Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright © 2007,2008,2009,2010 Red Hat, Inc.
* Copyright © 2012 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Red Hat Author(s): Behdad Esfahbod
* Google Author(s): Behdad Esfahbod
*/
#ifndef HB_OPEN_TYPE_HH
#define HB_OPEN_TYPE_HH
#include "hb.hh"
#include "hb-blob.hh"
#include "hb-face.hh"
#include "hb-machinery.hh"
#include "hb-meta.hh"
#include "hb-subset.hh"
namespace OT {
/*
*
* The OpenType Font File: Data Types
*/
/* "The following data types are used in the OpenType font file.
* All OpenType fonts use Motorola-style byte ordering (Big Endian):" */
/*
* Int types
*/
/* Integer types in big-endian order and no alignment requirement */
template <typename Type,
unsigned int Size = sizeof (Type)>
struct IntType
{
typedef Type type;
IntType () = default;
explicit constexpr IntType (Type V) : v {V} {}
IntType& operator = (Type i) { v = i; return *this; }
/* For reason we define cast out operator for signed/unsigned, instead of Type, see:
operator typename std::conditional<std::is_signed<Type>::value, signed, unsigned>::type () const { return v; }
bool operator == (const IntType &o) const { return (Type) v == (Type) o.v; }
bool operator != (const IntType &o) const { return !(*this == o); }
IntType& operator += (unsigned count) { *this = *this + count; return *this; }
IntType& operator -= (unsigned count) { *this = *this - count; return *this; }
IntType& operator ++ () { *this += 1; return *this; }
IntType& operator -- () { *this -= 1; return *this; }
IntType operator ++ (int) { IntType c (*this); ++*this; return c; }
IntType operator -- (int) { IntType c (*this); --*this; return c; }
HB_INTERNAL static int cmp (const IntType *a, const IntType *b)
{ return b->cmp (*a); }
HB_INTERNAL static int cmp (const void *a, const void *b)
{
IntType *pa = (IntType *) a;
IntType *pb = (IntType *) b;
return pb->cmp (*pa);
}
template <typename Type2,
hb_enable_if (std::is_integral<Type2>::value &&
sizeof (Type2) < sizeof (int) &&
sizeof (Type) < sizeof (int))>
int cmp (Type2 a) const
{
Type b = v;
return (int) a - (int) b;
}
template <typename Type2,
hb_enable_if (hb_is_convertible (Type2, Type))>
int cmp (Type2 a) const
{
Type b = v;
return a < b ? -1 : a == b ? 0 : +1;
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
protected:
BEInt<Type, Size> v;
public:
DEFINE_SIZE_STATIC (Size);
};
typedef IntType<uint8_t> HBUINT8; /* 8-bit unsigned integer. */
typedef IntType<int8_t> HBINT8; /* 8-bit signed integer. */
typedef IntType<uint16_t> HBUINT16; /* 16-bit unsigned integer. */
typedef IntType<int16_t> HBINT16; /* 16-bit signed integer. */
typedef IntType<uint32_t> HBUINT32; /* 32-bit unsigned integer. */
typedef IntType<int32_t> HBINT32; /* 32-bit signed integer. */
/* Note: we cannot defined a signed HBINT24 because there's no corresponding C type.
* Works for unsigned, but not signed, since we rely on compiler for sign-extension. */
typedef IntType<uint32_t, 3> HBUINT24; /* 24-bit unsigned integer. */
/* 15-bit unsigned number; top bit used for extension. */
struct HBUINT15 : HBUINT16
{
/* TODO Flesh out; actually mask top bit. */
HBUINT15& operator = (uint16_t i ) { HBUINT16::operator= (i); return *this; }
public:
DEFINE_SIZE_STATIC (2);
};
/* 32-bit unsigned integer with variable encoding. */
struct HBUINT32VAR
{
unsigned get_size () const
{
unsigned b0 = v[0];
if (b0 < 0x80)
return 1;
else if (b0 < 0xC0)
return 2;
else if (b0 < 0xE0)
return 3;
else if (b0 < 0xF0)
return 4;
else
return 5;
}
static unsigned get_size (uint32_t v)
{
if (v < 0x80)
return 1;
else if (v < 0x4000)
return 2;
else if (v < 0x200000)
return 3;
else if (v < 0x10000000)
return 4;
else
return 5;
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_range (v, 1) &&
hb_barrier () &&
c->check_range (v, get_size ()));
}
operator uint32_t () const
{
unsigned b0 = v[0];
if (b0 < 0x80)
return b0;
else if (b0 < 0xC0)
return ((b0 & 0x3F) << 8) | v[1];
else if (b0 < 0xE0)
return ((b0 & 0x1F) << 16) | (v[1] << 8) | v[2];
else if (b0 < 0xF0)
return ((b0 & 0x0F) << 24) | (v[1] << 16) | (v[2] << 8) | v[3];
else
return (v[1] << 24) | (v[2] << 16) | (v[3] << 8) | v[4];
}
static bool serialize (hb_serialize_context_t *c, uint32_t v)
{
unsigned len = get_size (v);
unsigned char *buf = c->allocate_size<unsigned char> (len, false);
if (unlikely (!buf))
return false;
unsigned char *p = buf + len;
for (unsigned i = 0; i < len; i++)
{
*--p = v & 0xFF;
v >>= 8;
}
if (len > 1)
buf[0] |= ((1 << (len - 1)) - 1) << (9 - len);
return true;
}
protected:
unsigned char v[5];
public:
DEFINE_SIZE_MIN (1);
};
/* 16-bit signed integer (HBINT16) that describes a quantity in FUnits. */
typedef HBINT16 FWORD;
/* 32-bit signed integer (HBINT32) that describes a quantity in FUnits. */
typedef HBINT32 FWORD32;
/* 16-bit unsigned integer (HBUINT16) that describes a quantity in FUnits. */
typedef HBUINT16 UFWORD;
template <typename Type, unsigned fraction_bits>
struct HBFixed : Type
{
static constexpr float shift = (float) (1 << fraction_bits);
static_assert (Type::static_size * 8 > fraction_bits, "");
operator signed () const = delete;
operator unsigned () const = delete;
explicit operator float () const { return to_float (); }
typename Type::type to_int () const { return Type::v; }
void set_int (typename Type::type i ) { Type::v = i; }
float to_float (float offset = 0) const { return ((int32_t) Type::v + offset) / shift; }
void set_float (float f) { Type::v = roundf (f * shift); }
public:
DEFINE_SIZE_STATIC (Type::static_size);
};
/* 16-bit signed fixed number with the low 14 bits of fraction (2.14). */
using F2DOT14 = HBFixed<HBINT16, 14>;
using F4DOT12 = HBFixed<HBINT16, 12>;
using F6DOT10 = HBFixed<HBINT16, 10>;
/* 32-bit signed fixed-point number (16.16). */
using F16DOT16 = HBFixed<HBINT32, 16>;
/* Date represented in number of seconds since 12:00 midnight, January 1,
