Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include rect,render_task,gpu_cache,transform
#define EXTEND_MODE_CLAMP 0
#define EXTEND_MODE_REPEAT 1
#define SUBPX_DIR_NONE 0
#define SUBPX_DIR_HORIZONTAL 1
#define SUBPX_DIR_VERTICAL 2
#define SUBPX_DIR_MIXED 3
#define RASTER_LOCAL 0
#define RASTER_SCREEN 1
uniform sampler2D sClipMask;
#ifndef SWGL_CLIP_MASK
// TODO: convert back to RectWithEndpoint if driver issues are resolved, if ever.
flat varying mediump vec4 vClipMaskUvBounds;
varying highp vec2 vClipMaskUv;
#endif
#ifdef WR_VERTEX_SHADER
#define COLOR_MODE_ALPHA 0
#define COLOR_MODE_SUBPX_DUAL_SOURCE 1
#define COLOR_MODE_BITMAP_SHADOW 2
#define COLOR_MODE_COLOR_BITMAP 3
#define COLOR_MODE_IMAGE 4
#define COLOR_MODE_MULTIPLY_DUAL_SOURCE 5
uniform HIGHP_SAMPLER_FLOAT sampler2D sPrimitiveHeadersF;
uniform HIGHP_SAMPLER_FLOAT isampler2D sPrimitiveHeadersI;
// Instanced attributes
PER_INSTANCE in ivec4 aData;
#define VECS_PER_PRIM_HEADER_F 2U
#define VECS_PER_PRIM_HEADER_I 2U
struct Instance
{
int prim_header_address;
int clip_address;
int segment_index;
int flags;
int resource_address;
int brush_kind;
};
Instance decode_instance_attributes() {
Instance instance;
instance.prim_header_address = aData.x;
instance.clip_address = aData.y;
instance.segment_index = aData.z & 0xffff;
instance.flags = aData.z >> 16;
instance.resource_address = aData.w & 0xffffff;
instance.brush_kind = aData.w >> 24;
return instance;
}
struct PrimitiveHeader {
RectWithEndpoint local_rect;
RectWithEndpoint local_clip_rect;
float z;
int specific_prim_address;
int transform_id;
int picture_task_address;
ivec4 user_data;
};
PrimitiveHeader fetch_prim_header(int index) {
PrimitiveHeader ph;
ivec2 uv_f = get_fetch_uv(index, VECS_PER_PRIM_HEADER_F);
vec4 local_rect = TEXEL_FETCH(sPrimitiveHeadersF, uv_f, 0, ivec2(0, 0));
vec4 local_clip_rect = TEXEL_FETCH(sPrimitiveHeadersF, uv_f, 0, ivec2(1, 0));
ph.local_rect = RectWithEndpoint(local_rect.xy, local_rect.zw);
ph.local_clip_rect = RectWithEndpoint(local_clip_rect.xy, local_clip_rect.zw);
ivec2 uv_i = get_fetch_uv(index, VECS_PER_PRIM_HEADER_I);
ivec4 data0 = TEXEL_FETCH(sPrimitiveHeadersI, uv_i, 0, ivec2(0, 0));
ivec4 data1 = TEXEL_FETCH(sPrimitiveHeadersI, uv_i, 0, ivec2(1, 0));
ph.z = float(data0.x);
ph.specific_prim_address = data0.y;
ph.transform_id = data0.z;
ph.picture_task_address = data0.w;
ph.user_data = data1;
return ph;
}
struct VertexInfo {
vec2 local_pos;
vec4 world_pos;
};
VertexInfo write_vertex(vec2 local_pos,
RectWithEndpoint local_clip_rect,
float z,
Transform transform,
PictureTask task) {
// Clamp to the two local clip rects.
vec2 clamped_local_pos = rect_clamp(local_clip_rect, local_pos);
// Transform the current vertex to world space.
vec4 world_pos = transform.m * vec4(clamped_local_pos, 0.0, 1.0);
// Convert the world positions to device pixel space.
vec2 device_pos = world_pos.xy * task.device_pixel_scale;
// Apply offsets for the render task to get correct screen location.
vec2 final_offset = -task.content_origin + task.task_rect.p0;
gl_Position = uTransform * vec4(device_pos + final_offset * world_pos.w, z * world_pos.w, world_pos.w);
VertexInfo vi = VertexInfo(
clamped_local_pos,
world_pos
);
return vi;
}
RectWithEndpoint clip_and_init_antialiasing(RectWithEndpoint segment_rect,
RectWithEndpoint prim_rect,
RectWithEndpoint clip_rect,
int edge_flags,
float z,
Transform transform,
PictureTask task) {
#ifdef SWGL_ANTIALIAS
// Check if the bounds are smaller than the unmodified segment rect. If so,
// it is safe to enable AA on those edges.
