Source code
Revision control
Copy as Markdown
Other Tools
// qcms
// Copyright (C) 2009 Mozilla Corporation
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
use crate::{
iccread::LAB_SIGNATURE,
iccread::RGB_SIGNATURE,
iccread::XYZ_SIGNATURE,
iccread::{lutType, lutmABType, Profile, CMYK_SIGNATURE},
matrix::Matrix,
s15Fixed16Number_to_float,
transform_util::clamp_float,
transform_util::{
build_colorant_matrix, build_input_gamma_table, build_output_lut, lut_interp_linear,
lut_interp_linear_float,
},
};
trait ModularTransform {
fn transform(&self, src: &[f32], dst: &mut [f32]);
}
#[inline]
fn lerp(a: f32, b: f32, t: f32) -> f32 {
a * (1.0 - t) + b * t
}
fn build_lut_matrix(lut: &lutType) -> Matrix {
let mut result: Matrix = Matrix { m: [[0.; 3]; 3] };
result.m[0][0] = s15Fixed16Number_to_float(lut.e00);
result.m[0][1] = s15Fixed16Number_to_float(lut.e01);
result.m[0][2] = s15Fixed16Number_to_float(lut.e02);
result.m[1][0] = s15Fixed16Number_to_float(lut.e10);
result.m[1][1] = s15Fixed16Number_to_float(lut.e11);
result.m[1][2] = s15Fixed16Number_to_float(lut.e12);
result.m[2][0] = s15Fixed16Number_to_float(lut.e20);
result.m[2][1] = s15Fixed16Number_to_float(lut.e21);
result.m[2][2] = s15Fixed16Number_to_float(lut.e22);
result
}
fn build_mAB_matrix(lut: &lutmABType) -> Matrix {
let mut result: Matrix = Matrix { m: [[0.; 3]; 3] };
result.m[0][0] = s15Fixed16Number_to_float(lut.e00);
result.m[0][1] = s15Fixed16Number_to_float(lut.e01);
result.m[0][2] = s15Fixed16Number_to_float(lut.e02);
result.m[1][0] = s15Fixed16Number_to_float(lut.e10);
result.m[1][1] = s15Fixed16Number_to_float(lut.e11);
result.m[1][2] = s15Fixed16Number_to_float(lut.e12);
result.m[2][0] = s15Fixed16Number_to_float(lut.e20);
result.m[2][1] = s15Fixed16Number_to_float(lut.e21);
result.m[2][2] = s15Fixed16Number_to_float(lut.e22);
result
}
//Based on lcms cmsLab2XYZ
fn f(t: f32) -> f32 {
if t <= 24. / 116. * (24. / 116.) * (24. / 116.) {
(841. / 108. * t) + 16. / 116.
} else {
t.powf(1. / 3.)
}
}
fn f_1(t: f32) -> f32 {
if t <= 24.0 / 116.0 {
(108.0 / 841.0) * (t - 16.0 / 116.0)
} else {
t * t * t
}
}
#[allow(clippy::upper_case_acronyms)]
struct LABtoXYZ;
impl ModularTransform for LABtoXYZ {
fn transform(&self, src: &[f32], dest: &mut [f32]) {
// lcms: D50 XYZ values
let WhitePointX: f32 = 0.9642;
let WhitePointY: f32 = 1.0;
let WhitePointZ: f32 = 0.8249;
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
let device_L: f32 = src[0] * 100.0;
let device_a: f32 = src[1] * 255.0 - 128.0;
let device_b: f32 = src[2] * 255.0 - 128.0;
let y: f32 = (device_L + 16.0) / 116.0;
let X = f_1(y + 0.002 * device_a) * WhitePointX;
let Y = f_1(y) * WhitePointY;
let Z = f_1(y - 0.005 * device_b) * WhitePointZ;
dest[0] = (X as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32;
dest[1] = (Y as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32;
dest[2] = (Z as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32;
}
}
}
#[allow(clippy::upper_case_acronyms)]
struct XYZtoLAB;
impl ModularTransform for XYZtoLAB {
//Based on lcms cmsXYZ2Lab
fn transform(&self, src: &[f32], dest: &mut [f32]) {
// lcms: D50 XYZ values
let WhitePointX: f32 = 0.9642;
let WhitePointY: f32 = 1.0;
let WhitePointZ: f32 = 0.8249;
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
let device_x: f32 =
(src[0] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointX as f64) as f32;
let device_y: f32 =
(src[1] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointY as f64) as f32;
let device_z: f32 =
(src[2] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointZ as f64) as f32;
let fx = f(device_x);
let fy = f(device_y);
let fz = f(device_z);
let L: f32 = 116.0 * fy - 16.0;
let a: f32 = 500.0 * (fx - fy);
let b: f32 = 200.0 * (fy - fz);
dest[0] = L / 100.0;
dest[1] = (a + 128.0) / 255.0;
dest[2] = (b + 128.0) / 255.0;
}
}
}
#[derive(Default)]
struct ClutOnly {
clut: Option<Vec<f32>>,
grid_size: u16,
}
impl ModularTransform for ClutOnly {
fn transform(&self, src: &[f32], dest: &mut [f32]) {
let xy_len: i32 = 1;
let x_len: i32 = self.grid_size as i32;
let len: i32 = x_len * x_len;
let r_table = &self.clut.as_ref().unwrap()[0..];
let g_table = &self.clut.as_ref().unwrap()[1..];
let b_table = &self.clut.as_ref().unwrap()[2..];
let CLU = |table: &[f32], x, y, z| table[((x * len + y * x_len + z * xy_len) * 3) as usize];
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