* 1904. The value is represented as a signed 64-bit integer. */
struct LONGDATETIME
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
protected:
HBINT32 major;
HBUINT32 minor;
public:
DEFINE_SIZE_STATIC (8);
};
/* Array of four uint8s (length = 32 bits) used to identify a script, language
* system, feature, or baseline */
struct Tag : HBUINT32
{
Tag& operator = (hb_tag_t i) { HBUINT32::operator= (i); return *this; }
/* What the char* converters return is NOT nul-terminated. Print using "%.4s" */
operator const char* () const { return reinterpret_cast<const char *> (this); }
operator char* () { return reinterpret_cast<char *> (this); }
public:
DEFINE_SIZE_STATIC (4);
};
/* Glyph index number, same as uint16 (length = 16 bits) */
struct HBGlyphID16 : HBUINT16
{
HBGlyphID16& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
};
struct HBGlyphID24 : HBUINT24
{
HBGlyphID24& operator = (uint32_t i) { HBUINT24::operator= (i); return *this; }
};
/* Script/language-system/feature index */
struct Index : HBUINT16 {
static constexpr unsigned NOT_FOUND_INDEX = 0xFFFFu;
Index& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
};
DECLARE_NULL_NAMESPACE_BYTES (OT, Index);
typedef Index NameID;
struct VarIdx : HBUINT32 {
static constexpr unsigned NO_VARIATION = 0xFFFFFFFFu;
static_assert (NO_VARIATION == HB_OT_LAYOUT_NO_VARIATIONS_INDEX, "");
static uint32_t add (uint32_t i, unsigned short v)
{
if (i == NO_VARIATION) return i;
return i + v;
}
VarIdx& operator = (uint32_t i) { HBUINT32::operator= (i); return *this; }
};
DECLARE_NULL_NAMESPACE_BYTES (OT, VarIdx);
/* Offset, Null offset = 0 */
template <typename Type, bool has_null=true>
struct Offset : Type
{
Offset& operator = (typename Type::type i) { Type::operator= (i); return *this; }
typedef Type type;
bool is_null () const { return has_null && 0 == *this; }
public:
DEFINE_SIZE_STATIC (sizeof (Type));
};
typedef Offset<HBUINT16> Offset16;
typedef Offset<HBUINT24> Offset24;
typedef Offset<HBUINT32> Offset32;
/* CheckSum */
struct CheckSum : HBUINT32
{
CheckSum& operator = (uint32_t i) { HBUINT32::operator= (i); return *this; }
/* This is reference implementation from the spec. */
static uint32_t CalcTableChecksum (const HBUINT32 *Table, uint32_t Length)
{
uint32_t Sum = 0L;
assert (0 == (Length & 3));
const HBUINT32 *EndPtr = Table + Length / HBUINT32::static_size;
while (Table < EndPtr)
Sum += *Table++;
return Sum;
}
/* Note: data should be 4byte aligned and have 4byte padding at the end. */
void set_for_data (const void *data, unsigned int length)
{ *this = CalcTableChecksum ((const HBUINT32 *) data, length); }
public:
DEFINE_SIZE_STATIC (4);
};
/*
* Version Numbers
*/
template <typename FixedType=HBUINT16>
struct FixedVersion
{
uint32_t to_int () const { return (major << (sizeof (FixedType) * 8)) + minor; }
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
FixedType major;
FixedType minor;
public:
DEFINE_SIZE_STATIC (2 * sizeof (FixedType));
};
/*
* Template subclasses of Offset that do the dereferencing.
* Use: (base+offset)
*/
template <typename Type, bool has_null>
struct _hb_has_null
{
static const Type *get_null () { return nullptr; }
static Type *get_crap () { return nullptr; }
};
template <typename Type>
struct _hb_has_null<Type, true>
{
static const Type *get_null () { return &Null (Type); }
static Type *get_crap () { return &Crap (Type); }
};
template <typename Type, typename OffsetType, typename BaseType=void, bool has_null=true>
struct OffsetTo : Offset<OffsetType, has_null>
{
using target_t = Type;
// Make sure Type is not unbounded; works only for types that are fully defined at OffsetTo time.
static_assert (has_null == false ||
(hb_has_null_size (Type) || !hb_has_min_size (Type)), "");
HB_DELETE_COPY_ASSIGN (OffsetTo);
OffsetTo () = default;
OffsetTo& operator = (typename OffsetType::type i) { OffsetType::operator= (i); return *this; }
const Type& operator () (const void *base) const
{
if (unlikely (this->is_null ())) return *_hb_has_null<Type, has_null>::get_null ();
return StructAtOffset<const Type> (base, *this);
}
Type& operator () (void *base) const
{
if (unlikely (this->is_null ())) return *_hb_has_null<Type, has_null>::get_crap ();
return StructAtOffset<Type> (base, *this);
}
template <typename Base,
hb_enable_if (hb_is_convertible (const Base, const BaseType *))>
friend const Type& operator + (const Base &base, const OffsetTo &offset) { return offset ((const void *) base); }
template <typename Base,
hb_enable_if (hb_is_convertible (const Base, const BaseType *))>
friend const Type& operator + (const OffsetTo &offset, const Base &base) { return offset ((const void *) base); }
template <typename Base,
hb_enable_if (hb_is_convertible (Base, BaseType *))>
friend Type& operator + (Base &&base, OffsetTo &offset) { return offset ((void *) base); }
template <typename Base,
hb_enable_if (hb_is_convertible (Base, BaseType *))>
friend Type& operator + (OffsetTo &offset, Base &&base) { return offset ((void *) base); }
template <typename Base, typename ...Ts>
bool serialize_subset (hb_subset_context_t *c, const OffsetTo& src,
const Base *src_base, Ts&&... ds)
{
*this = 0;
if (src.is_null ())
return false;
auto *s = c->serializer;
s->push ();
bool ret = c->dispatch (src_base+src, std::forward<Ts> (ds)...);
if (ret || !has_null)
s->add_link (*this, s->pop_pack ());
else
s->pop_discard ();
return ret;
}
template <typename ...Ts>
bool serialize_serialize (hb_serialize_context_t *c, Ts&&... ds)
{
*this = 0;
Type* obj = c->push<Type> ();
bool ret = obj->serialize (c, std::forward<Ts> (ds)...);
if (ret)
c->add_link (*this, c->pop_pack ());
else
c->pop_discard ();
return ret;
}
/* TODO: Somehow merge this with previous function into a serialize_dispatch(). */
* Can't compile: whence = hb_serialize_context_t::Head followed by Ts&&...
