v as usize + 1) << 15) / size.height;
for i in 0 .. block_count {
let x = ((2*address.u as usize + 2*i + 1) << 15) / size.width;
position_data[block_index + i] = [x as _, y as _];
}
}
}
}
device.fill_vbo(buf_value, &updates.blocks, *count);
device.fill_vbo(buf_position, &position_data, *count);
*count += position_data.len();
}
}
}
fn flush(&mut self, device: &mut Device, pbo_pool: &mut UploadPBOPool) -> usize {
let texture = self.texture.as_ref().unwrap();
match self.bus {
GpuCacheBus::PixelBuffer { ref mut rows } => {
let rows_dirty = rows
.iter()
.filter(|row| row.is_dirty())
.count();
if rows_dirty == 0 {
return 0
}
let mut uploader = device.upload_texture(pbo_pool);
for (row_index, row) in rows.iter_mut().enumerate() {
if !row.is_dirty() {
continue;
}
let blocks = row.dirty_blocks();
let rect = DeviceIntRect::from_origin_and_size(
DeviceIntPoint::new(row.min_dirty as i32, row_index as i32),
DeviceIntSize::new(blocks.len() as i32, 1),
);
uploader.upload(device, texture, rect, None, None, blocks.as_ptr(), blocks.len());
row.clear_dirty();
}
uploader.flush(device);
rows_dirty
}
GpuCacheBus::Scatter { ref program, ref vao, count, .. } => {
device.disable_depth();
device.set_blend(false);
device.bind_program(program);
device.bind_custom_vao(vao);
device.bind_draw_target(
DrawTarget::from_texture(
texture,
false,
),
);
device.draw_nonindexed_points(0, count as _);
0
}
}
}
#[cfg(feature = "replay")]
pub fn remove_texture(&mut self, device: &mut Device) {
if let Some(t) = self.texture.take() {
device.delete_texture(t);
}
}
#[cfg(feature = "replay")]
pub fn load_from_data(&mut self, texture: Texture, data: Vec<u8>) {
assert!(self.texture.is_none());
match self.bus {
GpuCacheBus::PixelBuffer { ref mut rows, .. } => {
let dim = texture.get_dimensions();
let blocks = unsafe {
std::slice::from_raw_parts(
data.as_ptr() as *const GpuBlockData,
data.len() / mem::size_of::<GpuBlockData>(),
)
};
// fill up the CPU cache from the contents we just loaded
rows.clear();
rows.extend((0 .. dim.height).map(|_| CacheRow::new()));
let chunks = blocks.chunks(super::MAX_VERTEX_TEXTURE_WIDTH);
debug_assert_eq!(chunks.len(), rows.len());
for (row, chunk) in rows.iter_mut().zip(chunks) {
row.cpu_blocks.copy_from_slice(chunk);
}
}
GpuCacheBus::Scatter { .. } => {}
}
self.texture = Some(texture);
}
pub fn report_memory_to(&self, report: &mut MemoryReport, size_op_funs: &MallocSizeOfOps) {
if let GpuCacheBus::PixelBuffer{ref rows, ..} = self.bus {
for row in rows.iter() {
report.gpu_cache_cpu_mirror += unsafe { (size_op_funs.size_of_op)(row.cpu_blocks.as_ptr() as *const _) };
}
}
// GPU cache GPU memory.
report.gpu_cache_textures +=
self.texture.as_ref().map_or(0, |t| t.size_in_bytes());
}
pub fn gpu_size_in_bytes(&self) -> usize {
match &self.texture {
Some(tex) => tex.size_in_bytes(),
None => 0,
}
}
}
impl super::Renderer {
pub fn update_gpu_cache(&mut self) {
let _gm = self.gpu_profiler.start_marker("gpu cache update");
// For an artificial stress test of GPU cache resizing,
// always pass an extra update list with at least one block in it.