bvec4 clipped = bvec4(greaterThan(clip_rect.p0, segment_rect.p0),
lessThan(clip_rect.p1, segment_rect.p1));
swgl_antiAlias(edge_flags | (clipped.x ? 1 : 0) | (clipped.y ? 2 : 0) |
(clipped.z ? 4 : 0) | (clipped.w ? 8 : 0));
#endif
segment_rect.p0 = clamp(segment_rect.p0, clip_rect.p0, clip_rect.p1);
segment_rect.p1 = clamp(segment_rect.p1, clip_rect.p0, clip_rect.p1);
#ifndef SWGL_ANTIALIAS
prim_rect.p0 = clamp(prim_rect.p0, clip_rect.p0, clip_rect.p1);
prim_rect.p1 = clamp(prim_rect.p1, clip_rect.p0, clip_rect.p1);
// Select between the segment and prim edges based on edge mask.
// We must perform the bitwise-and for each component individually, as a
// vector bitwise-and followed by conversion to bvec4 causes shader
// compilation crashes on some Adreno devices. See bug 1715746.
bvec4 clip_edge_mask = bvec4(bool(edge_flags & 1), bool(edge_flags & 2), bool(edge_flags & 4), bool(edge_flags & 8));
init_transform_vs(mix(
vec4(vec2(-1e16), vec2(1e16)),
vec4(segment_rect.p0, segment_rect.p1),
clip_edge_mask
));
// As this is a transform shader, extrude by 2 (local space) pixels
// in each direction. This gives enough space around the edge to
// apply distance anti-aliasing. Technically, it:
// (a) slightly over-estimates the number of required pixels in the simple case.
// (b) might not provide enough edge in edge case perspective projections.
// However, it's fast and simple. If / when we ever run into issues, we
// can do some math on the projection matrix to work out a variable
// amount to extrude.
// Only extrude along edges where we are going to apply AA.
float extrude_amount = 2.0;
vec4 extrude_distance = mix(vec4(0.0), vec4(extrude_amount), clip_edge_mask);
segment_rect.p0 -= extrude_distance.xy;
segment_rect.p1 += extrude_distance.zw;
#endif
return segment_rect;
}
void write_clip(vec4 world_pos, ClipArea area, PictureTask task) {
#ifdef SWGL_CLIP_MASK
swgl_clipMask(
sClipMask,
(task.task_rect.p0 - task.content_origin) - (area.task_rect.p0 - area.screen_origin),
area.task_rect.p0,
rect_size(area.task_rect)
);
#else
vec2 uv = world_pos.xy * area.device_pixel_scale +
world_pos.w * (area.task_rect.p0 - area.screen_origin);
vClipMaskUvBounds = vec4(
area.task_rect.p0,
area.task_rect.p1
);
vClipMaskUv = uv;
#endif
}
// Read the exta image data containing the homogeneous screen space coordinates
// of the corners, interpolate between them, and return real screen space UV.
vec2 get_image_quad_uv(int address, vec2 f) {
ImageSourceExtra extra_data = fetch_image_source_extra(address);
vec4 x = mix(extra_data.st_tl, extra_data.st_tr, f.x);
vec4 y = mix(extra_data.st_bl, extra_data.st_br, f.x);
vec4 z = mix(x, y, f.y);
return z.xy / z.w;
}
#endif //WR_VERTEX_SHADER
#ifdef WR_FRAGMENT_SHADER
struct Fragment {
vec4 color;
#ifdef WR_FEATURE_DUAL_SOURCE_BLENDING
vec4 blend;
#endif
};
float do_clip() {
#ifdef SWGL_CLIP_MASK
// SWGL relies on builtin clip-mask support to do this more efficiently,
// so no clipping is required here.
return 1.0;
#else
// check for the dummy bounds, which are given to the opaque objects
if (vClipMaskUvBounds.xy == vClipMaskUvBounds.zw) {
return 1.0;
}
// anything outside of the mask is considered transparent
//Note: we assume gl_FragCoord.w == interpolated(1 / vClipMaskUv.w)
vec2 mask_uv = vClipMaskUv * gl_FragCoord.w;
bvec2 left = lessThanEqual(vClipMaskUvBounds.xy, mask_uv); // inclusive
bvec2 right = greaterThan(vClipMaskUvBounds.zw, mask_uv); // non-inclusive
// bail out if the pixel is outside the valid bounds
if (!all(bvec4(left, right))) {
return 0.0;
}
// finally, the slow path - fetch the mask value from an image
return texelFetch(sClipMask, ivec2(mask_uv), 0).r;
#endif
}
#endif //WR_FRAGMENT_SHADER