Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_IMAGECONTAINER_H
#define GFX_IMAGECONTAINER_H
#include <stdint.h> // for int32_t, uint32_t, uint8_t, uint64_t
#include "ImageTypes.h" // for ImageFormat, etc
#include "mozilla/AlreadyAddRefed.h"
#include "mozilla/Assertions.h" // for MOZ_ASSERT_HELPER2
#include "mozilla/Mutex.h" // for Mutex
#include "mozilla/RecursiveMutex.h" // for RecursiveMutex, etc
#include "mozilla/ThreadSafeWeakPtr.h"
#include "mozilla/TimeStamp.h" // for TimeStamp
#include "mozilla/gfx/Point.h" // For IntSize
#include "mozilla/gfx/Rect.h"
#include "mozilla/gfx/Types.h" // For ColorDepth
#include "mozilla/layers/LayersTypes.h" // for LayersBackend, etc
#include "mozilla/layers/CompositorTypes.h"
#include "mozilla/mozalloc.h" // for operator delete, etc
#include "nsDebug.h" // for NS_ASSERTION
#include "nsISupportsImpl.h" // for Image::Release, etc
#include "nsTArray.h" // for nsTArray
#include "mozilla/Atomics.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/EnumeratedArray.h"
#include "mozilla/UniquePtr.h"
#include "MediaInfo.h"
#include "nsTHashMap.h"
#ifdef XP_WIN
struct ID3D10Texture2D;
struct ID3D10Device;
struct ID3D10ShaderResourceView;
#endif
typedef void* HANDLE;
namespace mozilla {
namespace layers {
class ImageClient;
class ImageCompositeNotification;
class ImageContainer;
class ImageContainerChild;
class SharedPlanarYCbCrImage;
class SurfaceDescriptor;
class PlanarYCbCrImage;
class TextureClient;
class TextureClientRecycleAllocator;
class KnowsCompositor;
class NVImage;
class MemoryOrShmem;
#ifdef XP_WIN
class D3D11YCbCrRecycleAllocator;
#endif
#ifdef XP_MACOSX
class MacIOSurfaceRecycleAllocator;
#endif
class SurfaceDescriptorBuffer;
struct ImageBackendData {
virtual ~ImageBackendData() = default;
protected:
ImageBackendData() = default;
};
/* Forward declarations for Image derivatives. */
class GLImage;
class SharedRGBImage;
#ifdef MOZ_WIDGET_ANDROID
class SurfaceTextureImage;
#elif defined(XP_MACOSX)
class MacIOSurfaceImage;
#elif MOZ_WAYLAND
class DMABUFSurfaceImage;
#endif
/**
* A class representing a buffer of pixel data. The data can be in one
* of various formats including YCbCr.
*
* Create an image using an ImageContainer. Fill the image with data, and
* then call ImageContainer::SetImage to display it. An image must not be
* modified after calling SetImage. Image implementations do not need to
* perform locking; when filling an Image, the Image client is responsible
* for ensuring only one thread accesses the Image at a time, and after
* SetImage the image is immutable.
*
* When resampling an Image, only pixels within the buffer should be
* sampled. For example, cairo images should be sampled in EXTEND_PAD mode.
*/
class Image {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(Image)
public:
ImageFormat GetFormat() const { return mFormat; }
void* GetImplData() const { return mImplData; }
virtual gfx::IntSize GetSize() const = 0;
virtual gfx::IntPoint GetOrigin() const { return gfx::IntPoint(0, 0); }
virtual gfx::IntRect GetPictureRect() const {
return gfx::IntRect(GetOrigin().x, GetOrigin().y, GetSize().width,
GetSize().height);
}
ImageBackendData* GetBackendData(LayersBackend aBackend) {
return mBackendData[aBackend].get();
}
void SetBackendData(LayersBackend aBackend, ImageBackendData* aData) {
mBackendData[aBackend] = mozilla::WrapUnique(aData);
}
int32_t GetSerial() const { return mSerial; }
virtual already_AddRefed<gfx::SourceSurface> GetAsSourceSurface() = 0;
virtual bool IsValid() const { return true; }
/**
* For use with the TextureForwarder only (so that the later can
* synchronize the TextureClient with the TextureHost).
