Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */
/*
* Copyright © 2000 SuSE, Inc.
* Copyright © 2007 Red Hat, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of SuSE not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. SuSE makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without express or implied warranty.
*
* SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE
* BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Author: Keith Packard, SuSE, Inc.
*/
#ifdef HAVE_CONFIG_H
#include <pixman-config.h>
#endif
#include <string.h>
#include <stdlib.h>
#include "pixman-private.h"
#include "pixman-combine32.h"
#include "pixman-inlines.h"
static force_inline uint32_t
fetch_24 (uint8_t *a)
{
if (((uintptr_t)a) & 1)
{
#ifdef WORDS_BIGENDIAN
return (*a << 16) | (*(uint16_t *)(a + 1));
#else
return *a | (*(uint16_t *)(a + 1) << 8);
#endif
}
else
{
#ifdef WORDS_BIGENDIAN
return (*(uint16_t *)a << 8) | *(a + 2);
#else
return *(uint16_t *)a | (*(a + 2) << 16);
#endif
}
}
static force_inline void
store_24 (uint8_t *a,
uint32_t v)
{
if (((uintptr_t)a) & 1)
{
#ifdef WORDS_BIGENDIAN
*a = (uint8_t) (v >> 16);
*(uint16_t *)(a + 1) = (uint16_t) (v);
#else
*a = (uint8_t) (v);
*(uint16_t *)(a + 1) = (uint16_t) (v >> 8);
#endif
}
else
{
#ifdef WORDS_BIGENDIAN
*(uint16_t *)a = (uint16_t)(v >> 8);
*(a + 2) = (uint8_t)v;
#else
*(uint16_t *)a = (uint16_t)v;
*(a + 2) = (uint8_t)(v >> 16);
#endif
}
}
static force_inline uint32_t
over (uint32_t src,
uint32_t dest)
{
uint32_t a = ~src >> 24;
UN8x4_MUL_UN8_ADD_UN8x4 (dest, a, src);
return dest;
}
static force_inline uint32_t
in (uint32_t x,
uint8_t y)
{
uint16_t a = y;
UN8x4_MUL_UN8 (x, a);
return x;
}
/*
* Naming convention:
*
* op_src_mask_dest
*/
static void
fast_composite_over_x888_8_8888 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t *src, *src_line;
uint32_t *dst, *dst_line;
uint8_t *mask, *mask_line;
int src_stride, mask_stride, dst_stride;
uint8_t m;
uint32_t s, d;
int32_t w;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
while (height--)
{
src = src_line;
src_line += src_stride;
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
m = *mask++;
if (m)
{
s = *src | 0xff000000;
if (m == 0xff)
{
*dst = s;
}
else
{
d = in (s, m);
*dst = over (d, *dst);
}
}
src++;
dst++;
}
}
}
static void
fast_composite_in_n_8_8 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, srca;
uint8_t *dst_line, *dst;
uint8_t *mask_line, *mask, m;
int dst_stride, mask_stride;
int32_t w;
uint16_t t;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
srca = src >> 24;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint8_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
if (srca == 0xff)
{
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
m = *mask++;
if (m == 0)
*dst = 0;
else if (m != 0xff)
*dst = MUL_UN8 (m, *dst, t);
dst++;
}
}
}
else
{
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
m = *mask++;
m = MUL_UN8 (m, srca, t);
if (m == 0)
*dst = 0;
else if (m != 0xff)
*dst = MUL_UN8 (m, *dst, t);
dst++;
}
}
}
}
static void
fast_composite_in_8_8 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint8_t *dst_line, *dst;
uint8_t *src_line, *src;
int dst_stride, src_stride;
int32_t w;
uint8_t s;
uint16_t t;
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint8_t, src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint8_t, dst_stride, dst_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
{
s = *src++;
if (s == 0)
*dst = 0;
else if (s != 0xff)
*dst = MUL_UN8 (s, *dst, t);
dst++;
}
}
}
static void
fast_composite_over_n_8_8888 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, srca;
uint32_t *dst_line, *dst, d;
uint8_t *mask_line, *mask, m;
int dst_stride, mask_stride;
int32_t w;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
srca = src >> 24;
if (src == 0)
return;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
m = *mask++;
if (m == 0xff)
{
if (srca == 0xff)
