Source code

Revision control

Copy as Markdown

Other Tools

use crate::transform::{qcms_transform, Format, BGRA, CLAMPMAXVAL, FLOATSCALE, RGB, RGBA};
#[cfg(target_arch = "x86")]
pub use std::arch::x86::{
__m128, __m128i, __m256, __m256i, _mm256_add_ps, _mm256_broadcast_ps, _mm256_castps128_ps256,
_mm256_castps256_ps128, _mm256_cvtps_epi32, _mm256_insertf128_ps, _mm256_max_ps, _mm256_min_ps,
_mm256_mul_ps, _mm256_set1_ps, _mm256_setzero_ps, _mm256_store_si256, _mm_add_ps,
_mm_broadcast_ss, _mm_cvtps_epi32, _mm_max_ps, _mm_min_ps, _mm_mul_ps, _mm_store_si128,
};
#[cfg(target_arch = "x86_64")]
pub use std::arch::x86_64::{
__m128, __m128i, __m256, __m256i, _mm256_add_ps, _mm256_broadcast_ps, _mm256_castps128_ps256,
_mm256_castps256_ps128, _mm256_cvtps_epi32, _mm256_insertf128_ps, _mm256_max_ps, _mm256_min_ps,
_mm256_mul_ps, _mm256_set1_ps, _mm256_setzero_ps, _mm256_store_si256, _mm_add_ps,
_mm_broadcast_ss, _mm_cvtps_epi32, _mm_max_ps, _mm_min_ps, _mm_mul_ps, _mm_store_si128,
};
#[repr(align(32))]
struct Output([u32; 8]);
#[target_feature(enable = "avx")]
unsafe extern "C" fn qcms_transform_data_template_lut_avx<F: Format>(
transform: &qcms_transform,
mut src: *const u8,
mut dest: *mut u8,
mut length: usize,
) {
let mat: *const [f32; 4] = transform.matrix.as_ptr();
let mut input: Output = std::mem::zeroed();
/* share input and output locations to save having to keep the
* locations in separate registers */
let output: *const u32 = &mut input as *mut Output as *mut u32;
/* deref *transform now to avoid it in loop */
let igtbl_r: *const f32 = transform.input_gamma_table_r.as_ref().unwrap().as_ptr();
let igtbl_g: *const f32 = transform.input_gamma_table_g.as_ref().unwrap().as_ptr();
let igtbl_b: *const f32 = transform.input_gamma_table_b.as_ref().unwrap().as_ptr();
/* deref *transform now to avoid it in loop */
let otdata_r: *const u8 = transform
.precache_output
.as_deref()
.unwrap()
.lut_r
.as_ptr();
let otdata_g: *const u8 = (*transform)
.precache_output
.as_deref()
.unwrap()
.lut_g
.as_ptr();
let otdata_b: *const u8 = (*transform)
.precache_output
.as_deref()
.unwrap()
.lut_b
.as_ptr();
/* input matrix values never change */
let mat0: __m256 = _mm256_broadcast_ps(&*((*mat.offset(0isize)).as_ptr() as *const __m128));
let mat1: __m256 = _mm256_broadcast_ps(&*((*mat.offset(1isize)).as_ptr() as *const __m128));
let mat2: __m256 = _mm256_broadcast_ps(&*((*mat.offset(2isize)).as_ptr() as *const __m128));
/* these values don't change, either */
let max: __m256 = _mm256_set1_ps(CLAMPMAXVAL);
let min: __m256 = _mm256_setzero_ps();
let scale: __m256 = _mm256_set1_ps(FLOATSCALE);
let components: u32 = if F::kAIndex == 0xff { 3 } else { 4 } as u32;
/* working variables */
let mut vec_r: __m256 = _mm256_setzero_ps();
let mut vec_g: __m256 = _mm256_setzero_ps();
let mut vec_b: __m256 = _mm256_setzero_ps();
let mut result: __m256;
let mut vec_r0: __m128;
let mut vec_g0: __m128;
let mut vec_b0: __m128;
let mut vec_r1: __m128;
let mut vec_g1: __m128;
let mut vec_b1: __m128;
let mut alpha1: u8 = 0;
let mut alpha2: u8 = 0;
/* CYA */
if length == 0 {
return;
}
/* If there are at least 2 pixels, then we can load their components into