*/
virtual TextureClient* GetTextureClient(KnowsCompositor* aKnowsCompositor) {
return nullptr;
}
/* Access to derived classes. */
virtual GLImage* AsGLImage() { return nullptr; }
#ifdef MOZ_WIDGET_ANDROID
virtual SurfaceTextureImage* AsSurfaceTextureImage() { return nullptr; }
#endif
#ifdef XP_MACOSX
virtual MacIOSurfaceImage* AsMacIOSurfaceImage() { return nullptr; }
#endif
virtual PlanarYCbCrImage* AsPlanarYCbCrImage() { return nullptr; }
#ifdef MOZ_WAYLAND
virtual DMABUFSurfaceImage* AsDMABUFSurfaceImage() { return nullptr; }
#endif
virtual NVImage* AsNVImage() { return nullptr; }
virtual Maybe<SurfaceDescriptor> GetDesc();
protected:
Maybe<SurfaceDescriptor> GetDescFromTexClient(
TextureClient* tcOverride = nullptr);
Image(void* aImplData, ImageFormat aFormat)
: mImplData(aImplData), mSerial(++sSerialCounter), mFormat(aFormat) {}
// Protected destructor, to discourage deletion outside of Release():
virtual ~Image() = default;
mozilla::EnumeratedArray<mozilla::layers::LayersBackend,
mozilla::layers::LayersBackend::LAYERS_LAST,
UniquePtr<ImageBackendData>>
mBackendData;
void* mImplData;
int32_t mSerial;
ImageFormat mFormat;
static mozilla::Atomic<int32_t> sSerialCounter;
};
/**
* A RecycleBin is owned by an ImageContainer. We store buffers in it that we
* want to recycle from one image to the next.It's a separate object from
* ImageContainer because images need to store a strong ref to their RecycleBin
* and we must avoid creating a reference loop between an ImageContainer and
* its active image.
*/
class BufferRecycleBin final {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(BufferRecycleBin)
// typedef mozilla::gl::GLContext GLContext;
public:
BufferRecycleBin();
void RecycleBuffer(mozilla::UniquePtr<uint8_t[]> aBuffer, uint32_t aSize);
// Returns a recycled buffer of the right size, or allocates a new buffer.
mozilla::UniquePtr<uint8_t[]> GetBuffer(uint32_t aSize);
virtual void ClearRecycledBuffers();
private:
typedef mozilla::Mutex Mutex;
// Private destructor, to discourage deletion outside of Release():
~BufferRecycleBin() = default;
// This protects mRecycledBuffers, mRecycledBufferSize, mRecycledTextures
// and mRecycledTextureSizes
Mutex mLock MOZ_UNANNOTATED;
// We should probably do something to prune this list on a timer so we don't
// eat excess memory while video is paused...
nsTArray<mozilla::UniquePtr<uint8_t[]>> mRecycledBuffers;
// This is only valid if mRecycledBuffers is non-empty
uint32_t mRecycledBufferSize;
};
/**
* A class that manages Image creation for a LayerManager. The only reason
* we need a separate class here is that LayerManagers aren't threadsafe
* (because layers can only be used on the main thread) and we want to
* be able to create images from any thread, to facilitate video playback
* without involving the main thread, for example.
* Different layer managers can implement child classes of this making it
* possible to create layer manager specific images.
* This class is not meant to be used directly but rather can be set on an
* image container. This is usually done by the layer system internally and
* not explicitly by users. For PlanarYCbCr or Cairo images the default
* implementation will creates images whose data lives in system memory, for
* MacIOSurfaces the default implementation will be a simple MacIOSurface
* wrapper.
*/
class ImageFactory {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageFactory)
protected:
friend class ImageContainer;
ImageFactory() = default;
virtual ~ImageFactory() = default;
virtual RefPtr<PlanarYCbCrImage> CreatePlanarYCbCrImage(
const gfx::IntSize& aScaleHint, BufferRecycleBin* aRecycleBin);
};
// Used to notify ImageContainer::NotifyComposite()
class ImageContainerListener final {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageContainerListener)
public:
explicit ImageContainerListener(ImageContainer* aImageContainer);
void NotifyComposite(const ImageCompositeNotification& aNotification);
void NotifyDropped(uint32_t aDropped);
void ClearImageContainer();
void DropImageClient();
private:
typedef mozilla::Mutex Mutex;
~ImageContainerListener();
Mutex mLock MOZ_UNANNOTATED;
ImageContainer* mImageContainer;
};
/**
* A class that manages Images for an ImageLayer. The only reason
* we need a separate class here is that ImageLayers aren't threadsafe
* (because layers can only be used on the main thread) and we want to
* be able to set the current Image from any thread, to facilitate
* video playback without involving the main thread, for example.