*dst = src;
else
*dst = over (src, *dst);
}
else if (m)
{
d = in (src, m);
*dst = over (d, *dst);
}
dst++;
}
}
}
static void
fast_composite_add_n_8888_8888_ca (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, s;
uint32_t *dst_line, *dst, d;
uint32_t *mask_line, *mask, ma;
int dst_stride, mask_stride;
int32_t w;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
if (src == 0)
return;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint32_t, mask_stride, mask_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
ma = *mask++;
if (ma)
{
d = *dst;
s = src;
UN8x4_MUL_UN8x4_ADD_UN8x4 (s, ma, d);
*dst = s;
}
dst++;
}
}
}
static void
fast_composite_over_n_8888_8888_ca (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, srca, s;
uint32_t *dst_line, *dst, d;
uint32_t *mask_line, *mask, ma;
int dst_stride, mask_stride;
int32_t w;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
srca = src >> 24;
if (src == 0)
return;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint32_t, mask_stride, mask_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
ma = *mask++;
if (ma == 0xffffffff)
{
if (srca == 0xff)
*dst = src;
else
*dst = over (src, *dst);
}
else if (ma)
{
d = *dst;
s = src;
UN8x4_MUL_UN8x4 (s, ma);
UN8x4_MUL_UN8 (ma, srca);
ma = ~ma;
UN8x4_MUL_UN8x4_ADD_UN8x4 (d, ma, s);
*dst = d;
}
dst++;
}
}
}
static void
fast_composite_over_n_8_0888 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, srca;
uint8_t *dst_line, *dst;
uint32_t d;
uint8_t *mask_line, *mask, m;
int dst_stride, mask_stride;
int32_t w;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
srca = src >> 24;
if (src == 0)
return;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint8_t, dst_stride, dst_line, 3);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
m = *mask++;
if (m == 0xff)
{
if (srca == 0xff)
{
d = src;
}
else
{
d = fetch_24 (dst);
d = over (src, d);
}
store_24 (dst, d);
}
else if (m)
{
d = over (in (src, m), fetch_24 (dst));
store_24 (dst, d);
}
dst += 3;
}
}
}
static void
fast_composite_over_n_8_0565 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, srca;
uint16_t *dst_line, *dst;
uint32_t d;
uint8_t *mask_line, *mask, m;
int dst_stride, mask_stride;
int32_t w;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
srca = src >> 24;
if (src == 0)
return;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
m = *mask++;
if (m == 0xff)
{
if (srca == 0xff)
{
d = src;
}
else
{
d = *dst;
d = over (src, convert_0565_to_0888 (d));
}
*dst = convert_8888_to_0565 (d);
}
else if (m)
{
d = *dst;
d = over (in (src, m), convert_0565_to_0888 (d));
*dst = convert_8888_to_0565 (d);
}
dst++;
}
}
}
static void
fast_composite_over_n_8888_0565_ca (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, srca, s;
uint16_t src16;
uint16_t *dst_line, *dst;
uint32_t d;
uint32_t *mask_line, *mask, ma;
int dst_stride, mask_stride;
int32_t w;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
srca = src >> 24;
if (src == 0)
return;
src16 = convert_8888_to_0565 (src);
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint32_t, mask_stride, mask_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
ma = *mask++;
if (ma == 0xffffffff)
{
if (srca == 0xff)
{
*dst = src16;
}
else
{
d = *dst;
d = over (src, convert_0565_to_0888 (d));
*dst = convert_8888_to_0565 (d);
}
}
else if (ma)
{
d = *dst;
d = convert_0565_to_0888 (d);
s = src;
UN8x4_MUL_UN8x4 (s, ma);
UN8x4_MUL_UN8 (ma, srca);
ma = ~ma;
UN8x4_MUL_UN8x4_ADD_UN8x4 (d, ma, s);
*dst = convert_8888_to_0565 (d);
}
dst++;
}
}
}
static void
fast_composite_over_8888_8888 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t *dst_line, *dst;
uint32_t *src_line, *src, s;
int dst_stride, src_stride;
uint8_t a;
int32_t w;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
{
s = *src++;
a = s >> 24;
if (a == 0xff)
*dst = s;
else if (s)
*dst = over (s, *dst);
dst++;
}
}
}
static void
