Source code
Revision control
Copy as Markdown
Other Tools
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#define COMPONENT_TRANSFER_IDENTITY 0
#define COMPONENT_TRANSFER_TABLE 1
#define COMPONENT_TRANSFER_DISCRETE 2
#define COMPONENT_TRANSFER_LINEAR 3
#define COMPONENT_TRANSFER_GAMMA 4
// Must be kept in sync with `Filter::as_int` in internal_types.rs
// Not all filters are defined here because some filter use different shaders.
#define FILTER_CONTRAST 0
#define FILTER_GRAYSCALE 1
#define FILTER_HUE_ROTATE 2
#define FILTER_INVERT 3
#define FILTER_SATURATE 4
#define FILTER_SEPIA 5
#define FILTER_BRIGHTNESS 6
#define FILTER_COLOR_MATRIX 7
#define FILTER_SRGB_TO_LINEAR 8
#define FILTER_LINEAR_TO_SRGB 9
#define FILTER_FLOOD 10
#define FILTER_COMPONENT_TRANSFER 11
#ifdef WR_VERTEX_SHADER
void SetupFilterParams(
int op,
float amount,
int gpu_data_address,
out vec4 color_offset,
out mat4 color_mat,
out highp int table_address
) {
float lumR = 0.2126;
float lumG = 0.7152;
float lumB = 0.0722;
float oneMinusLumR = 1.0 - lumR;
float oneMinusLumG = 1.0 - lumG;
float oneMinusLumB = 1.0 - lumB;
float invAmount = 1.0 - amount;
if (op == FILTER_GRAYSCALE) {
color_mat = mat4(
vec4(lumR + oneMinusLumR * invAmount, lumR - lumR * invAmount, lumR - lumR * invAmount, 0.0),
vec4(lumG - lumG * invAmount, lumG + oneMinusLumG * invAmount, lumG - lumG * invAmount, 0.0),
vec4(lumB - lumB * invAmount, lumB - lumB * invAmount, lumB + oneMinusLumB * invAmount, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)
);
color_offset = vec4(0.0);
} else if (op == FILTER_HUE_ROTATE) {
float c = cos(amount);
float s = sin(amount);
color_mat = mat4(
vec4(lumR + oneMinusLumR * c - lumR * s, lumR - lumR * c + 0.143 * s, lumR - lumR * c - oneMinusLumR * s, 0.0),
vec4(lumG - lumG * c - lumG * s, lumG + oneMinusLumG * c + 0.140 * s, lumG - lumG * c + lumG * s, 0.0),
vec4(lumB - lumB * c + oneMinusLumB * s, lumB - lumB * c - 0.283 * s, lumB + oneMinusLumB * c + lumB * s, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)
);
color_offset = vec4(0.0);
} else if (op == FILTER_SATURATE) {
color_mat = mat4(
vec4(invAmount * lumR + amount, invAmount * lumR, invAmount * lumR, 0.0),
vec4(invAmount * lumG, invAmount * lumG + amount, invAmount * lumG, 0.0),
vec4(invAmount * lumB, invAmount * lumB, invAmount * lumB + amount, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)
);
color_offset = vec4(0.0);
} else if (op == FILTER_SEPIA) {
color_mat = mat4(
vec4(0.393 + 0.607 * invAmount, 0.349 - 0.349 * invAmount, 0.272 - 0.272 * invAmount, 0.0),
vec4(0.769 - 0.769 * invAmount, 0.686 + 0.314 * invAmount, 0.534 - 0.534 * invAmount, 0.0),
vec4(0.189 - 0.189 * invAmount, 0.168 - 0.168 * invAmount, 0.131 + 0.869 * invAmount, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)
);
color_offset = vec4(0.0);
} else if (op == FILTER_COLOR_MATRIX) {
vec4 mat_data[4] = fetch_from_gpu_cache_4(gpu_data_address);
vec4 offset_data = fetch_from_gpu_cache_1(gpu_data_address + 4);
color_mat = mat4(mat_data[0], mat_data[1], mat_data[2], mat_data[3]);
color_offset = offset_data;
} else if (op == FILTER_COMPONENT_TRANSFER) {
table_address = gpu_data_address;
} else if (op == FILTER_FLOOD) {
color_offset = fetch_from_gpu_cache_1(gpu_data_address);
}
}
#endif
#ifdef WR_FRAGMENT_SHADER
vec3 Contrast(vec3 Cs, float amount) {
return clamp(Cs.rgb * amount - 0.5 * amount + 0.5, 0.0, 1.0);
}
vec3 Invert(vec3 Cs, float amount) {
return mix(Cs.rgb, vec3(1.0) - Cs.rgb, amount);
}
vec3 Brightness(vec3 Cs, float amount) {
// Apply the brightness factor.