debug_assert!(self.grid_size as i32 >= 1);
let linear_r: f32 = src[0];
let linear_g: f32 = src[1];
let linear_b: f32 = src[2];
let x: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).floor() as i32;
let y: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).floor() as i32;
let z: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).floor() as i32;
let x_n: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let y_n: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let z_n: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let x_d: f32 = linear_r * (self.grid_size as i32 - 1) as f32 - x as f32;
let y_d: f32 = linear_g * (self.grid_size as i32 - 1) as f32 - y as f32;
let z_d: f32 = linear_b * (self.grid_size as i32 - 1) as f32 - z as f32;
let r_x1: f32 = lerp(CLU(r_table, x, y, z), CLU(r_table, x_n, y, z), x_d);
let r_x2: f32 = lerp(CLU(r_table, x, y_n, z), CLU(r_table, x_n, y_n, z), x_d);
let r_y1: f32 = lerp(r_x1, r_x2, y_d);
let r_x3: f32 = lerp(CLU(r_table, x, y, z_n), CLU(r_table, x_n, y, z_n), x_d);
let r_x4: f32 = lerp(CLU(r_table, x, y_n, z_n), CLU(r_table, x_n, y_n, z_n), x_d);
let r_y2: f32 = lerp(r_x3, r_x4, y_d);
let clut_r: f32 = lerp(r_y1, r_y2, z_d);
let g_x1: f32 = lerp(CLU(g_table, x, y, z), CLU(g_table, x_n, y, z), x_d);
let g_x2: f32 = lerp(CLU(g_table, x, y_n, z), CLU(g_table, x_n, y_n, z), x_d);
let g_y1: f32 = lerp(g_x1, g_x2, y_d);
let g_x3: f32 = lerp(CLU(g_table, x, y, z_n), CLU(g_table, x_n, y, z_n), x_d);
let g_x4: f32 = lerp(CLU(g_table, x, y_n, z_n), CLU(g_table, x_n, y_n, z_n), x_d);
let g_y2: f32 = lerp(g_x3, g_x4, y_d);
let clut_g: f32 = lerp(g_y1, g_y2, z_d);
let b_x1: f32 = lerp(CLU(b_table, x, y, z), CLU(b_table, x_n, y, z), x_d);
let b_x2: f32 = lerp(CLU(b_table, x, y_n, z), CLU(b_table, x_n, y_n, z), x_d);
let b_y1: f32 = lerp(b_x1, b_x2, y_d);
let b_x3: f32 = lerp(CLU(b_table, x, y, z_n), CLU(b_table, x_n, y, z_n), x_d);
let b_x4: f32 = lerp(CLU(b_table, x, y_n, z_n), CLU(b_table, x_n, y_n, z_n), x_d);
let b_y2: f32 = lerp(b_x3, b_x4, y_d);
let clut_b: f32 = lerp(b_y1, b_y2, z_d);
dest[0] = clamp_float(clut_r);
dest[1] = clamp_float(clut_g);
dest[2] = clamp_float(clut_b);
}
}
}
#[derive(Default)]
struct Clut3x3 {
input_clut_table: [Option<Vec<f32>>; 3],
clut: Option<Vec<f32>>,
grid_size: u16,
output_clut_table: [Option<Vec<f32>>; 3],
}
impl ModularTransform for Clut3x3 {
fn transform(&self, src: &[f32], dest: &mut [f32]) {
let xy_len: i32 = 1;
let x_len: i32 = self.grid_size as i32;
let len: i32 = x_len * x_len;
let r_table = &self.clut.as_ref().unwrap()[0..];
let g_table = &self.clut.as_ref().unwrap()[1..];
let b_table = &self.clut.as_ref().unwrap()[2..];
let CLU = |table: &[f32], x, y, z| table[((x * len + y * x_len + z * xy_len) * 3) as usize];
let input_clut_table_r = self.input_clut_table[0].as_ref().unwrap();
let input_clut_table_g = self.input_clut_table[1].as_ref().unwrap();
let input_clut_table_b = self.input_clut_table[2].as_ref().unwrap();
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
debug_assert!(self.grid_size as i32 >= 1);
let device_r: f32 = src[0];
let device_g: f32 = src[1];
let device_b: f32 = src[2];
let linear_r: f32 = lut_interp_linear_float(device_r, &input_clut_table_r);
let linear_g: f32 = lut_interp_linear_float(device_g, &input_clut_table_g);
let linear_b: f32 = lut_interp_linear_float(device_b, &input_clut_table_b);
let x: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).floor() as i32;
let y: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).floor() as i32;
let z: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).floor() as i32;
let x_n: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let y_n: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let z_n: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let x_d: f32 = linear_r * (self.grid_size as i32 - 1) as f32 - x as f32;
let y_d: f32 = linear_g * (self.grid_size as i32 - 1) as f32 - y as f32;
let z_d: f32 = linear_b * (self.grid_size as i32 - 1) as f32 - z as f32;
let r_x1: f32 = lerp(CLU(r_table, x, y, z), CLU(r_table, x_n, y, z), x_d);
let r_x2: f32 = lerp(CLU(r_table, x, y_n, z), CLU(r_table, x_n, y_n, z), x_d);
let r_y1: f32 = lerp(r_x1, r_x2, y_d);
let r_x3: f32 = lerp(CLU(r_table, x, y, z_n), CLU(r_table, x_n, y, z_n), x_d);
let r_x4: f32 = lerp(CLU(r_table, x, y_n, z_n), CLU(r_table, x_n, y_n, z_n), x_d);
let r_y2: f32 = lerp(r_x3, r_x4, y_d);
let clut_r: f32 = lerp(r_y1, r_y2, z_d);