*/
template <typename ...Ts>
bool serialize_copy (hb_serialize_context_t *c, const OffsetTo& src,
const void *src_base, unsigned dst_bias,
hb_serialize_context_t::whence_t whence,
Ts&&... ds)
{
*this = 0;
if (src.is_null ())
return false;
c->push ();
bool ret = c->copy (src_base+src, std::forward<Ts> (ds)...);
c->add_link (*this, c->pop_pack (), whence, dst_bias);
return ret;
}
bool serialize_copy (hb_serialize_context_t *c, const OffsetTo& src,
const void *src_base, unsigned dst_bias = 0)
{ return serialize_copy (c, src, src_base, dst_bias, hb_serialize_context_t::Head); }
bool sanitize_shallow (hb_sanitize_context_t *c, const BaseType *base) const
{
TRACE_SANITIZE (this);
if (unlikely (!c->check_struct (this))) return_trace (false);
hb_barrier ();
//if (unlikely (this->is_null ())) return_trace (true);
if (unlikely ((const char *) base + (unsigned) *this < (const char *) base)) return_trace (false);
return_trace (true);
}
template <typename ...Ts>
#ifndef HB_OPTIMIZE_SIZE
HB_ALWAYS_INLINE
#endif
bool sanitize (hb_sanitize_context_t *c, const BaseType *base, Ts&&... ds) const
{
TRACE_SANITIZE (this);
return_trace (sanitize_shallow (c, base) &&
hb_barrier () &&
(this->is_null () ||
c->dispatch (StructAtOffset<Type> (base, *this), std::forward<Ts> (ds)...) ||
neuter (c)));
}
/* Set the offset to Null */
bool neuter (hb_sanitize_context_t *c) const
{
if (!has_null) return false;
return c->try_set (this, 0);
}
DEFINE_SIZE_STATIC (sizeof (OffsetType));
};
/* Partial specializations. */
template <typename Type, typename BaseType=void, bool has_null=true> using Offset16To = OffsetTo<Type, HBUINT16, BaseType, has_null>;
template <typename Type, typename BaseType=void, bool has_null=true> using Offset24To = OffsetTo<Type, HBUINT24, BaseType, has_null>;
template <typename Type, typename BaseType=void, bool has_null=true> using Offset32To = OffsetTo<Type, HBUINT32, BaseType, has_null>;
template <typename Type, typename OffsetType, typename BaseType=void> using NNOffsetTo = OffsetTo<Type, OffsetType, BaseType, false>;
template <typename Type, typename BaseType=void> using NNOffset16To = Offset16To<Type, BaseType, false>;
template <typename Type, typename BaseType=void> using NNOffset24To = Offset24To<Type, BaseType, false>;
template <typename Type, typename BaseType=void> using NNOffset32To = Offset32To<Type, BaseType, false>;
/*
* Array Types
*/
template <typename Type>
struct UnsizedArrayOf
{
typedef Type item_t;
static constexpr unsigned item_size = hb_static_size (Type);
HB_DELETE_CREATE_COPY_ASSIGN (UnsizedArrayOf);
const Type& operator [] (unsigned int i) const
{
return arrayZ[i];
}
Type& operator [] (unsigned int i)
{
return arrayZ[i];
}
static unsigned int get_size (unsigned int len)
{ return len * Type::static_size; }
template <typename T> operator T * () { return arrayZ; }
template <typename T> operator const T * () const { return arrayZ; }
hb_array_t<Type> as_array (unsigned int len)
{ return hb_array (arrayZ, len); }
hb_array_t<const Type> as_array (unsigned int len) const
{ return hb_array (arrayZ, len); }
template <typename T>
Type &lsearch (unsigned int len, const T &x, Type &not_found = Crap (Type))
{ return *as_array (len).lsearch (x, &not_found); }
template <typename T>
const Type &lsearch (unsigned int len, const T &x, const Type &not_found = Null (Type)) const
{ return *as_array (len).lsearch (x, &not_found); }
template <typename T>
bool lfind (unsigned int len, const T &x, unsigned int *i = nullptr,
hb_not_found_t not_found = HB_NOT_FOUND_DONT_STORE,
unsigned int to_store = (unsigned int) -1) const
{ return as_array (len).lfind (x, i, not_found, to_store); }
void qsort (unsigned int len, unsigned int start = 0, unsigned int end = (unsigned int) -1)
{ as_array (len).qsort (start, end); }
bool serialize (hb_serialize_context_t *c, unsigned int items_len, bool clear = true)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_size (this, get_size (items_len), clear))) return_trace (false);
return_trace (true);
}
template <typename Iterator,
hb_requires (hb_is_source_of (Iterator, Type))>
bool serialize (hb_serialize_context_t *c, Iterator items)
{
TRACE_SERIALIZE (this);
unsigned count = hb_len (items);
if (unlikely (!serialize (c, count, false))) return_trace (false);
/* TODO Umm. Just exhaust the iterator instead? Being extra
* cautious right now.. */
for (unsigned i = 0; i < count; i++, ++items)
arrayZ[i] = *items;
return_trace (true);
}
UnsizedArrayOf* copy (hb_serialize_context_t *c, unsigned count) const
{
TRACE_SERIALIZE (this);
auto *out = c->start_embed (this);
if (unlikely (!as_array (count).copy (c))) return_trace (nullptr);
return_trace (out);
}
template <typename ...Ts>
HB_ALWAYS_INLINE
bool sanitize (hb_sanitize_context_t *c, unsigned int count, Ts&&... ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c, count))) return_trace (false);
if (!sizeof... (Ts) && hb_is_trivially_copyable(Type)) return_trace (true);
hb_barrier ();
for (unsigned int i = 0; i < count; i++)
if (unlikely (!c->dispatch (arrayZ[i], std::forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
bool sanitize_shallow (hb_sanitize_context_t *c, unsigned int count) const
{
TRACE_SANITIZE (this);
return_trace (c->check_array (arrayZ, count));
}
public:
Type arrayZ[HB_VAR_ARRAY];
public:
DEFINE_SIZE_UNBOUNDED (0);
};
/* Unsized array of offset's */
template <typename Type, typename OffsetType, typename BaseType=void, bool has_null=true>
using UnsizedArray16OfOffsetTo = UnsizedArrayOf<OffsetTo<Type, OffsetType, BaseType, has_null>>;
/* Unsized array of offsets relative to the beginning of the array itself. */
template <typename Type, typename OffsetType, typename BaseType=void, bool has_null=true>
struct UnsizedListOfOffset16To : UnsizedArray16OfOffsetTo<Type, OffsetType, BaseType, has_null>
{
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
const OffsetTo<Type, OffsetType, BaseType, has_null> *p = &this->arrayZ[i];
if (unlikely ((const void *) p < (const void *) this->arrayZ)) return Null (Type); /* Overflowed. */
hb_barrier ();
return this+*p;
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