*
* An ImageContainer can operate in one of these modes:
* 1) Normal. Triggered by constructing the ImageContainer with
* DISABLE_ASYNC or when compositing is happening on the main thread.
* SetCurrentImages changes ImageContainer state but nothing is sent to the
* compositor until the next layer transaction.
* 2) Asynchronous. Initiated by constructing the ImageContainer with
* ENABLE_ASYNC when compositing is happening on the main thread.
* SetCurrentImages sends a message through the ImageBridge to the compositor
* thread to update the image, without going through the main thread or
* a layer transaction.
* The ImageContainer uses a shared memory block containing a cross-process
* mutex to communicate with the compositor thread. SetCurrentImage
* synchronously updates the shared state to point to the new image and the old
* image is immediately released (not true in Normal or Asynchronous modes).
*/
class ImageContainer final : public SupportsThreadSafeWeakPtr<ImageContainer> {
friend class ImageContainerChild;
public:
MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageContainer)
enum Mode { SYNCHRONOUS = 0x0, ASYNCHRONOUS = 0x01 };
static const uint64_t sInvalidAsyncContainerId = 0;
explicit ImageContainer(ImageContainer::Mode flag = SYNCHRONOUS);
/**
* Create ImageContainer just to hold another ASYNCHRONOUS ImageContainer's
* async container ID.
* @param aAsyncContainerID async container ID for which we are a proxy
*/
explicit ImageContainer(const CompositableHandle& aHandle);
~ImageContainer();
typedef ContainerFrameID FrameID;
typedef ContainerProducerID ProducerID;
RefPtr<PlanarYCbCrImage> CreatePlanarYCbCrImage();
// Factory methods for shared image types.
RefPtr<SharedRGBImage> CreateSharedRGBImage();
struct NonOwningImage {
explicit NonOwningImage(Image* aImage = nullptr,
TimeStamp aTimeStamp = TimeStamp(),
FrameID aFrameID = 0, ProducerID aProducerID = 0)
: mImage(aImage),
mTimeStamp(aTimeStamp),
mFrameID(aFrameID),
mProducerID(aProducerID) {}
Image* mImage;
TimeStamp mTimeStamp;
FrameID mFrameID;
ProducerID mProducerID;
};
/**
* Set aImages as the list of timestamped to display. The Images must have
* been created by this ImageContainer.
* Can be called on any thread. This method takes mRecursiveMutex
* when accessing thread-shared state.
* aImages must be non-empty. The first timestamp in the list may be
* null but the others must not be, and the timestamps must increase.
* Every element of aImages must have non-null mImage.
* mFrameID can be zero, in which case you won't get meaningful
* painted/dropped frame counts. Otherwise you should use a unique and
* increasing ID for each decoded and submitted frame (but it's OK to
* pass the same frame to SetCurrentImages).
* mProducerID is a unique ID for the stream of images. A change in the
* mProducerID means changing to a new mFrameID namespace. All frames in
* aImages must have the same mProducerID.
*
* The Image data must not be modified after this method is called!
* Note that this must not be called if ENABLE_ASYNC has not been set.
*
* The implementation calls CurrentImageChanged() while holding
* mRecursiveMutex.
*
* If this ImageContainer has an ImageClient for async video:
* Schedule a task to send the image to the compositor using the
* PImageBridge protcol without using the main thread.
*/
void SetCurrentImages(const nsTArray<NonOwningImage>& aImages);
/**
* Clear all images. Let ImageClient release all TextureClients.
*/
void ClearAllImages();
/**
* Clear any resources that are not immediately necessary. This may be called
* in low-memory conditions.
*/
void ClearCachedResources();
/**
* Clear the current images.
* This function is expect to be called only from a CompositableClient
* that belongs to ImageBridgeChild. Created to prevent dead lock.
* See Bug 901224.
*/
void ClearImagesFromImageBridge();
/**
* Set an Image as the current image to display. The Image must have
* been created by this ImageContainer.
* Must be called on the main thread, within a layers transaction.
*
* This method takes mRecursiveMutex
* when accessing thread-shared state.
* aImage can be null. While it's null, nothing will be painted.
*
* The Image data must not be modified after this method is called!
* Note that this must not be called if ENABLE_ASYNC been set.
*
* You won't get meaningful painted/dropped counts when using this method.