let g_x1: f32 = lerp(CLU(g_table, x, y, z), CLU(g_table, x_n, y, z), x_d);
let g_x2: f32 = lerp(CLU(g_table, x, y_n, z), CLU(g_table, x_n, y_n, z), x_d);
let g_y1: f32 = lerp(g_x1, g_x2, y_d);
let g_x3: f32 = lerp(CLU(g_table, x, y, z_n), CLU(g_table, x_n, y, z_n), x_d);
let g_x4: f32 = lerp(CLU(g_table, x, y_n, z_n), CLU(g_table, x_n, y_n, z_n), x_d);
let g_y2: f32 = lerp(g_x3, g_x4, y_d);
let clut_g: f32 = lerp(g_y1, g_y2, z_d);
let b_x1: f32 = lerp(CLU(b_table, x, y, z), CLU(b_table, x_n, y, z), x_d);
let b_x2: f32 = lerp(CLU(b_table, x, y_n, z), CLU(b_table, x_n, y_n, z), x_d);
let b_y1: f32 = lerp(b_x1, b_x2, y_d);
let b_x3: f32 = lerp(CLU(b_table, x, y, z_n), CLU(b_table, x_n, y, z_n), x_d);
let b_x4: f32 = lerp(CLU(b_table, x, y_n, z_n), CLU(b_table, x_n, y_n, z_n), x_d);
let b_y2: f32 = lerp(b_x3, b_x4, y_d);
let clut_b: f32 = lerp(b_y1, b_y2, z_d);
let pcs_r: f32 =
lut_interp_linear_float(clut_r, &self.output_clut_table[0].as_ref().unwrap());
let pcs_g: f32 =
lut_interp_linear_float(clut_g, &self.output_clut_table[1].as_ref().unwrap());
let pcs_b: f32 =
lut_interp_linear_float(clut_b, &self.output_clut_table[2].as_ref().unwrap());
dest[0] = clamp_float(pcs_r);
dest[1] = clamp_float(pcs_g);
dest[2] = clamp_float(pcs_b);
}
}
}
#[derive(Default)]
struct Clut4x3 {
input_clut_table: [Option<Vec<f32>>; 4],
clut: Option<Vec<f32>>,
grid_size: u16,
output_clut_table: [Option<Vec<f32>>; 3],
}
impl ModularTransform for Clut4x3 {
fn transform(&self, src: &[f32], dest: &mut [f32]) {
let z_stride: i32 = self.grid_size as i32;
let y_stride: i32 = z_stride * z_stride;
let x_stride: i32 = z_stride * z_stride * z_stride;
let r_tbl = &self.clut.as_ref().unwrap()[0..];
let g_tbl = &self.clut.as_ref().unwrap()[1..];
let b_tbl = &self.clut.as_ref().unwrap()[2..];
let CLU = |table: &[f32], x, y, z, w| {
table[((x * x_stride + y * y_stride + z * z_stride + w) * 3) as usize]
};
let input_clut_table_0 = self.input_clut_table[0].as_ref().unwrap();
let input_clut_table_1 = self.input_clut_table[1].as_ref().unwrap();
let input_clut_table_2 = self.input_clut_table[2].as_ref().unwrap();
let input_clut_table_3 = self.input_clut_table[3].as_ref().unwrap();
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(4)) {
debug_assert!(self.grid_size as i32 >= 1);
let linear_x: f32 = lut_interp_linear_float(src[0], &input_clut_table_0);
let linear_y: f32 = lut_interp_linear_float(src[1], &input_clut_table_1);
let linear_z: f32 = lut_interp_linear_float(src[2], &input_clut_table_2);
let linear_w: f32 = lut_interp_linear_float(src[3], &input_clut_table_3);
let x: i32 = (linear_x * (self.grid_size as i32 - 1) as f32).floor() as i32;
let y: i32 = (linear_y * (self.grid_size as i32 - 1) as f32).floor() as i32;
let z: i32 = (linear_z * (self.grid_size as i32 - 1) as f32).floor() as i32;
let w: i32 = (linear_w * (self.grid_size as i32 - 1) as f32).floor() as i32;
let x_n: i32 = (linear_x * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let y_n: i32 = (linear_y * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let z_n: i32 = (linear_z * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let w_n: i32 = (linear_w * (self.grid_size as i32 - 1) as f32).ceil() as i32;
let x_d: f32 = linear_x * (self.grid_size as i32 - 1) as f32 - x as f32;
let y_d: f32 = linear_y * (self.grid_size as i32 - 1) as f32 - y as f32;
let z_d: f32 = linear_z * (self.grid_size as i32 - 1) as f32 - z as f32;
let w_d: f32 = linear_w * (self.grid_size as i32 - 1) as f32 - w as f32;
let quadlinear = |tbl| {
let CLU = |x, y, z, w| CLU(tbl, x, y, z, w);
let r_x1 = lerp(CLU(x, y, z, w), CLU(x_n, y, z, w), x_d);
let r_x2 = lerp(CLU(x, y_n, z, w), CLU(x_n, y_n, z, w), x_d);
let r_y1 = lerp(r_x1, r_x2, y_d);
let r_x3 = lerp(CLU(x, y, z_n, w), CLU(x_n, y, z_n, w), x_d);
let r_x4 = lerp(CLU(x, y_n, z_n, w), CLU(x_n, y_n, z_n, w), x_d);
let r_y2 = lerp(r_x3, r_x4, y_d);
let r_z1 = lerp(r_y1, r_y2, z_d);
let r_x1 = lerp(CLU(x, y, z, w_n), CLU(x_n, y, z, w_n), x_d);
let r_x2 = lerp(CLU(x, y_n, z, w_n), CLU(x_n, y_n, z, w_n), x_d);
let r_y1 = lerp(r_x1, r_x2, y_d);
let r_x3 = lerp(CLU(x, y, z_n, w_n), CLU(x_n, y, z_n, w_n), x_d);
let r_x4 = lerp(CLU(x, y_n, z_n, w_n), CLU(x_n, y_n, z_n, w_n), x_d);
let r_y2 = lerp(r_x3, r_x4, y_d);
let r_z2 = lerp(r_y1, r_y2, z_d);
lerp(r_z1, r_z2, w_d)
};
// TODO: instead of reading each component separately we should read all three components at once.