const OffsetTo<Type, OffsetType, BaseType, has_null> *p = &this->arrayZ[i];
if (unlikely ((const void *) p < (const void *) this->arrayZ)) return Crap (Type); /* Overflowed. */
hb_barrier ();
return this+*p;
}
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, unsigned int count, Ts&&... ds) const
{
TRACE_SANITIZE (this);
return_trace ((UnsizedArray16OfOffsetTo<Type, OffsetType, BaseType, has_null>
::sanitize (c, count, this, std::forward<Ts> (ds)...)));
}
};
/* An array with sorted elements. Supports binary searching. */
template <typename Type>
struct SortedUnsizedArrayOf : UnsizedArrayOf<Type>
{
hb_sorted_array_t<Type> as_array (unsigned int len)
{ return hb_sorted_array (this->arrayZ, len); }
hb_sorted_array_t<const Type> as_array (unsigned int len) const
{ return hb_sorted_array (this->arrayZ, len); }
operator hb_sorted_array_t<Type> () { return as_array (); }
operator hb_sorted_array_t<const Type> () const { return as_array (); }
template <typename T>
Type &bsearch (unsigned int len, const T &x, Type &not_found = Crap (Type))
{ return *as_array (len).bsearch (x, &not_found); }
template <typename T>
const Type &bsearch (unsigned int len, const T &x, const Type &not_found = Null (Type)) const
{ return *as_array (len).bsearch (x, &not_found); }
template <typename T>
bool bfind (unsigned int len, const T &x, unsigned int *i = nullptr,
hb_not_found_t not_found = HB_NOT_FOUND_DONT_STORE,
unsigned int to_store = (unsigned int) -1) const
{ return as_array (len).bfind (x, i, not_found, to_store); }
};
/* An array with a number of elements. */
template <typename Type, typename LenType>
struct ArrayOf
{
typedef Type item_t;
static constexpr unsigned item_size = hb_static_size (Type);
HB_DELETE_CREATE_COPY_ASSIGN (ArrayOf);
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= len)) return Null (Type);
hb_barrier ();
return arrayZ[i];
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= len)) return Crap (Type);
hb_barrier ();
return arrayZ[i];
}
unsigned int get_size () const
{ return len.static_size + len * Type::static_size; }
explicit operator bool () const { return len; }
void pop () { len--; }
hb_array_t< Type> as_array () { return hb_array (arrayZ, len); }
hb_array_t<const Type> as_array () const { return hb_array (arrayZ, len); }
/* Iterator. */
typedef hb_array_t<const Type> iter_t;
typedef hb_array_t< Type> writer_t;
iter_t iter () const { return as_array (); }
writer_t writer () { return as_array (); }
operator iter_t () const { return iter (); }
operator writer_t () { return writer (); }
/* Faster range-based for loop. */
const Type *begin () const { return arrayZ; }
const Type *end () const { return arrayZ + len; }
template <typename T>
Type &lsearch (const T &x, Type &not_found = Crap (Type))
{ return *as_array ().lsearch (x, &not_found); }
template <typename T>
const Type &lsearch (const T &x, const Type &not_found = Null (Type)) const
{ return *as_array ().lsearch (x, &not_found); }
template <typename T>
bool lfind (const T &x, unsigned int *i = nullptr,
hb_not_found_t not_found = HB_NOT_FOUND_DONT_STORE,
unsigned int to_store = (unsigned int) -1) const
{ return as_array ().lfind (x, i, not_found, to_store); }
void qsort ()
{ as_array ().qsort (); }
HB_NODISCARD bool serialize (hb_serialize_context_t *c, unsigned items_len, bool clear = true)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (this))) return_trace (false);
c->check_assign (len, items_len, HB_SERIALIZE_ERROR_ARRAY_OVERFLOW);
if (unlikely (!c->extend_size (this, get_size (), clear))) return_trace (false);
return_trace (true);
}
template <typename Iterator,
hb_requires (hb_is_source_of (Iterator, Type))>
HB_NODISCARD bool serialize (hb_serialize_context_t *c, Iterator items)
{
TRACE_SERIALIZE (this);
unsigned count = hb_len (items);
if (unlikely (!serialize (c, count, false))) return_trace (false);
/* TODO Umm. Just exhaust the iterator instead? Being extra
* cautious right now.. */
for (unsigned i = 0; i < count; i++, ++items)
arrayZ[i] = *items;
return_trace (true);
}
Type* serialize_append (hb_serialize_context_t *c)
{
TRACE_SERIALIZE (this);
len++;
if (unlikely (!len || !c->extend (this)))
{
len--;
return_trace (nullptr);
}
return_trace (&arrayZ[len - 1]);
}
ArrayOf* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
auto *out = c->start_embed (this);
if (unlikely (!c->extend_min (out))) return_trace (nullptr);
c->check_assign (out->len, len, HB_SERIALIZE_ERROR_ARRAY_OVERFLOW);
if (unlikely (!as_array ().copy (c))) return_trace (nullptr);
return_trace (out);
}
template <typename ...Ts>
HB_ALWAYS_INLINE
bool sanitize (hb_sanitize_context_t *c, Ts&&... ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
if (!sizeof... (Ts) && hb_is_trivially_copyable(Type)) return_trace (true);
hb_barrier ();
unsigned int count = len;
for (unsigned int i = 0; i < count; i++)
if (unlikely (!c->dispatch (arrayZ[i], std::forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (len.sanitize (c) &&
hb_barrier () &&
c->check_array_sized (arrayZ, len, sizeof (LenType)));
}
public:
LenType len;
Type arrayZ[HB_VAR_ARRAY];
public:
DEFINE_SIZE_ARRAY (sizeof (LenType), arrayZ);
};
template <typename Type> using Array16Of = ArrayOf<Type, HBUINT16>;
template <typename Type> using Array24Of = ArrayOf<Type, HBUINT24>;
template <typename Type> using Array32Of = ArrayOf<Type, HBUINT32>;
using PString = ArrayOf<HBUINT8, HBUINT8>;
/* Array of Offset's */
template <typename Type> using Array8OfOffset24To = ArrayOf<OffsetTo<Type, HBUINT24>, HBUINT8>;
template <typename Type> using Array16OfOffset16To = ArrayOf<OffsetTo<Type, HBUINT16>, HBUINT16>;
template <typename Type> using Array16OfOffset32To = ArrayOf<OffsetTo<Type, HBUINT32>, HBUINT16>;
template <typename Type> using Array32OfOffset32To = ArrayOf<OffsetTo<Type, HBUINT32>, HBUINT32>;
/* Array of offsets relative to the beginning of the array itself. */
template <typename Type, typename OffsetType>
struct List16OfOffsetTo : ArrayOf<OffsetTo<Type, OffsetType>, HBUINT16>
{
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= this->len)) return Null (Type);
hb_barrier ();
return this+this->arrayZ[i];
}
const Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= this->len)) return Crap (Type);
hb_barrier ();
return this+this->arrayZ[i];
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
struct List16OfOffsetTo *out = c->serializer->embed (*this);
if (unlikely (!out)) return_trace (false);
unsigned int count = this->len;
for (unsigned int i = 0; i < count; i++)
out->arrayZ[i].serialize_subset (c, this->arrayZ[i], this, out);
return_trace (true);
}
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, Ts&&... ds) const
{
TRACE_SANITIZE (this);
return_trace ((Array16Of<OffsetTo<Type, OffsetType>>::sanitize (c, this, std::forward<Ts> (ds)...)));
}
};
template <typename Type>
using List16OfOffset16To = List16OfOffsetTo<Type, HBUINT16>;
/* An array starting at second element. */
template <typename Type, typename LenType>
struct HeadlessArrayOf
{
static constexpr unsigned item_size = Type::static_size;
HB_DELETE_CREATE_COPY_ASSIGN (HeadlessArrayOf);
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= lenP1 || !i)) return Null (Type);
hb_barrier ();
return arrayZ[i-1];
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= lenP1 || !i)) return Crap (Type);
hb_barrier ();
return arrayZ[i-1];
}
unsigned int get_size () const
{ return lenP1.static_size + get_length () * Type::static_size; }
unsigned get_length () const { return lenP1 ? lenP1 - 1 : 0; }
hb_array_t< Type> as_array () { return hb_array (arrayZ, get_length ()); }
hb_array_t<const Type> as_array () const { return hb_array (arrayZ, get_length ()); }
/* Iterator. */
typedef hb_array_t<const Type> iter_t;
typedef hb_array_t< Type> writer_t;
iter_t iter () const { return as_array (); }
writer_t writer () { return as_array (); }
operator iter_t () const { return iter (); }
operator writer_t () { return writer (); }
/* Faster range-based for loop. */
const Type *begin () const { return arrayZ; }
const Type *end () const { return arrayZ + get_length (); }
HB_NODISCARD bool serialize (hb_serialize_context_t *c, unsigned int items_len, bool clear = true)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (this))) return_trace (false);
c->check_assign (lenP1, items_len + 1, HB_SERIALIZE_ERROR_ARRAY_OVERFLOW);
if (unlikely (!c->extend_size (this, get_size (), clear))) return_trace (false);
return_trace (true);
}
template <typename Iterator,
hb_requires (hb_is_source_of (Iterator, Type))>
HB_NODISCARD bool serialize (hb_serialize_context_t *c, Iterator items)
{
TRACE_SERIALIZE (this);
unsigned count = hb_len (items);
if (unlikely (!serialize (c, count, false))) return_trace (false);
/* TODO Umm. Just exhaust the iterator instead? Being extra
* cautious right now.. */
for (unsigned i = 0; i < count; i++, ++items)
arrayZ[i] = *items;
return_trace (true);
}
template <typename ...Ts>
HB_ALWAYS_INLINE
bool sanitize (hb_sanitize_context_t *c, Ts&&... ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
if (!sizeof... (Ts) && hb_is_trivially_copyable(Type)) return_trace (true);
hb_barrier ();
unsigned int count = get_length ();
for (unsigned int i = 0; i < count; i++)
if (unlikely (!c->dispatch (arrayZ[i], std::forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
private:
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (lenP1.sanitize (c) &&
hb_barrier () &&
(!lenP1 || c->check_array_sized (arrayZ, lenP1 - 1, sizeof (LenType))));
}
public:
LenType lenP1;
Type arrayZ[HB_VAR_ARRAY];
public:
DEFINE_SIZE_ARRAY (sizeof (LenType), arrayZ);
};
template <typename Type> using HeadlessArray16Of = HeadlessArrayOf<Type, HBUINT16>;
/* An array storing length-1. */
template <typename Type, typename LenType=HBUINT16>
struct ArrayOfM1
{
HB_DELETE_CREATE_COPY_ASSIGN (ArrayOfM1);
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i > lenM1)) return Null (Type);
hb_barrier ();
return arrayZ[i];
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i > lenM1)) return Crap (Type);
hb_barrier ();
return arrayZ[i];
}
unsigned int get_size () const
{ return lenM1.static_size + (lenM1 + 1) * Type::static_size; }
template <typename ...Ts>
HB_ALWAYS_INLINE
bool sanitize (hb_sanitize_context_t *c, Ts&&... ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
if (!sizeof... (Ts) && hb_is_trivially_copyable(Type)) return_trace (true);
hb_barrier ();
unsigned int count = lenM1 + 1;
for (unsigned int i = 0; i < count; i++)
if (unlikely (!c->dispatch (arrayZ[i], std::forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
private:
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (lenM1.sanitize (c) &&
hb_barrier () &&
(c->check_array_sized (arrayZ, lenM1 + 1, sizeof (LenType))));
}
public:
LenType lenM1;
Type arrayZ[HB_VAR_ARRAY];
public:
DEFINE_SIZE_ARRAY (sizeof (LenType), arrayZ);
};
/* An array with sorted elements. Supports binary searching. */
template <typename Type, typename LenType>
struct SortedArrayOf : ArrayOf<Type, LenType>
{
hb_sorted_array_t< Type> as_array () { return hb_sorted_array (this->arrayZ, this->len); }
hb_sorted_array_t<const Type> as_array () const { return hb_sorted_array (this->arrayZ, this->len); }
/* Iterator. */
typedef hb_sorted_array_t<const Type> iter_t;
typedef hb_sorted_array_t< Type> writer_t;
iter_t iter () const { return as_array (); }
writer_t writer () { return as_array (); }
operator iter_t () const { return iter (); }
operator writer_t () { return writer (); }
/* Faster range-based for loop. */
const Type *begin () const { return this->arrayZ; }
const Type *end () const { return this->arrayZ + this->len; }
bool serialize (hb_serialize_context_t *c, unsigned int items_len)
{
TRACE_SERIALIZE (this);
bool ret = ArrayOf<Type, LenType>::serialize (c, items_len);
return_trace (ret);
}
template <typename Iterator,
hb_requires (hb_is_sorted_source_of (Iterator, Type))>
bool serialize (hb_serialize_context_t *c, Iterator items)
{
TRACE_SERIALIZE (this);
bool ret = ArrayOf<Type, LenType>::serialize (c, items);
return_trace (ret);
}
SortedArrayOf* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
SortedArrayOf* out = reinterpret_cast<SortedArrayOf *> (ArrayOf<Type, LenType>::copy (c));
return_trace (out);
}
template <typename T>
Type &bsearch (const T &x, Type &not_found = Crap (Type))