*/
void SetCurrentImageInTransaction(Image* aImage);
void SetCurrentImagesInTransaction(const nsTArray<NonOwningImage>& aImages);
/**
* Returns true if this ImageContainer uses the ImageBridge IPDL protocol.
*
* Can be called from any thread.
*/
bool IsAsync() const;
/**
* If this ImageContainer uses ImageBridge, returns the ID associated to
* this container, for use in the ImageBridge protocol.
* Returns 0 if this ImageContainer does not use ImageBridge. Note that
* 0 is always an invalid ID for asynchronous image containers.
*
* Can be called from any thread.
*/
CompositableHandle GetAsyncContainerHandle();
/**
* Returns if the container currently has an image.
* Can be called on any thread. This method takes mRecursiveMutex
* when accessing thread-shared state.
*/
bool HasCurrentImage();
struct OwningImage {
OwningImage() : mFrameID(0), mProducerID(0), mComposited(false) {}
RefPtr<Image> mImage;
TimeStamp mTimeStamp;
FrameID mFrameID;
ProducerID mProducerID;
bool mComposited;
};
/**
* Copy the current Image list to aImages.
* This has to add references since otherwise there are race conditions
* where the current image is destroyed before the caller can add
* a reference.
* Can be called on any thread.
* May return an empty list to indicate there is no current image.
* If aGenerationCounter is non-null, sets *aGenerationCounter to a value
* that's unique for this ImageContainer state.
*/
void GetCurrentImages(nsTArray<OwningImage>* aImages,
uint32_t* aGenerationCounter = nullptr);
/**
* Returns the size of the image in pixels.
* Can be called on any thread. This method takes mRecursiveMutex when
* accessing thread-shared state.
*/
gfx::IntSize GetCurrentSize();
/**
* Sets a size that the image is expected to be rendered at.
* This is a hint for image backends to optimize scaling.
* Default implementation in this class is to ignore the hint.
* Can be called on any thread. This method takes mRecursiveMutex
* when accessing thread-shared state.
*/
void SetScaleHint(const gfx::IntSize& aScaleHint) { mScaleHint = aScaleHint; }
const gfx::IntSize& GetScaleHint() const { return mScaleHint; }
void SetTransformHint(const gfx::Matrix& aTransformHint) {
mTransformHint = aTransformHint;
}
const gfx::Matrix& GetTransformHint() const { return mTransformHint; }
void SetRotation(VideoInfo::Rotation aRotation) { mRotation = aRotation; }
VideoInfo::Rotation GetRotation() const { return mRotation; }
void SetImageFactory(ImageFactory* aFactory) {
RecursiveMutexAutoLock lock(mRecursiveMutex);
mImageFactory = aFactory ? aFactory : new ImageFactory();
}
ImageFactory* GetImageFactory() const { return mImageFactory; }
void EnsureRecycleAllocatorForRDD(KnowsCompositor* aKnowsCompositor);
#ifdef XP_WIN
D3D11YCbCrRecycleAllocator* GetD3D11YCbCrRecycleAllocator(
KnowsCompositor* aKnowsCompositor);
#endif
#ifdef XP_MACOSX
MacIOSurfaceRecycleAllocator* GetMacIOSurfaceRecycleAllocator();
#endif
/**
* Returns the delay between the last composited image's presentation
* timestamp and when it was first composited. It's possible for the delay
* to be negative if the first image in the list passed to SetCurrentImages
* has a presentation timestamp greater than "now".
* Returns 0 if the composited image had a null timestamp, or if no
* image has been composited yet.
*/
TimeDuration GetPaintDelay() {
RecursiveMutexAutoLock lock(mRecursiveMutex);
return mPaintDelay;
}
/**
* Returns the number of images which have been contained in this container
* and painted at least once. Can be called from any thread.
*/
uint32_t GetPaintCount() {
RecursiveMutexAutoLock lock(mRecursiveMutex);
return mPaintCount;
}
/**
* An entry in the current image list "expires" when the entry has an
* non-null timestamp, and in a SetCurrentImages call the new image list is
* non-empty, the timestamp of the first new image is non-null and greater
* than the timestamp associated with the image, and the first new image's
* frameID is not the same as the entry's.
* Every expired image that is never composited is counted as dropped.