fast_composite_src_x888_8888 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t *dst_line, *dst;
uint32_t *src_line, *src;
int dst_stride, src_stride;
int32_t w;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
*dst++ = (*src++) | 0xff000000;
}
}
#if 0
static void
fast_composite_over_8888_0888 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint8_t *dst_line, *dst;
uint32_t d;
uint32_t *src_line, *src, s;
uint8_t a;
int dst_stride, src_stride;
int32_t w;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint8_t, dst_stride, dst_line, 3);
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
{
s = *src++;
a = s >> 24;
if (a)
{
if (a == 0xff)
d = s;
else
d = over (s, fetch_24 (dst));
store_24 (dst, d);
}
dst += 3;
}
}
}
#endif
static void
fast_composite_over_8888_0565 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint16_t *dst_line, *dst;
uint32_t d;
uint32_t *src_line, *src, s;
uint8_t a;
int dst_stride, src_stride;
int32_t w;
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
{
s = *src++;
a = s >> 24;
if (s)
{
if (a == 0xff)
{
d = s;
}
else
{
d = *dst;
d = over (s, convert_0565_to_0888 (d));
}
*dst = convert_8888_to_0565 (d);
}
dst++;
}
}
}
static void
fast_composite_add_8_8 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint8_t *dst_line, *dst;
uint8_t *src_line, *src;
int dst_stride, src_stride;
int32_t w;
uint8_t s, d;
uint16_t t;
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint8_t, src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint8_t, dst_stride, dst_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
{
s = *src++;
if (s)
{
if (s != 0xff)
{
d = *dst;
t = d + s;
s = t | (0 - (t >> 8));
}
*dst = s;
}
dst++;
}
}
}
static void
fast_composite_add_0565_0565 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint16_t *dst_line, *dst;
uint32_t d;
uint16_t *src_line, *src;
uint32_t s;
int dst_stride, src_stride;
int32_t w;
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint16_t, src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
{
s = *src++;
if (s)
{
d = *dst;
s = convert_0565_to_8888 (s);
if (d)
{
d = convert_0565_to_8888 (d);
UN8x4_ADD_UN8x4 (s, d);
}
*dst = convert_8888_to_0565 (s);
}
dst++;
}
}
}
static void
fast_composite_add_8888_8888 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t *dst_line, *dst;
uint32_t *src_line, *src;
int dst_stride, src_stride;
int32_t w;
uint32_t s, d;
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
{
s = *src++;
if (s)
{
if (s != 0xffffffff)
{
d = *dst;
if (d)
UN8x4_ADD_UN8x4 (s, d);
}
*dst = s;
}
dst++;
}
}
}
static void
fast_composite_add_n_8_8 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint8_t *dst_line, *dst;
uint8_t *mask_line, *mask;
int dst_stride, mask_stride;
int32_t w;
uint32_t src;
uint8_t sa;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint8_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
sa = (src >> 24);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w--)
{
uint16_t tmp;
uint16_t a;
uint32_t m, d;
uint32_t r;
a = *mask++;
d = *dst;
m = MUL_UN8 (sa, a, tmp);
r = ADD_UN8 (m, d, tmp);
*dst++ = r;
}
}
}
#ifdef WORDS_BIGENDIAN
#define CREATE_BITMASK(n) (0x80000000 >> (n))
#define UPDATE_BITMASK(n) ((n) >> 1)
#else
#define CREATE_BITMASK(n) (1U << (n))
#define UPDATE_BITMASK(n) ((n) << 1)
#endif
#define TEST_BIT(p, n) \
(*((p) + ((n) >> 5)) & CREATE_BITMASK ((n) & 31))
#define SET_BIT(p, n) \
do { *((p) + ((n) >> 5)) |= CREATE_BITMASK ((n) & 31); } while (0);
static void
fast_composite_add_1_1 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t *dst_line, *dst;
uint32_t *src_line, *src;
int dst_stride, src_stride;
int32_t w;
PIXMAN_IMAGE_GET_LINE (src_image, 0, src_y, uint32_t,
src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dest_image, 0, dest_y, uint32_t,
dst_stride, dst_line, 1);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w--)
{
/*
* TODO: improve performance by processing uint32_t data instead
* of individual bits