// Resulting color needs to be clamped to output range
// since we are pre-multiplying alpha in the shader.
return clamp(Cs.rgb * amount, vec3(0.0), vec3(1.0));
}
// Based on the Gecko's implementation in
// These could be made faster by sampling a lookup table stored in a float texture
// with linear interpolation.
vec3 SrgbToLinear(vec3 color) {
vec3 c1 = color / 12.92;
vec3 c2 = pow(color / 1.055 + vec3(0.055 / 1.055), vec3(2.4));
return if_then_else(lessThanEqual(color, vec3(0.04045)), c1, c2);
}
vec3 LinearToSrgb(vec3 color) {
vec3 c1 = color * 12.92;
vec3 c2 = vec3(1.055) * pow(color, vec3(1.0 / 2.4)) - vec3(0.055);
return if_then_else(lessThanEqual(color, vec3(0.0031308)), c1, c2);
}
// This function has to be factored out due to the following issue:
// (and now the words "default: default:" so angle_shader_validation.rs passes)
vec4 ComponentTransfer(vec4 colora, vec4 vfuncs, highp int table_address) {
// We push a different amount of data to the gpu cache depending on the
// function type.
// Identity => 0 blocks
// Table/Discrete => 64 blocks (256 values)
// Linear => 1 block (2 values)
// Gamma => 1 block (3 values)
// We loop through the color components and increment the offset (for the
// next color component) into the gpu cache based on how many blocks that
// function type put into the gpu cache.
// Table/Discrete use a 256 entry look up table.
// Linear/Gamma are a simple calculation.
// Both offset and k must be marked as highp due to a Adreno 3xx bug likely
// to do with converting between precisions (as they would otherwise be
// promoted when adding to table_address).
highp int offset = 0;
highp int k;
vec4 texel;
// Dynamically indexing a vector is buggy on some platforms, so use a temporary array
int[4] funcs = int[4](int(vfuncs.r), int(vfuncs.g), int(vfuncs.b), int(vfuncs.a));
for (int i = 0; i < 4; i++) {
switch (funcs[i]) {
case COMPONENT_TRANSFER_IDENTITY:
break;
case COMPONENT_TRANSFER_TABLE:
case COMPONENT_TRANSFER_DISCRETE: {
// fetch value from lookup table
k = int(floor(colora[i]*255.0 + 0.5));
texel = fetch_from_gpu_cache_1(table_address + offset + k/4);
colora[i] = clamp(texel[k % 4], 0.0, 1.0);
// offset plus 256/4 blocks
offset = offset + 64;
break;
}
case COMPONENT_TRANSFER_LINEAR: {
// fetch the two values for use in the linear equation
texel = fetch_from_gpu_cache_1(table_address + offset);
colora[i] = clamp(texel[0] * colora[i] + texel[1], 0.0, 1.0);
// offset plus 1 block
offset = offset + 1;
break;
}
case COMPONENT_TRANSFER_GAMMA: {
// fetch the three values for use in the gamma equation
texel = fetch_from_gpu_cache_1(table_address + offset);
colora[i] = clamp(texel[0] * pow(colora[i], texel[1]) + texel[2], 0.0, 1.0);
// offset plus 1 block
offset = offset + 1;
break;
}
default:
// shouldn't happen
break;
}
}
return colora;
}
void CalculateFilter(
vec4 Cs,
int op,
float amount,
highp int table_address,
vec4 color_offset,
mat4 color_mat,
vec4 v_funcs,
out vec3 color,
out float alpha
) {
// Un-premultiply the input.
alpha = Cs.a;
color = alpha != 0.0 ? Cs.rgb / alpha : Cs.rgb;
switch (op) {
case FILTER_CONTRAST:
color = Contrast(color, amount);
break;
case FILTER_INVERT:
color = Invert(color, amount);
break;
case FILTER_BRIGHTNESS:
color = Brightness(color, amount);
break;
case FILTER_SRGB_TO_LINEAR:
color = SrgbToLinear(color);
break;
case FILTER_LINEAR_TO_SRGB:
color = LinearToSrgb(color);
break;
case FILTER_COMPONENT_TRANSFER: {
// Get the unpremultiplied color with alpha.
vec4 colora = vec4(color, alpha);
colora = ComponentTransfer(colora, v_funcs, table_address);
color = colora.rgb;
alpha = colora.a;
break;
}
case FILTER_FLOOD:
color = color_offset.rgb;
alpha = color_offset.a;
break;
default:
// Color matrix type filters (sepia, hue-rotate, etc...)
vec4 result = color_mat * vec4(color, alpha) + color_offset;
result = clamp(result, vec4(0.0), vec4(1.0));
color = result.rgb;
alpha = result.a;
}
}
#endif