a single 256-bit register for processing. */
if length > 1 {
vec_r0 = _mm_broadcast_ss(&*igtbl_r.offset(*src.add(F::kRIndex) as isize));
vec_g0 = _mm_broadcast_ss(&*igtbl_g.offset(*src.add(F::kGIndex) as isize));
vec_b0 = _mm_broadcast_ss(&*igtbl_b.offset(*src.add(F::kBIndex) as isize));
vec_r1 =
_mm_broadcast_ss(&*igtbl_r.offset(*src.add(F::kRIndex + components as usize) as isize));
vec_g1 =
_mm_broadcast_ss(&*igtbl_g.offset(*src.add(F::kGIndex + components as usize) as isize));
vec_b1 =
_mm_broadcast_ss(&*igtbl_b.offset(*src.add(F::kBIndex + components as usize) as isize));
vec_r = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_r0), vec_r1, 1);
vec_g = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_g0), vec_g1, 1);
vec_b = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_b0), vec_b1, 1);
if F::kAIndex != 0xff {
alpha1 = *src.add(F::kAIndex);
alpha2 = *src.add(F::kAIndex + components as usize)
}
}
/* If there are at least 4 pixels, then we can iterate and preload the
next 2 while we store the result of the current 2. */
while length > 3 {
/* Ensure we are pointing at the next 2 pixels for the next load. */
src = src.offset((2 * components) as isize);
/* gamma * matrix */
vec_r = _mm256_mul_ps(vec_r, mat0);
vec_g = _mm256_mul_ps(vec_g, mat1);
vec_b = _mm256_mul_ps(vec_b, mat2);
/* store alpha for these pixels; load alpha for next two */
if F::kAIndex != 0xff {
*dest.add(F::kAIndex) = alpha1;
*dest.add(F::kAIndex + components as usize) = alpha2;
alpha1 = *src.add(F::kAIndex);
alpha2 = *src.add(F::kAIndex + components as usize)
}
/* crunch, crunch, crunch */
vec_r = _mm256_add_ps(vec_r, _mm256_add_ps(vec_g, vec_b));
vec_r = _mm256_max_ps(vec_r, min);
vec_r = _mm256_min_ps(max, vec_r);
result = _mm256_mul_ps(vec_r, scale);
/* store calc'd output tables indices */
_mm256_store_si256(output as *mut __m256i, _mm256_cvtps_epi32(result));
/* load gamma values for next loop while store completes */
vec_r0 = _mm_broadcast_ss(&*igtbl_r.offset(*src.add(F::kRIndex) as isize));
vec_g0 = _mm_broadcast_ss(&*igtbl_g.offset(*src.add(F::kGIndex) as isize));
vec_b0 = _mm_broadcast_ss(&*igtbl_b.offset(*src.add(F::kBIndex) as isize));
vec_r1 =
_mm_broadcast_ss(&*igtbl_r.offset(*src.add(F::kRIndex + components as usize) as isize));
vec_g1 =
_mm_broadcast_ss(&*igtbl_g.offset(*src.add(F::kGIndex + components as usize) as isize));
vec_b1 =
_mm_broadcast_ss(&*igtbl_b.offset(*src.add(F::kBIndex + components as usize) as isize));
vec_r = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_r0), vec_r1, 1);
vec_g = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_g0), vec_g1, 1);
vec_b = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_b0), vec_b1, 1);
/* use calc'd indices to output RGB values */
*dest.add(F::kRIndex) = *otdata_r.offset(*output.offset(0isize) as isize);
*dest.add(F::kGIndex) = *otdata_g.offset(*output.offset(1isize) as isize);
*dest.add(F::kBIndex) = *otdata_b.offset(*output.offset(2isize) as isize);
*dest.add(F::kRIndex + components as usize) =
*otdata_r.offset(*output.offset(4isize) as isize);
*dest.add(F::kGIndex + components as usize) =
*otdata_g.offset(*output.offset(5isize) as isize);
*dest.add(F::kBIndex + components as usize) =