let clut_r = quadlinear(r_tbl);
let clut_g = quadlinear(g_tbl);
let clut_b = quadlinear(b_tbl);
let pcs_r =
lut_interp_linear_float(clut_r, &self.output_clut_table[0].as_ref().unwrap());
let pcs_g =
lut_interp_linear_float(clut_g, &self.output_clut_table[1].as_ref().unwrap());
let pcs_b =
lut_interp_linear_float(clut_b, &self.output_clut_table[2].as_ref().unwrap());
dest[0] = clamp_float(pcs_r);
dest[1] = clamp_float(pcs_g);
dest[2] = clamp_float(pcs_b);
}
}
}
/* NOT USED
static void qcms_transform_module_tetra_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
{
size_t i;
int xy_len = 1;
int x_len = transform->grid_size;
int len = x_len * x_len;
float* r_table = transform->r_clut;
float* g_table = transform->g_clut;
float* b_table = transform->b_clut;
float c0_r, c1_r, c2_r, c3_r;
float c0_g, c1_g, c2_g, c3_g;
float c0_b, c1_b, c2_b, c3_b;
float clut_r, clut_g, clut_b;
float pcs_r, pcs_g, pcs_b;
for (i = 0; i < length; i++) {
float device_r = *src++;
float device_g = *src++;
float device_b = *src++;
float linear_r = lut_interp_linear_float(device_r,
transform->input_clut_table_r, transform->input_clut_table_length);
float linear_g = lut_interp_linear_float(device_g,
transform->input_clut_table_g, transform->input_clut_table_length);
float linear_b = lut_interp_linear_float(device_b,
transform->input_clut_table_b, transform->input_clut_table_length);
int x = floorf(linear_r * (transform->grid_size-1));
int y = floorf(linear_g * (transform->grid_size-1));
int z = floorf(linear_b * (transform->grid_size-1));
int x_n = ceilf(linear_r * (transform->grid_size-1));
int y_n = ceilf(linear_g * (transform->grid_size-1));
int z_n = ceilf(linear_b * (transform->grid_size-1));
float rx = linear_r * (transform->grid_size-1) - x;
float ry = linear_g * (transform->grid_size-1) - y;
float rz = linear_b * (transform->grid_size-1) - z;
c0_r = CLU(r_table, x, y, z);
c0_g = CLU(g_table, x, y, z);
c0_b = CLU(b_table, x, y, z);
if( rx >= ry ) {
if (ry >= rz) { //rx >= ry && ry >= rz
c1_r = CLU(r_table, x_n, y, z) - c0_r;
c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
c1_g = CLU(g_table, x_n, y, z) - c0_g;
c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
c1_b = CLU(b_table, x_n, y, z) - c0_b;
c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
} else {
if (rx >= rz) { //rx >= rz && rz >= ry
c1_r = CLU(r_table, x_n, y, z) - c0_r;
c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
c1_g = CLU(g_table, x_n, y, z) - c0_g;
c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
c1_b = CLU(b_table, x_n, y, z) - c0_b;
c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
} else { //rz > rx && rx >= ry
c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
c3_r = CLU(r_table, x, y, z_n) - c0_r;
c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
c3_g = CLU(g_table, x, y, z_n) - c0_g;
c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
c3_b = CLU(b_table, x, y, z_n) - c0_b;
}
}
} else {
if (rx >= rz) { //ry > rx && rx >= rz
c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
c2_r = CLU(r_table, x_n, y_n, z) - c0_r;
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
c2_g = CLU(g_table, x_n, y_n, z) - c0_g;
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
c2_b = CLU(b_table, x_n, y_n, z) - c0_b;
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
} else {
if (ry >= rz) { //ry >= rz && rz > rx
c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
c2_r = CLU(r_table, x, y_n, z) - c0_r;
c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
c2_g = CLU(g_table, x, y_n, z) - c0_g;
c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
c2_b = CLU(b_table, x, y_n, z) - c0_b;
c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
} else { //rz > ry && ry > rx
c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
c2_r = CLU(r_table, x, y_n, z) - c0_r;
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
c2_g = CLU(g_table, x, y_n, z) - c0_g;
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
c2_b = CLU(b_table, x, y_n, z) - c0_b;
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
}
}
}
clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
pcs_r = lut_interp_linear_float(clut_r,
transform->output_clut_table_r, transform->output_clut_table_length);
pcs_g = lut_interp_linear_float(clut_g,
transform->output_clut_table_g, transform->output_clut_table_length);