*/
uint32_t GetDroppedImageCount() { return mDroppedImageCount; }
void NotifyComposite(const ImageCompositeNotification& aNotification);
void NotifyDropped(uint32_t aDropped);
ImageContainerListener* GetImageContainerListener() {
return mNotifyCompositeListener;
}
/**
* Get the ImageClient associated with this container. Returns only after
* validating, and it will recreate the image client if that fails.
* Returns nullptr if not applicable.
*/
already_AddRefed<ImageClient> GetImageClient();
/**
* Main thread only.
*/
static ProducerID AllocateProducerID();
void DropImageClient();
private:
typedef mozilla::RecursiveMutex RecursiveMutex;
void SetCurrentImageInternal(const nsTArray<NonOwningImage>& aImages);
// This is called to ensure we have an active image, this may not be true
// when we're storing image information in a RemoteImageData structure.
// NOTE: If we have remote data mRemoteDataMutex should be locked when
// calling this function!
void EnsureActiveImage();
void EnsureImageClient();
// RecursiveMutex to protect thread safe access to the "current
// image", and any other state which is shared between threads.
RecursiveMutex mRecursiveMutex MOZ_UNANNOTATED;
RefPtr<TextureClientRecycleAllocator> mRecycleAllocator;
#ifdef XP_WIN
RefPtr<D3D11YCbCrRecycleAllocator> mD3D11YCbCrRecycleAllocator;
#endif
#ifdef XP_MACOSX
RefPtr<MacIOSurfaceRecycleAllocator> mMacIOSurfaceRecycleAllocator;
#endif
nsTArray<OwningImage> mCurrentImages;
// Updates every time mActiveImage changes
uint32_t mGenerationCounter;
// Number of contained images that have been painted at least once. It's up
// to the ImageContainer implementation to ensure accesses to this are
// threadsafe.
uint32_t mPaintCount;
// See GetPaintDelay. Accessed only with mRecursiveMutex held.
TimeDuration mPaintDelay;
// See GetDroppedImageCount.
mozilla::Atomic<uint32_t> mDroppedImageCount;
// This is the image factory used by this container, layer managers using
// this container can set an alternative image factory that will be used to
// create images for this container.
RefPtr<ImageFactory> mImageFactory;
gfx::IntSize mScaleHint;
gfx::Matrix mTransformHint;
VideoInfo::Rotation mRotation = VideoInfo::Rotation::kDegree_0;
RefPtr<BufferRecycleBin> mRecycleBin;
// This member points to an ImageClient if this ImageContainer was
// sucessfully created with ENABLE_ASYNC, or points to null otherwise.
// 'unsuccessful' in this case only means that the ImageClient could not
// be created, most likely because off-main-thread compositing is not enabled.
// In this case the ImageContainer is perfectly usable, but it will forward
// frames to the compositor through transactions in the main thread rather
// than asynchronusly using the ImageBridge IPDL protocol.
RefPtr<ImageClient> mImageClient;
bool mIsAsync;
CompositableHandle mAsyncContainerHandle;
// ProducerID for last current image(s)
ProducerID mCurrentProducerID;
RefPtr<ImageContainerListener> mNotifyCompositeListener;
static mozilla::Atomic<uint32_t> sGenerationCounter;
};
class AutoLockImage {
public:
explicit AutoLockImage(ImageContainer* aContainer) {
aContainer->GetCurrentImages(&mImages);
}
bool HasImage() const { return !mImages.IsEmpty(); }
Image* GetImage() const {
return mImages.IsEmpty() ? nullptr : mImages[0].mImage.get();
}
Image* GetImage(TimeStamp aTimeStamp) const {
if (mImages.IsEmpty()) {
return nullptr;
}
MOZ_ASSERT(!aTimeStamp.IsNull());
uint32_t chosenIndex = 0;
while (chosenIndex + 1 < mImages.Length() &&
mImages[chosenIndex + 1].mTimeStamp <= aTimeStamp) {
++chosenIndex;
}
return mImages[chosenIndex].mImage.get();
}
private:
AutoTArray<ImageContainer::OwningImage, 4> mImages;
};
struct PlanarYCbCrData {
// Luminance buffer
uint8_t* mYChannel = nullptr;
int32_t mYStride = 0;
int32_t mYSkip = 0;
// Chroma buffers
uint8_t* mCbChannel = nullptr;
uint8_t* mCrChannel = nullptr;
int32_t mCbCrStride = 0;
int32_t mCbSkip = 0;
int32_t mCrSkip = 0;
// Picture region
gfx::IntRect mPictureRect = gfx::IntRect(0, 0, 0, 0);
StereoMode mStereoMode = StereoMode::MONO;
gfx::ColorDepth mColorDepth = gfx::ColorDepth::COLOR_8;
gfx::YUVColorSpace mYUVColorSpace = gfx::YUVColorSpace::Default;
gfx::TransferFunction mTransferFunction = gfx::TransferFunction::BT709;
gfx::ColorRange mColorRange = gfx::ColorRange::LIMITED;
gfx::ChromaSubsampling mChromaSubsampling = gfx::ChromaSubsampling::FULL;
// The cropped picture size of the Y channel.