{ return *as_array ().bsearch (x, &not_found); }
template <typename T>
const Type &bsearch (const T &x, const Type &not_found = Null (Type)) const
{ return *as_array ().bsearch (x, &not_found); }
template <typename T>
bool bfind (const T &x, unsigned int *i = nullptr,
hb_not_found_t not_found = HB_NOT_FOUND_DONT_STORE,
unsigned int to_store = (unsigned int) -1) const
{ return as_array ().bfind (x, i, not_found, to_store); }
};
template <typename Type> using SortedArray16Of = SortedArrayOf<Type, HBUINT16>;
template <typename Type> using SortedArray24Of = SortedArrayOf<Type, HBUINT24>;
template <typename Type> using SortedArray32Of = SortedArrayOf<Type, HBUINT32>;
/*
* Binary-search arrays
*/
template <typename LenType=HBUINT16>
struct BinSearchHeader
{
operator uint32_t () const { return len; }
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
BinSearchHeader& operator = (unsigned int v)
{
len = v;
assert (len == v);
entrySelector = hb_max (1u, hb_bit_storage (v)) - 1;
searchRange = 16 * (1u << entrySelector);
rangeShift = v * 16 > searchRange
? 16 * v - searchRange
: 0;
return *this;
}
protected:
LenType len;
LenType searchRange;
LenType entrySelector;
LenType rangeShift;
public:
DEFINE_SIZE_STATIC (8);
};
template <typename Type, typename LenType=HBUINT16>
using BinSearchArrayOf = SortedArrayOf<Type, BinSearchHeader<LenType>>;
struct VarSizedBinSearchHeader
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
HBUINT16 unitSize; /* Size of a lookup unit for this search in bytes. */
HBUINT16 nUnits; /* Number of units of the preceding size to be searched. */
HBUINT16 searchRange; /* The value of unitSize times the largest power of 2
* that is less than or equal to the value of nUnits. */
HBUINT16 entrySelector; /* The log base 2 of the largest power of 2 less than
* or equal to the value of nUnits. */
HBUINT16 rangeShift; /* The value of unitSize times the difference of the
* value of nUnits minus the largest power of 2 less
* than or equal to the value of nUnits. */
public:
DEFINE_SIZE_STATIC (10);
};
template <typename Type>
struct VarSizedBinSearchArrayOf
{
static constexpr unsigned item_size = Type::static_size;
HB_DELETE_CREATE_COPY_ASSIGN (VarSizedBinSearchArrayOf);
bool last_is_terminator () const
{
if (unlikely (!header.nUnits)) return false;
/* Gah.
*
* "The number of termination values that need to be included is table-specific.
* The value that indicates binary search termination is 0xFFFF." */
const HBUINT16 *words = &StructAtOffset<HBUINT16> (&bytesZ, (header.nUnits - 1) * header.unitSize);
unsigned int count = Type::TerminationWordCount;
for (unsigned int i = 0; i < count; i++)
if (words[i] != 0xFFFFu)
return false;
return true;
}
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= get_length ())) return Null (Type);
hb_barrier ();
return StructAtOffset<Type> (&bytesZ, i * header.unitSize);
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= get_length ())) return Crap (Type);
hb_barrier ();
return StructAtOffset<Type> (&bytesZ, i * header.unitSize);
}
unsigned int get_length () const
{ return header.nUnits - last_is_terminator (); }
unsigned int get_size () const
{ return header.static_size + header.nUnits * header.unitSize; }
template <typename ...Ts>
HB_ALWAYS_INLINE
bool sanitize (hb_sanitize_context_t *c, Ts&&... ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
if (!sizeof... (Ts) && hb_is_trivially_copyable(Type)) return_trace (true);
hb_barrier ();
unsigned int count = get_length ();
for (unsigned int i = 0; i < count; i++)
if (unlikely (!(*this)[i].sanitize (c, std::forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
template <typename T>
const Type *bsearch (const T &key) const
{
unsigned pos;
return hb_bsearch_impl (&pos,
key,
(const void *) bytesZ,
get_length (),
header.unitSize,
_hb_cmp_method<T, Type>)
? (const Type *) (((const char *) &bytesZ) + (pos * header.unitSize))
: nullptr;
}
private:
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (header.sanitize (c) &&
hb_barrier () &&
Type::static_size <= header.unitSize &&
c->check_range (bytesZ.arrayZ,
header.nUnits,
header.unitSize));
}
protected:
VarSizedBinSearchHeader header;
UnsizedArrayOf<HBUINT8> bytesZ;
public:
DEFINE_SIZE_ARRAY (10, bytesZ);
};
/* CFF INDEX */
template <typename COUNT>
struct CFFIndex
{
unsigned int offset_array_size () const
{ return offSize * (count + 1); }
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
bool serialize (hb_serialize_context_t *c,
const Iterable &iterable,
const unsigned *p_data_size = nullptr,
unsigned min_off_size = 0)
{
TRACE_SERIALIZE (this);
unsigned data_size;
if (p_data_size)
data_size = *p_data_size;
else
total_size (iterable, &data_size);
auto it = hb_iter (iterable);
if (unlikely (!serialize_header (c, +it, data_size, min_off_size))) return_trace (false);
unsigned char *ret = c->allocate_size<unsigned char> (data_size, false);
if (unlikely (!ret)) return_trace (false);
for (const auto &_ : +it)
{
unsigned len = _.length;
if (!len)
continue;
if (len <= 1)
{
*ret++ = *_.arrayZ;
continue;
}
hb_memcpy (ret, _.arrayZ, len);
ret += len;
}
return_trace (true);
}
template <typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
bool serialize_header (hb_serialize_context_t *c,
Iterator it,
unsigned data_size,
unsigned min_off_size = 0)
{
TRACE_SERIALIZE (this);
unsigned off_size = (hb_bit_storage (data_size + 1) + 7) / 8;
off_size = hb_max(min_off_size, off_size);
/* serialize CFFIndex header */
if (unlikely (!c->extend_min (this))) return_trace (false);
this->count = hb_len (it);
if (!this->count) return_trace (true);
if (unlikely (!c->extend (this->offSize))) return_trace (false);
this->offSize = off_size;
if (unlikely (!c->allocate_size<HBUINT8> (off_size * (this->count + 1), false)))
return_trace (false);
/* serialize indices */
unsigned int offset = 1;
if (HB_OPTIMIZE_SIZE_VAL)
{
unsigned int i = 0;
for (const auto &_ : +it)
{
set_offset_at (i++, offset);
offset += hb_len_of (_);
}
set_offset_at (i, offset);
}
else
switch (off_size)
{
case 1:
{
HBUINT8 *p = (HBUINT8 *) offsets;
for (const auto &_ : +it)
{
*p++ = offset;
offset += hb_len_of (_);
}