pcs_b = lut_interp_linear_float(clut_b,
transform->output_clut_table_b, transform->output_clut_table_length);
*dest++ = clamp_float(pcs_r);
*dest++ = clamp_float(pcs_g);
*dest++ = clamp_float(pcs_b);
}
}
*/
#[derive(Default)]
struct GammaTable {
input_clut_table: [Option<Vec<f32>>; 3],
}
impl ModularTransform for GammaTable {
fn transform(&self, src: &[f32], dest: &mut [f32]) {
let mut out_r: f32;
let mut out_g: f32;
let mut out_b: f32;
let input_clut_table_r = self.input_clut_table[0].as_ref().unwrap();
let input_clut_table_g = self.input_clut_table[1].as_ref().unwrap();
let input_clut_table_b = self.input_clut_table[2].as_ref().unwrap();
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
let in_r: f32 = src[0];
let in_g: f32 = src[1];
let in_b: f32 = src[2];
out_r = lut_interp_linear_float(in_r, input_clut_table_r);
out_g = lut_interp_linear_float(in_g, input_clut_table_g);
out_b = lut_interp_linear_float(in_b, input_clut_table_b);
dest[0] = clamp_float(out_r);
dest[1] = clamp_float(out_g);
dest[2] = clamp_float(out_b);
}
}
}
#[derive(Default)]
struct GammaLut {
output_gamma_lut_r: Option<Vec<u16>>,
output_gamma_lut_g: Option<Vec<u16>>,
output_gamma_lut_b: Option<Vec<u16>>,
}
impl ModularTransform for GammaLut {
fn transform(&self, src: &[f32], dest: &mut [f32]) {
let mut out_r: f32;
let mut out_g: f32;
let mut out_b: f32;
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
let in_r: f32 = src[0];
let in_g: f32 = src[1];
let in_b: f32 = src[2];
out_r = lut_interp_linear(in_r as f64, &self.output_gamma_lut_r.as_ref().unwrap());
out_g = lut_interp_linear(in_g as f64, &self.output_gamma_lut_g.as_ref().unwrap());
out_b = lut_interp_linear(in_b as f64, &self.output_gamma_lut_b.as_ref().unwrap());
dest[0] = clamp_float(out_r);
dest[1] = clamp_float(out_g);
dest[2] = clamp_float(out_b);
}
}
}
#[derive(Default)]
struct MatrixTranslate {
matrix: Matrix,
tx: f32,
ty: f32,
tz: f32,
}
impl ModularTransform for MatrixTranslate {
fn transform(&self, src: &[f32], dest: &mut [f32]) {
let mut mat: Matrix = Matrix { m: [[0.; 3]; 3] };
/* store the results in column major mode
* this makes doing the multiplication with sse easier */
mat.m[0][0] = self.matrix.m[0][0];
mat.m[1][0] = self.matrix.m[0][1];
mat.m[2][0] = self.matrix.m[0][2];
mat.m[0][1] = self.matrix.m[1][0];
mat.m[1][1] = self.matrix.m[1][1];
mat.m[2][1] = self.matrix.m[1][2];
mat.m[0][2] = self.matrix.m[2][0];
mat.m[1][2] = self.matrix.m[2][1];
mat.m[2][2] = self.matrix.m[2][2];
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
let in_r: f32 = src[0];
let in_g: f32 = src[1];
let in_b: f32 = src[2];
let out_r: f32 = mat.m[0][0] * in_r + mat.m[1][0] * in_g + mat.m[2][0] * in_b + self.tx;
let out_g: f32 = mat.m[0][1] * in_r + mat.m[1][1] * in_g + mat.m[2][1] * in_b + self.ty;
let out_b: f32 = mat.m[0][2] * in_r + mat.m[1][2] * in_g + mat.m[2][2] * in_b + self.tz;
dest[0] = clamp_float(out_r);
dest[1] = clamp_float(out_g);
dest[2] = clamp_float(out_b);
}
}
}
#[derive(Default)]
struct MatrixTransform {
matrix: Matrix,
}
impl ModularTransform for MatrixTransform {
fn transform(&self, src: &[f32], dest: &mut [f32]) {
let mut mat: Matrix = Matrix { m: [[0.; 3]; 3] };
/* store the results in column major mode
* this makes doing the multiplication with sse easier */
mat.m[0][0] = self.matrix.m[0][0];
mat.m[1][0] = self.matrix.m[0][1];
mat.m[2][0] = self.matrix.m[0][2];
mat.m[0][1] = self.matrix.m[1][0];
mat.m[1][1] = self.matrix.m[1][1];
mat.m[2][1] = self.matrix.m[1][2];
mat.m[0][2] = self.matrix.m[2][0];
mat.m[1][2] = self.matrix.m[2][1];
mat.m[2][2] = self.matrix.m[2][2];
for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
let in_r: f32 = src[0];
let in_g: f32 = src[1];
let in_b: f32 = src[2];
let out_r: f32 = mat.m[0][0] * in_r + mat.m[1][0] * in_g + mat.m[2][0] * in_b;
let out_g: f32 = mat.m[0][1] * in_r + mat.m[1][1] * in_g + mat.m[2][1] * in_b;
let out_b: f32 = mat.m[0][2] * in_r + mat.m[1][2] * in_g + mat.m[2][2] * in_b;
dest[0] = clamp_float(out_r);
dest[1] = clamp_float(out_g);
dest[2] = clamp_float(out_b);
}
}
}
fn modular_transform_create_mAB(lut: &lutmABType) -> Option<Vec<Box<dyn ModularTransform>>> {
let mut transforms: Vec<Box<dyn ModularTransform>> = Vec::new();
if lut.a_curves[0].is_some() {
let clut_length: usize;
// If the A curve is present this also implies the
// presence of a CLUT.