gfx::IntSize YPictureSize() const { return mPictureRect.Size(); }
// The cropped picture size of the Cb/Cr channels.
gfx::IntSize CbCrPictureSize() const {
return mCbCrStride > 0 ? gfx::ChromaSize(YPictureSize(), mChromaSubsampling)
: gfx::IntSize(0, 0);
}
// The total uncropped size of data in the Y channel.
gfx::IntSize YDataSize() const {
return gfx::IntSize(mPictureRect.XMost(), mPictureRect.YMost());
}
// The total uncropped size of data in the Cb/Cr channels.
gfx::IntSize CbCrDataSize() const {
return mCbCrStride > 0 ? gfx::ChromaSize(YDataSize(), mChromaSubsampling)
: gfx::IntSize(0, 0);
}
static Maybe<PlanarYCbCrData> From(const SurfaceDescriptorBuffer&);
};
// This type is currently only used for AVIF and therefore makes some
// AVIF-specific assumptions (e.g., Alpha's bpc and stride is equal to Y's one)
struct PlanarAlphaData {
uint8_t* mChannel = nullptr;
gfx::IntSize mSize = gfx::IntSize(0, 0);
gfx::ColorDepth mDepth = gfx::ColorDepth::COLOR_8;
bool mPremultiplied = false;
};
/****** Image subtypes for the different formats ******/
/**
* We assume that the image data is in the REC 470M color space (see
* Theora specification, section 4.3.1).
*
* The YCbCr format can be:
*
* 4:4:4 - CbCr width/height are the same as Y.
* 4:2:2 - CbCr width is half that of Y. Height is the same.
* 4:2:0 - CbCr width and height is half that of Y.
*
* mChromaSubsampling specifies which YCbCr subsampling scheme to use.
*
* The Image that is rendered is the picture region defined by mPictureRect.
*
* mYSkip, mCbSkip, mCrSkip are added to support various output
* formats from hardware decoder. They are per-pixel skips in the
* source image.
*
* For example when image width is 640, mYStride is 670, mYSkip is 2,
* the mYChannel buffer looks like:
*
* |<----------------------- mYStride ----------------------------->|
* |<----------------- YDataSize().width ---------->|
* 0 3 6 9 12 15 18 21 639 669
* |----------------------------------------------------------------|
* |Y___Y___Y___Y___Y___Y___Y___Y... |%%%%%%%%%%%%%%%|
* |Y___Y___Y___Y___Y___Y___Y___Y... |%%%%%%%%%%%%%%%|
* |Y___Y___Y___Y___Y___Y___Y___Y... |%%%%%%%%%%%%%%%|
* | |<->|
* mYSkip
*/
class PlanarYCbCrImage : public Image {
public:
typedef PlanarYCbCrData Data;
enum { MAX_DIMENSION = 16384 };
virtual ~PlanarYCbCrImage();
/**
* This makes a copy of the data buffers, in order to support functioning
* in all different layer managers.
*/
virtual bool CopyData(const Data& aData) = 0;
/**
* This doesn't make a copy of the data buffers.
*/
virtual bool AdoptData(const Data& aData);
/**
* This will create an empty data buffers according to the input data's size.
*/
virtual bool CreateEmptyBuffer(const Data& aData, const gfx::IntSize& aYSize,
const gfx::IntSize& aCbCrSize) {
return false;
}
bool CreateEmptyBuffer(const Data& aData) {
return CreateEmptyBuffer(aData, aData.YDataSize(), aData.CbCrDataSize());
}
/**
* Grab the original YUV data. This is optional.
*/
virtual const Data* GetData() const { return &mData; }
/**
* Return the number of bytes of heap memory used to store this image.