*p = offset;
}
break;
case 2:
{
HBUINT16 *p = (HBUINT16 *) offsets;
for (const auto &_ : +it)
{
*p++ = offset;
offset += hb_len_of (_);
}
*p = offset;
}
break;
case 3:
{
HBUINT24 *p = (HBUINT24 *) offsets;
for (const auto &_ : +it)
{
*p++ = offset;
offset += hb_len_of (_);
}
*p = offset;
}
break;
case 4:
{
HBUINT32 *p = (HBUINT32 *) offsets;
for (const auto &_ : +it)
{
*p++ = offset;
offset += hb_len_of (_);
}
*p = offset;
}
break;
default:
break;
}
assert (offset == data_size + 1);
return_trace (true);
}
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
static unsigned total_size (const Iterable &iterable, unsigned *data_size = nullptr, unsigned min_off_size = 0)
{
auto it = + hb_iter (iterable);
if (!it)
{
if (data_size) *data_size = 0;
return min_size;
}
unsigned total = 0;
for (const auto &_ : +it)
total += hb_len_of (_);
if (data_size) *data_size = total;
unsigned off_size = (hb_bit_storage (total + 1) + 7) / 8;
off_size = hb_max(min_off_size, off_size);
return min_size + HBUINT8::static_size + (hb_len (it) + 1) * off_size + total;
}
void set_offset_at (unsigned int index, unsigned int offset)
{
assert (index <= count);
unsigned int size = offSize;
const HBUINT8 *p = offsets;
switch (size)
{
case 1: ((HBUINT8 *) p)[index] = offset; break;
case 2: ((HBUINT16 *) p)[index] = offset; break;
case 3: ((HBUINT24 *) p)[index] = offset; break;
case 4: ((HBUINT32 *) p)[index] = offset; break;
default: return;
}
}
private:
unsigned int offset_at (unsigned int index) const
{
assert (index <= count);
unsigned int size = offSize;
const HBUINT8 *p = offsets;
switch (size)
{
case 1: return ((HBUINT8 *) p)[index];
case 2: return ((HBUINT16 *) p)[index];
case 3: return ((HBUINT24 *) p)[index];
case 4: return ((HBUINT32 *) p)[index];
default: return 0;
}
}
const unsigned char *data_base () const
{ return (const unsigned char *) this + min_size + offSize.static_size - 1 + offset_array_size (); }
public:
hb_ubytes_t operator [] (unsigned int index) const
{
if (unlikely (index >= count)) return hb_ubytes_t ();
hb_barrier ();
unsigned offset0 = offset_at (index);
unsigned offset1 = offset_at (index + 1);
if (unlikely (offset1 < offset0 || offset1 > offset_at (count)))
return hb_ubytes_t ();
return hb_ubytes_t (data_base () + offset0, offset1 - offset0);
}
unsigned int get_size () const
{
if (count)
return min_size + offSize.static_size + offset_array_size () + (offset_at (count) - 1);
return min_size; /* empty CFFIndex contains count only */
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (likely (c->check_struct (this) &&
hb_barrier () &&
(count == 0 || /* empty INDEX */
(count < count + 1u &&
c->check_struct (&offSize) && offSize >= 1 && offSize <= 4 &&
c->check_array (offsets, offSize, count + 1u) &&
c->check_range (data_base (), offset_at (count))))));
}
public:
COUNT count; /* Number of object data. Note there are (count+1) offsets */
private:
HBUINT8 offSize; /* The byte size of each offset in the offsets array. */
HBUINT8 offsets[HB_VAR_ARRAY];
/* The array of (count + 1) offsets into objects array (1-base). */
/* HBUINT8 data[HB_VAR_ARRAY]; Object data */
public:
DEFINE_SIZE_MIN (COUNT::static_size);
};
typedef CFFIndex<HBUINT16> CFF1Index;
typedef CFFIndex<HBUINT32> CFF2Index;
/* TupleValues */
struct TupleValues
{
enum packed_value_flag_t
{
VALUES_ARE_ZEROS = 0x80,
VALUES_ARE_BYTES = 0x00,
VALUES_ARE_WORDS = 0x40,
VALUES_ARE_LONGS = 0xC0,
VALUES_SIZE_MASK = 0xC0,
VALUE_RUN_COUNT_MASK = 0x3F
};
static unsigned compile (hb_array_t<const int> values, /* IN */
hb_array_t<unsigned char> encoded_bytes /* OUT */)
{
unsigned num_values = values.length;
unsigned encoded_len = 0;
unsigned i = 0;
while (i < num_values)
{
int val = values.arrayZ[i];
if (val == 0)
encoded_len += encode_value_run_as_zeroes (i, encoded_bytes.sub_array (encoded_len), values);
else if (val >= -128 && val <= 127)
encoded_len += encode_value_run_as_bytes (i, encoded_bytes.sub_array (encoded_len), values);
else if (val >= -32768 && val <= 32767)
encoded_len += encode_value_run_as_words (i, encoded_bytes.sub_array (encoded_len), values);
else
encoded_len += encode_value_run_as_longs (i, encoded_bytes.sub_array (encoded_len), values);
}
return encoded_len;
}
static unsigned encode_value_run_as_zeroes (unsigned& i,
hb_array_t<unsigned char> encoded_bytes,
hb_array_t<const int> values)
{
unsigned num_values = values.length;
unsigned run_length = 0;
auto it = encoded_bytes.iter ();
unsigned encoded_len = 0;
while (i < num_values && values.arrayZ[i] == 0)
{
i++;
run_length++;
}
while (run_length >= 64)
{
*it++ = char (VALUES_ARE_ZEROS | 63);
run_length -= 64;
encoded_len++;
}
if (run_length)
{
*it++ = char (VALUES_ARE_ZEROS | (run_length - 1));
encoded_len++;
}
return encoded_len;
}
static unsigned encode_value_run_as_bytes (unsigned &i,
hb_array_t<unsigned char> encoded_bytes,
hb_array_t<const int> values)
{
unsigned start = i;
unsigned num_values = values.length;
while (i < num_values)
{
int val = values.arrayZ[i];
if (val > 127 || val < -128)
break;
/* from fonttools: if there're 2 or more zeros in a sequence,
* it is better to start a new run to save bytes. */
if (val == 0 && i + 1 < num_values && values.arrayZ[i+1] == 0)
break;
i++;
}
unsigned run_length = i - start;
unsigned encoded_len = 0;
auto it = encoded_bytes.iter ();
while (run_length >= 64)
{
*it++ = (VALUES_ARE_BYTES | 63);
encoded_len++;
for (unsigned j = 0; j < 64; j++)
{
*it++ = static_cast<char> (values.arrayZ[start + j]);
encoded_len++;
}
start += 64;
run_length -= 64;
}
if (run_length)
{
*it++ = (VALUES_ARE_BYTES | (run_length - 1));
encoded_len++;
while (start < i)
{
*it++ = static_cast<char> (values.arrayZ[start++]);
encoded_len++;
}
}
return encoded_len;
}
static unsigned encode_value_run_as_words (unsigned &i,
hb_array_t<unsigned char> encoded_bytes,
hb_array_t<const int> values)
{
unsigned start = i;
unsigned num_values = values.length;
while (i < num_values)
{
int val = values.arrayZ[i];
/* start a new run for a single zero value*/
if (val == 0) break;
/* from fonttools: continue word-encoded run if there's only one
* single value in the range [-128, 127] because it is more compact.