lut.clut_table.as_ref()?;
// Prepare A curve.
let mut transform = Box::new(GammaTable::default());
transform.input_clut_table[0] = build_input_gamma_table(lut.a_curves[0].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transform.input_clut_table[1] = build_input_gamma_table(lut.a_curves[1].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transform.input_clut_table[2] = build_input_gamma_table(lut.a_curves[2].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
if lut.num_grid_points[0] as i32 != lut.num_grid_points[1] as i32
|| lut.num_grid_points[1] as i32 != lut.num_grid_points[2] as i32
{
//XXX: We don't currently support clut that are not squared!
return None;
}
transforms.push(transform);
// Prepare CLUT
let mut transform = Box::new(ClutOnly::default());
clut_length = (lut.num_grid_points[0] as usize).pow(3) * 3;
assert_eq!(clut_length, lut.clut_table.as_ref().unwrap().len());
transform.clut = lut.clut_table.clone();
transform.grid_size = lut.num_grid_points[0] as u16;
transforms.push(transform);
}
if lut.m_curves[0].is_some() {
// M curve imples the presence of a Matrix
// Prepare M curve
let mut transform = Box::new(GammaTable::default());
transform.input_clut_table[0] = build_input_gamma_table(lut.m_curves[0].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transform.input_clut_table[1] = build_input_gamma_table(lut.m_curves[1].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transform.input_clut_table[2] = build_input_gamma_table(lut.m_curves[2].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transforms.push(transform);
// Prepare Matrix
let mut transform = Box::new(MatrixTranslate::default());
transform.matrix = build_mAB_matrix(lut);
transform.tx = s15Fixed16Number_to_float(lut.e03);
transform.ty = s15Fixed16Number_to_float(lut.e13);
transform.tz = s15Fixed16Number_to_float(lut.e23);
transforms.push(transform);
}
if lut.b_curves[0].is_some() {
// Prepare B curve
let mut transform = Box::new(GammaTable::default());
transform.input_clut_table[0] = build_input_gamma_table(lut.b_curves[0].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transform.input_clut_table[1] = build_input_gamma_table(lut.b_curves[1].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transform.input_clut_table[2] = build_input_gamma_table(lut.b_curves[2].as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transforms.push(transform);
} else {
// B curve is mandatory
return None;
}
if lut.reversed {
// mBA are identical to mAB except that the transformation order
// is reversed
transforms.reverse();
}
Some(transforms)
}
fn modular_transform_create_lut(lut: &lutType) -> Option<Vec<Box<dyn ModularTransform>>> {
let mut transforms: Vec<Box<dyn ModularTransform>> = Vec::new();
let clut_length: usize;
let mut transform = Box::new(MatrixTransform::default());
transform.matrix = build_lut_matrix(lut);
if true {
transforms.push(transform);
// Prepare input curves
let mut transform = Box::new(Clut3x3::default());
transform.input_clut_table[0] =
Some(lut.input_table[0..lut.num_input_table_entries as usize].to_vec());
transform.input_clut_table[1] = Some(
lut.input_table
[lut.num_input_table_entries as usize..lut.num_input_table_entries as usize * 2]
.to_vec(),
);
transform.input_clut_table[2] = Some(
lut.input_table[lut.num_input_table_entries as usize * 2
..lut.num_input_table_entries as usize * 3]
.to_vec(),
);
// Prepare table
clut_length = (lut.num_clut_grid_points as usize).pow(3) * 3;
assert_eq!(clut_length, lut.clut_table.len());
transform.clut = Some(lut.clut_table.clone());
transform.grid_size = lut.num_clut_grid_points as u16;
// Prepare output curves
transform.output_clut_table[0] =
Some(lut.output_table[0..lut.num_output_table_entries as usize].to_vec());
transform.output_clut_table[1] = Some(
lut.output_table
[lut.num_output_table_entries as usize..lut.num_output_table_entries as usize * 2]
.to_vec(),
);
transform.output_clut_table[2] = Some(
lut.output_table[lut.num_output_table_entries as usize * 2
..lut.num_output_table_entries as usize * 3]
.to_vec(),
);
transforms.push(transform);
return Some(transforms);
}
None
}
fn modular_transform_create_lut4x3(lut: &lutType) -> Vec<Box<dyn ModularTransform>> {
let mut transforms: Vec<Box<dyn ModularTransform>> = Vec::new();
let clut_length: usize;
// the matrix of lutType is only used when the input color space is XYZ.