let gpu_cache_height = self.gpu_cache_texture.get_height();
if gpu_cache_height != 0 && GPU_CACHE_RESIZE_TEST {
self.pending_gpu_cache_updates.push(GpuCacheUpdateList {
frame_id: FrameId::INVALID,
clear: false,
height: gpu_cache_height,
blocks: vec![[1f32; 4].into()],
updates: Vec::new(),
debug_commands: Vec::new(),
});
}
let (updated_blocks, max_requested_height) = self
.pending_gpu_cache_updates
.iter()
.fold((0, gpu_cache_height), |(count, height), list| {
(count + list.blocks.len(), cmp::max(height, list.height))
});
if max_requested_height > self.get_max_texture_size() && !self.gpu_cache_overflow {
self.gpu_cache_overflow = true;
self.renderer_errors.push(super::RendererError::MaxTextureSize);
}
// Note: if we decide to switch to scatter-style GPU cache update
// permanently, we can have this code nicer with `BufferUploader` kind
// of helper, similarly to how `TextureUploader` API is used.
self.gpu_cache_texture.prepare_for_updates(
&mut self.device,
updated_blocks,
max_requested_height,
);
for update_list in self.pending_gpu_cache_updates.drain(..) {
assert!(update_list.height <= max_requested_height);
if update_list.frame_id > self.gpu_cache_frame_id {
self.gpu_cache_frame_id = update_list.frame_id
}
self.gpu_cache_texture
.update(&mut self.device, &update_list);
}
self.profile.start_time(profiler::GPU_CACHE_UPLOAD_TIME);
let updated_rows = self.gpu_cache_texture.flush(
&mut self.device,
&mut self.texture_upload_pbo_pool
);
self.gpu_cache_upload_time += self.profile.end_time(profiler::GPU_CACHE_UPLOAD_TIME);
self.profile.set(profiler::GPU_CACHE_ROWS_UPDATED, updated_rows);
self.profile.set(profiler::GPU_CACHE_BLOCKS_UPDATED, updated_blocks);
}
pub fn prepare_gpu_cache(
&mut self,
deferred_resolves: &[DeferredResolve],
) -> Result<(), super::RendererError> {
self.profile.start_time(profiler::GPU_CACHE_PREPARE_TIME);
if self.pending_gpu_cache_clear {
let use_scatter =
matches!(self.gpu_cache_texture.bus, GpuCacheBus::Scatter { .. });
let new_cache = match GpuCacheTexture::new(&mut self.device, use_scatter) {
Ok(cache) => cache,
Err(err) => {
self.profile.end_time(profiler::GPU_CACHE_PREPARE_TIME);
return Err(err);
}
};
let old_cache = mem::replace(&mut self.gpu_cache_texture, new_cache);
old_cache.deinit(&mut self.device);
self.pending_gpu_cache_clear = false;
}
let deferred_update_list = self.update_deferred_resolves(deferred_resolves);
self.pending_gpu_cache_updates.extend(deferred_update_list);
self.update_gpu_cache();
// Note: the texture might have changed during the `update`,
// so we need to bind it here.
self.device.bind_texture(
super::TextureSampler::GpuCache,
self.gpu_cache_texture.texture.as_ref().unwrap(),
Swizzle::default(),
);
self.profile.end_time(profiler::GPU_CACHE_PREPARE_TIME);
Ok(())
}
pub fn read_gpu_cache(&mut self) -> (DeviceIntSize, Vec<u8>) {
let texture = self.gpu_cache_texture.texture.as_ref().unwrap();
let size = device_size_as_framebuffer_size(texture.get_dimensions());
let mut texels = vec![0; (size.width * size.height * 16) as usize];
self.device.begin_frame();
self.device.bind_read_target(ReadTarget::from_texture(texture));
self.device.read_pixels_into(
size.into(),
api::ImageFormat::RGBAF32,
&mut texels,
);
self.device.reset_read_target();
self.device.end_frame();
(texture.get_dimensions(), texels)
}
}