* Only start a new run when there're 2 continuous such values. */
if (val >= -128 && val <= 127 &&
i + 1 < num_values &&
values.arrayZ[i+1] >= -128 && values.arrayZ[i+1] <= 127)
break;
i++;
}
unsigned run_length = i - start;
auto it = encoded_bytes.iter ();
unsigned encoded_len = 0;
while (run_length >= 64)
{
*it++ = (VALUES_ARE_WORDS | 63);
encoded_len++;
for (unsigned j = 0; j < 64; j++)
{
int16_t value_val = values.arrayZ[start + j];
*it++ = static_cast<char> (value_val >> 8);
*it++ = static_cast<char> (value_val & 0xFF);
encoded_len += 2;
}
start += 64;
run_length -= 64;
}
if (run_length)
{
*it++ = (VALUES_ARE_WORDS | (run_length - 1));
encoded_len++;
while (start < i)
{
int16_t value_val = values.arrayZ[start++];
*it++ = static_cast<char> (value_val >> 8);
*it++ = static_cast<char> (value_val & 0xFF);
encoded_len += 2;
}
}
return encoded_len;
}
static unsigned encode_value_run_as_longs (unsigned &i,
hb_array_t<unsigned char> encoded_bytes,
hb_array_t<const int> values)
{
unsigned start = i;
unsigned num_values = values.length;
while (i < num_values)
{
int val = values.arrayZ[i];
if (val >= -32768 && val <= 32767)
break;
i++;
}
unsigned run_length = i - start;
auto it = encoded_bytes.iter ();
unsigned encoded_len = 0;
while (run_length >= 64)
{
*it++ = (VALUES_ARE_LONGS | 63);
encoded_len++;
for (unsigned j = 0; j < 64; j++)
{
int32_t value_val = values.arrayZ[start + j];
*it++ = static_cast<char> (value_val >> 24);
*it++ = static_cast<char> (value_val >> 16);
*it++ = static_cast<char> (value_val >> 8);
*it++ = static_cast<char> (value_val & 0xFF);
encoded_len += 4;
}
start += 64;
run_length -= 64;
}
if (run_length)
{
*it++ = (VALUES_ARE_LONGS | (run_length - 1));
encoded_len++;
while (start < i)
{
int32_t value_val = values.arrayZ[start++];
*it++ = static_cast<char> (value_val >> 24);
*it++ = static_cast<char> (value_val >> 16);
*it++ = static_cast<char> (value_val >> 8);
*it++ = static_cast<char> (value_val & 0xFF);
encoded_len += 4;
}
}
return encoded_len;
}
template <typename T>
static bool decompile (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<T> &values /* IN/OUT */,
const HBUINT8 *end,
bool consume_all = false)
{
unsigned i = 0;
unsigned count = consume_all ? UINT_MAX : values.length;
if (consume_all)
values.alloc ((end - p) / 2);
while (i < count)
{
if (unlikely (p + 1 > end)) return consume_all;
unsigned control = *p++;
unsigned run_count = (control & VALUE_RUN_COUNT_MASK) + 1;
if (consume_all)
{
if (unlikely (!values.resize (values.length + run_count, false)))
return false;
}
unsigned stop = i + run_count;
if (unlikely (stop > count)) return false;
if ((control & VALUES_SIZE_MASK) == VALUES_ARE_ZEROS)
{
for (; i < stop; i++)
values.arrayZ[i] = 0;
}
else if ((control & VALUES_SIZE_MASK) == VALUES_ARE_WORDS)
{
if (unlikely (p + run_count * HBINT16::static_size > end)) return false;
for (; i < stop; i++)
{
values.arrayZ[i] = * (const HBINT16 *) p;
p += HBINT16::static_size;
}
}
else if ((control & VALUES_SIZE_MASK) == VALUES_ARE_LONGS)
{
if (unlikely (p + run_count * HBINT32::static_size > end)) return false;
for (; i < stop; i++)
{
values.arrayZ[i] = * (const HBINT32 *) p;
p += HBINT32::static_size;
}
}
else if ((control & VALUES_SIZE_MASK) == VALUES_ARE_BYTES)
{
if (unlikely (p + run_count > end)) return false;
for (; i < stop; i++)
{
values.arrayZ[i] = * (const HBINT8 *) p++;
}
}
}
return true;
}
struct iter_t : hb_iter_with_fallback_t<iter_t, int>
{
iter_t (const unsigned char *p_, unsigned len_)
: p (p_), end (p_ + len_)
{ if (ensure_run ()) read_value (); }
private:
const unsigned char *p;
const unsigned char * const end;
int current_value = 0;
signed run_count = 0;
unsigned width = 0;
bool ensure_run ()
{
if (likely (run_count > 0)) return true;
if (unlikely (p >= end))
{
run_count = 0;
current_value = 0;
return false;
}
unsigned control = *p++;
run_count = (control & VALUE_RUN_COUNT_MASK) + 1;
width = control & VALUES_SIZE_MASK;
switch (width)
{
case VALUES_ARE_ZEROS: width = 0; break;
case VALUES_ARE_BYTES: width = HBINT8::static_size; break;
case VALUES_ARE_WORDS: width = HBINT16::static_size; break;
case VALUES_ARE_LONGS: width = HBINT32::static_size; break;
default: assert (false);
}
if (unlikely (p + run_count * width > end))
{
run_count = 0;
current_value = 0;
return false;
}
return true;
}
void read_value ()
{
switch (width)
{
case 0: current_value = 0; break;
case 1: current_value = * (const HBINT8 *) p; break;
case 2: current_value = * (const HBINT16 *) p; break;
case 4: current_value = * (const HBINT32 *) p; break;
}
p += width;
}
public:
typedef int __item_t__;
__item_t__ __item__ () const
{ return current_value; }
bool __more__ () const { return run_count || p < end; }
void __next__ ()
{
run_count--;
if (unlikely (!ensure_run ()))
return;
read_value ();
}
void __forward__ (unsigned n)
{
if (unlikely (!ensure_run ()))
return;
while (n)
{
unsigned i = hb_min (n, (unsigned) run_count);
run_count -= i;
n -= i;
p += (i - 1) * width;
if (unlikely (!ensure_run ()))
return;
read_value ();
}
}
bool operator != (const iter_t& o) const
{ return p != o.p || run_count != o.run_count; }
iter_t __end__ () const
{
iter_t it (end, 0);
return it;
}
};
};
struct TupleList : CFF2Index
{
TupleValues::iter_t operator [] (unsigned i) const
{
auto bytes = CFF2Index::operator [] (i);
return TupleValues::iter_t (bytes.arrayZ, bytes.length);
}
};
} /* namespace OT */
#endif /* HB_OPEN_TYPE_HH */