// Prepare input curves
let mut transform = Box::new(Clut4x3::default());
transform.input_clut_table[0] =
Some(lut.input_table[0..lut.num_input_table_entries as usize].to_vec());
transform.input_clut_table[1] = Some(
lut.input_table
[lut.num_input_table_entries as usize..lut.num_input_table_entries as usize * 2]
.to_vec(),
);
transform.input_clut_table[2] = Some(
lut.input_table
[lut.num_input_table_entries as usize * 2..lut.num_input_table_entries as usize * 3]
.to_vec(),
);
transform.input_clut_table[3] = Some(
lut.input_table
[lut.num_input_table_entries as usize * 3..lut.num_input_table_entries as usize * 4]
.to_vec(),
);
// Prepare table
clut_length = (lut.num_clut_grid_points as usize).pow(lut.num_input_channels as u32)
* lut.num_output_channels as usize;
assert_eq!(clut_length, lut.clut_table.len());
transform.clut = Some(lut.clut_table.clone());
transform.grid_size = lut.num_clut_grid_points as u16;
// Prepare output curves
transform.output_clut_table[0] =
Some(lut.output_table[0..lut.num_output_table_entries as usize].to_vec());
transform.output_clut_table[1] = Some(
lut.output_table
[lut.num_output_table_entries as usize..lut.num_output_table_entries as usize * 2]
.to_vec(),
);
transform.output_clut_table[2] = Some(
lut.output_table
[lut.num_output_table_entries as usize * 2..lut.num_output_table_entries as usize * 3]
.to_vec(),
);
transforms.push(transform);
transforms
}
fn modular_transform_create_input(input: &Profile) -> Option<Vec<Box<dyn ModularTransform>>> {
let mut transforms = Vec::new();
if let Some(A2B0) = &input.A2B0 {
let lut_transform;
if A2B0.num_input_channels == 4 {
lut_transform = Some(modular_transform_create_lut4x3(&A2B0));
} else {
lut_transform = modular_transform_create_lut(&A2B0);
}
if let Some(lut_transform) = lut_transform {
transforms.extend(lut_transform);
} else {
return None;
}
} else if input.mAB.is_some()
&& (*input.mAB.as_deref().unwrap()).num_in_channels == 3
&& (*input.mAB.as_deref().unwrap()).num_out_channels == 3
{
let mAB_transform = modular_transform_create_mAB(input.mAB.as_deref().unwrap());
if let Some(mAB_transform) = mAB_transform {
transforms.extend(mAB_transform);
} else {
return None;
}
} else {
let mut transform = Box::new(GammaTable::default());
transform.input_clut_table[0] =
build_input_gamma_table(input.redTRC.as_deref()).map(|x| (x as Box<[f32]>).into_vec());
transform.input_clut_table[1] = build_input_gamma_table(input.greenTRC.as_deref())
.map(|x| (x as Box<[f32]>).into_vec());
transform.input_clut_table[2] =
build_input_gamma_table(input.blueTRC.as_deref()).map(|x| (x as Box<[f32]>).into_vec());
if transform.input_clut_table[0].is_none()
|| transform.input_clut_table[1].is_none()
|| transform.input_clut_table[2].is_none()
{
return None;
} else {
transforms.push(transform);
let mut transform = Box::new(MatrixTransform::default());
transform.matrix.m[0][0] = 1. / 1.999_969_5;
transform.matrix.m[0][1] = 0.0;
transform.matrix.m[0][2] = 0.0;
transform.matrix.m[1][0] = 0.0;
transform.matrix.m[1][1] = 1. / 1.999_969_5;
transform.matrix.m[1][2] = 0.0;
transform.matrix.m[2][0] = 0.0;
transform.matrix.m[2][1] = 0.0;
transform.matrix.m[2][2] = 1. / 1.999_969_5;
transforms.push(transform);
let mut transform = Box::new(MatrixTransform::default());
transform.matrix = build_colorant_matrix(input);
transforms.push(transform);
}
}
Some(transforms)
}
fn modular_transform_create_output(out: &Profile) -> Option<Vec<Box<dyn ModularTransform>>> {
let mut transforms = Vec::new();
if let Some(B2A0) = &out.B2A0 {
if B2A0.num_input_channels != 3 || B2A0.num_output_channels != 3 {
return None;
}
let lut_transform = modular_transform_create_lut(B2A0);
if let Some(lut_transform) = lut_transform {
transforms.extend(lut_transform);
} else {
return None;
}
} else if out.mBA.is_some()
&& (*out.mBA.as_deref().unwrap()).num_in_channels == 3
&& (*out.mBA.as_deref().unwrap()).num_out_channels == 3
{
let lut_transform = modular_transform_create_mAB(out.mBA.as_deref().unwrap());
if let Some(lut_transform) = lut_transform {
transforms.extend(lut_transform)
} else {
return None;
}
} else if let (Some(redTRC), Some(greenTRC), Some(blueTRC)) =
(&out.redTRC, &out.greenTRC, &out.blueTRC)
{
let mut transform = Box::new(MatrixTransform::default());
transform.matrix = build_colorant_matrix(out).invert()?;
transforms.push(transform);
let mut transform = Box::new(MatrixTransform::default());
transform.matrix.m[0][0] = 1.999_969_5;
transform.matrix.m[0][1] = 0.0;
transform.matrix.m[0][2] = 0.0;
transform.matrix.m[1][0] = 0.0;
transform.matrix.m[1][1] = 1.999_969_5;