*otdata_b.offset(*output.offset(6isize) as isize);
dest = dest.offset((2 * components) as isize);
length -= 2
}
/* There are 0-3 pixels remaining. If there are 2-3 remaining, then we know
we have already populated the necessary registers to start the transform. */
if length > 1 {
vec_r = _mm256_mul_ps(vec_r, mat0);
vec_g = _mm256_mul_ps(vec_g, mat1);
vec_b = _mm256_mul_ps(vec_b, mat2);
if F::kAIndex != 0xff {
*dest.add(F::kAIndex) = alpha1;
*dest.add(F::kAIndex + components as usize) = alpha2
}
vec_r = _mm256_add_ps(vec_r, _mm256_add_ps(vec_g, vec_b));
vec_r = _mm256_max_ps(vec_r, min);
vec_r = _mm256_min_ps(max, vec_r);
result = _mm256_mul_ps(vec_r, scale);
_mm256_store_si256(output as *mut __m256i, _mm256_cvtps_epi32(result));
*dest.add(F::kRIndex) = *otdata_r.offset(*output.offset(0isize) as isize);
*dest.add(F::kGIndex) = *otdata_g.offset(*output.offset(1isize) as isize);
*dest.add(F::kBIndex) = *otdata_b.offset(*output.offset(2isize) as isize);
*dest.add(F::kRIndex + components as usize) =
*otdata_r.offset(*output.offset(4isize) as isize);
*dest.add(F::kGIndex + components as usize) =
*otdata_g.offset(*output.offset(5isize) as isize);
*dest.add(F::kBIndex + components as usize) =
*otdata_b.offset(*output.offset(6isize) as isize);
src = src.offset((2 * components) as isize);
dest = dest.offset((2 * components) as isize);
length -= 2
}
/* There may be 0-1 pixels remaining. */
if length == 1 {
vec_r0 = _mm_broadcast_ss(&*igtbl_r.offset(*src.add(F::kRIndex) as isize));
vec_g0 = _mm_broadcast_ss(&*igtbl_g.offset(*src.add(F::kGIndex) as isize));
vec_b0 = _mm_broadcast_ss(&*igtbl_b.offset(*src.add(F::kBIndex) as isize));
vec_r0 = _mm_mul_ps(vec_r0, _mm256_castps256_ps128(mat0));
vec_g0 = _mm_mul_ps(vec_g0, _mm256_castps256_ps128(mat1));
vec_b0 = _mm_mul_ps(vec_b0, _mm256_castps256_ps128(mat2));
if F::kAIndex != 0xff {
*dest.add(F::kAIndex) = *src.add(F::kAIndex)
}
vec_r0 = _mm_add_ps(vec_r0, _mm_add_ps(vec_g0, vec_b0));
vec_r0 = _mm_max_ps(vec_r0, _mm256_castps256_ps128(min));
vec_r0 = _mm_min_ps(_mm256_castps256_ps128(max), vec_r0);
vec_r0 = _mm_mul_ps(vec_r0, _mm256_castps256_ps128(scale));
_mm_store_si128(output as *mut __m128i, _mm_cvtps_epi32(vec_r0));
*dest.add(F::kRIndex) = *otdata_r.offset(*output.offset(0isize) as isize);
*dest.add(F::kGIndex) = *otdata_g.offset(*output.offset(1isize) as isize);
*dest.add(F::kBIndex) = *otdata_b.offset(*output.offset(2isize) as isize)
};
}
#[no_mangle]
#[target_feature(enable = "avx")]
pub unsafe fn qcms_transform_data_rgb_out_lut_avx(
transform: &qcms_transform,
src: *const u8,
dest: *mut u8,
length: usize,
) {
qcms_transform_data_template_lut_avx::<RGB>(transform, src, dest, length);
}
#[no_mangle]
#[target_feature(enable = "avx")]
pub unsafe fn qcms_transform_data_rgba_out_lut_avx(
transform: &qcms_transform,
src: *const u8,
dest: *mut u8,
length: usize,
) {
qcms_transform_data_template_lut_avx::<RGBA>(transform, src, dest, length);
}
#[no_mangle]
#[target_feature(enable = "avx")]
pub unsafe fn qcms_transform_data_bgra_out_lut_avx(
transform: &qcms_transform,
src: *const u8,
dest: *mut u8,
length: usize,
) {
qcms_transform_data_template_lut_avx::<BGRA>(transform, src, dest, length);
}