*/
uint32_t GetDataSize() const { return mBufferSize; }
bool IsValid() const override { return !!mBufferSize; }
gfx::IntSize GetSize() const override { return mSize; }
gfx::IntPoint GetOrigin() const override { return mOrigin; }
PlanarYCbCrImage();
virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const = 0;
PlanarYCbCrImage* AsPlanarYCbCrImage() override { return this; }
/**
* Build a SurfaceDescriptorBuffer with this image. A function to allocate
* a MemoryOrShmem with the given capacity must be provided.
*/
virtual nsresult BuildSurfaceDescriptorBuffer(
SurfaceDescriptorBuffer& aSdBuffer,
const std::function<MemoryOrShmem(uint32_t)>& aAllocate);
protected:
already_AddRefed<gfx::SourceSurface> GetAsSourceSurface() override;
void SetOffscreenFormat(gfxImageFormat aFormat) {
mOffscreenFormat = aFormat;
}
gfxImageFormat GetOffscreenFormat() const;
Data mData;
gfx::IntPoint mOrigin;
gfx::IntSize mSize;
gfxImageFormat mOffscreenFormat;
RefPtr<gfx::SourceSurface> mSourceSurface;
uint32_t mBufferSize;
};
class RecyclingPlanarYCbCrImage : public PlanarYCbCrImage {
public:
explicit RecyclingPlanarYCbCrImage(BufferRecycleBin* aRecycleBin)
: mRecycleBin(aRecycleBin) {}
virtual ~RecyclingPlanarYCbCrImage();
bool CopyData(const Data& aData) override;
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override;
protected:
/**
* Return a buffer to store image data in.
*/
mozilla::UniquePtr<uint8_t[]> AllocateBuffer(uint32_t aSize);
RefPtr<BufferRecycleBin> mRecycleBin;
mozilla::UniquePtr<uint8_t[]> mBuffer;
};
/**
* NVImage is used to store YUV420SP_NV12 and YUV420SP_NV21 data natively, which
* are not supported by PlanarYCbCrImage. (PlanarYCbCrImage only stores YUV444P,
* YUV422P and YUV420P, it converts YUV420SP_NV12 and YUV420SP_NV21 data into
* YUV420P in its PlanarYCbCrImage::SetData() method.)
*
* PlanarYCbCrData is able to express all the YUV family and so we keep use it
* in NVImage.
*/
class NVImage final : public Image {
typedef PlanarYCbCrData Data;
public:
NVImage();
virtual ~NVImage();
// Methods inherited from layers::Image.
gfx::IntSize GetSize() const override;
gfx::IntRect GetPictureRect() const override;
already_AddRefed<gfx::SourceSurface> GetAsSourceSurface() override;
bool IsValid() const override;
NVImage* AsNVImage() override;
// Methods mimic layers::PlanarYCbCrImage.
bool SetData(const Data& aData);
const Data* GetData() const;
uint32_t GetBufferSize() const;
protected:
/**
* Return a buffer to store image data in.
*/
mozilla::UniquePtr<uint8_t[]> AllocateBuffer(uint32_t aSize);
mozilla::UniquePtr<uint8_t[]> mBuffer;
uint32_t mBufferSize;
gfx::IntSize mSize;
Data mData;
RefPtr<gfx::SourceSurface> mSourceSurface;
};
/**
* Currently, the data in a SourceSurfaceImage surface is treated as being in
* the device output color space. This class is very simple as all backends have
* to know about how to deal with drawing a cairo image.
*/
class SourceSurfaceImage final : public Image {
public:
already_AddRefed<gfx::SourceSurface> GetAsSourceSurface() override {
RefPtr<gfx::SourceSurface> surface(mSourceSurface);
return surface.forget();
}
void SetTextureFlags(TextureFlags aTextureFlags) {
mTextureFlags = aTextureFlags;
}
TextureClient* GetTextureClient(KnowsCompositor* aKnowsCompositor) override;
gfx::IntSize GetSize() const override { return mSize; }
SourceSurfaceImage(const gfx::IntSize& aSize,
gfx::SourceSurface* aSourceSurface);
explicit SourceSurfaceImage(gfx::SourceSurface* aSourceSurface);
virtual ~SourceSurfaceImage();
private:
gfx::IntSize mSize;
RefPtr<gfx::SourceSurface> mSourceSurface;
nsTHashMap<uint32_t, RefPtr<TextureClient>> mTextureClients;
TextureFlags mTextureFlags;
};
} // namespace layers
} // namespace mozilla
#endif