transform.matrix.m[1][2] = 0.0;
transform.matrix.m[2][0] = 0.0;
transform.matrix.m[2][1] = 0.0;
transform.matrix.m[2][2] = 1.999_969_5;
transforms.push(transform);
let mut transform = Box::new(GammaLut::default());
transform.output_gamma_lut_r = Some(build_output_lut(redTRC)?);
transform.output_gamma_lut_g = Some(build_output_lut(greenTRC)?);
transform.output_gamma_lut_b = Some(build_output_lut(blueTRC)?);
transforms.push(transform);
} else {
debug_assert!(false, "Unsupported output profile workflow.");
return None;
}
Some(transforms)
}
/* Not Completed
// Simplify the transformation chain to an equivalent transformation chain
static struct qcms_modular_transform* qcms_modular_transform_reduce(struct qcms_modular_transform *transform)
{
struct qcms_modular_transform *first_transform = NULL;
struct qcms_modular_transform *curr_trans = transform;
struct qcms_modular_transform *prev_trans = NULL;
while (curr_trans) {
struct qcms_modular_transform *next_trans = curr_trans->next_transform;
if (curr_trans->transform_module_fn == qcms_transform_module_matrix) {
if (next_trans && next_trans->transform_module_fn == qcms_transform_module_matrix) {
curr_trans->matrix = matrix_multiply(curr_trans->matrix, next_trans->matrix);
goto remove_next;
}
}
if (curr_trans->transform_module_fn == qcms_transform_module_gamma_table) {
bool isLinear = true;
uint16_t i;
for (i = 0; isLinear && i < 256; i++) {
isLinear &= (int)(curr_trans->input_clut_table_r[i] * 255) == i;
isLinear &= (int)(curr_trans->input_clut_table_g[i] * 255) == i;
isLinear &= (int)(curr_trans->input_clut_table_b[i] * 255) == i;
}
goto remove_current;
}
next_transform:
if (!next_trans) break;
prev_trans = curr_trans;
curr_trans = next_trans;
continue;
remove_current:
if (curr_trans == transform) {
//Update head
transform = next_trans;
} else {
prev_trans->next_transform = next_trans;
}
curr_trans->next_transform = NULL;
qcms_modular_transform_release(curr_trans);
//return transform;
return qcms_modular_transform_reduce(transform);
remove_next:
curr_trans->next_transform = next_trans->next_transform;
next_trans->next_transform = NULL;
qcms_modular_transform_release(next_trans);
continue;
}
return transform;
}
*/
fn modular_transform_create(
input: &Profile,
output: &Profile,
) -> Option<Vec<Box<dyn ModularTransform>>> {
let mut transforms = Vec::new();
if input.color_space == RGB_SIGNATURE || input.color_space == CMYK_SIGNATURE {
let rgb_to_pcs = modular_transform_create_input(input);
if let Some(rgb_to_pcs) = rgb_to_pcs {
transforms.extend(rgb_to_pcs);
} else {
return None;
}
} else {
debug_assert!(false, "input color space not supported");
return None;
}
if input.pcs == LAB_SIGNATURE && output.pcs == XYZ_SIGNATURE {
transforms.push(Box::new(LABtoXYZ {}));
}
// This does not improve accuracy in practice, something is wrong here.
//if (in->chromaticAdaption.invalid == false) {
// struct qcms_modular_transform* chromaticAdaption;
// chromaticAdaption = qcms_modular_transform_alloc();
// if (!chromaticAdaption)
// goto fail;
// append_transform(chromaticAdaption, &next_transform);
// chromaticAdaption->matrix = matrix_invert(in->chromaticAdaption);
// chromaticAdaption->transform_module_fn = qcms_transform_module_matrix;
//}
if input.pcs == XYZ_SIGNATURE && output.pcs == LAB_SIGNATURE {
transforms.push(Box::new(XYZtoLAB {}));
}
if output.color_space == RGB_SIGNATURE {
let pcs_to_rgb = modular_transform_create_output(output);
if let Some(pcs_to_rgb) = pcs_to_rgb {
transforms.extend(pcs_to_rgb);
} else {
return None;
}
} else if output.color_space == CMYK_SIGNATURE {
let pcs_to_cmyk = modular_transform_create_output(output)?;
transforms.extend(pcs_to_cmyk);
} else {
debug_assert!(false, "output color space not supported");
}
// Not Completed
//return qcms_modular_transform_reduce(first_transform);
Some(transforms)
}
fn modular_transform_data(
transforms: Vec<Box<dyn ModularTransform>>,
mut src: Vec<f32>,
mut dest: Vec<f32>,
_len: usize,
) -> Vec<f32> {
for transform in transforms {
// Keep swaping src/dest when performing a transform to use less memory.
transform.transform(&src, &mut dest);
std::mem::swap(&mut src, &mut dest);
}
// The results end up in the src buffer because of the switching
src
}
pub fn chain_transform(
input: &Profile,
output: &Profile,
src: Vec<f32>,
dest: Vec<f32>,
lutSize: usize,
) -> Option<Vec<f32>> {
let transform_list = modular_transform_create(input, output);
if let Some(transform_list) = transform_list {
let lut = modular_transform_data(transform_list, src, dest, lutSize / 3);
return Some(lut);
}
None
}