*/
if (TEST_BIT (src, src_x + w))
SET_BIT (dst, dest_x + w);
}
}
}
static void
fast_composite_over_n_1_8888 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, srca;
uint32_t *dst, *dst_line;
uint32_t *mask, *mask_line;
int mask_stride, dst_stride;
uint32_t bitcache, bitmask;
int32_t w;
if (width <= 0)
return;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
srca = src >> 24;
if (src == 0)
return;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t,
dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, 0, mask_y, uint32_t,
mask_stride, mask_line, 1);
mask_line += mask_x >> 5;
if (srca == 0xff)
{
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
bitcache = *mask++;
bitmask = CREATE_BITMASK (mask_x & 31);
while (w--)
{
if (bitmask == 0)
{
bitcache = *mask++;
bitmask = CREATE_BITMASK (0);
}
if (bitcache & bitmask)
*dst = src;
bitmask = UPDATE_BITMASK (bitmask);
dst++;
}
}
}
else
{
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
bitcache = *mask++;
bitmask = CREATE_BITMASK (mask_x & 31);
while (w--)
{
if (bitmask == 0)
{
bitcache = *mask++;
bitmask = CREATE_BITMASK (0);
}
if (bitcache & bitmask)
*dst = over (src, *dst);
bitmask = UPDATE_BITMASK (bitmask);
dst++;
}
}
}
}
static void
fast_composite_over_n_1_0565 (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src, srca;
uint16_t *dst, *dst_line;
uint32_t *mask, *mask_line;
int mask_stride, dst_stride;
uint32_t bitcache, bitmask;
int32_t w;
uint32_t d;
uint16_t src565;
if (width <= 0)
return;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
srca = src >> 24;
if (src == 0)
return;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint16_t,
dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, 0, mask_y, uint32_t,
mask_stride, mask_line, 1);
mask_line += mask_x >> 5;
if (srca == 0xff)
{
src565 = convert_8888_to_0565 (src);
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
bitcache = *mask++;
bitmask = CREATE_BITMASK (mask_x & 31);
while (w--)
{
if (bitmask == 0)
{
bitcache = *mask++;
bitmask = CREATE_BITMASK (0);
}
if (bitcache & bitmask)
*dst = src565;
bitmask = UPDATE_BITMASK (bitmask);
dst++;
}
}
}
else
{
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
bitcache = *mask++;
bitmask = CREATE_BITMASK (mask_x & 31);
while (w--)
{
if (bitmask == 0)
{
bitcache = *mask++;
bitmask = CREATE_BITMASK (0);
}
if (bitcache & bitmask)
{
d = over (src, convert_0565_to_0888 (*dst));
*dst = convert_8888_to_0565 (d);
}
bitmask = UPDATE_BITMASK (bitmask);
dst++;
}
}
}
}
/*
* Simple bitblt
*/
static void
fast_composite_solid_fill (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t src;
src = _pixman_image_get_solid (imp, src_image, dest_image->bits.format);
if (dest_image->bits.format == PIXMAN_a1)
{
src = src >> 31;
}
else if (dest_image->bits.format == PIXMAN_a8)
{
src = src >> 24;
}
else if (dest_image->bits.format == PIXMAN_r5g6b5 ||
dest_image->bits.format == PIXMAN_b5g6r5)
{
src = convert_8888_to_0565 (src);
}
pixman_fill (dest_image->bits.bits, dest_image->bits.rowstride,
PIXMAN_FORMAT_BPP (dest_image->bits.format),
dest_x, dest_y,
width, height,
src);
}
static void
fast_composite_src_memcpy (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
int bpp = PIXMAN_FORMAT_BPP (dest_image->bits.format) / 8;
uint32_t n_bytes = width * bpp;
int dst_stride, src_stride;
uint8_t *dst;
uint8_t *src;
src_stride = src_image->bits.rowstride * 4;
dst_stride = dest_image->bits.rowstride * 4;
src = (uint8_t *)src_image->bits.bits + src_y * src_stride + src_x * bpp;
dst = (uint8_t *)dest_image->bits.bits + dest_y * dst_stride + dest_x * bpp;
while (height--)
{
memcpy (dst, src, n_bytes);
dst += dst_stride;
src += src_stride;
}
}
FAST_NEAREST (8888_8888_cover, 8888, 8888, uint32_t, uint32_t, SRC, COVER)
FAST_NEAREST (8888_8888_none, 8888, 8888, uint32_t, uint32_t, SRC, NONE)
FAST_NEAREST (8888_8888_pad, 8888, 8888, uint32_t, uint32_t, SRC, PAD)
FAST_NEAREST (8888_8888_normal, 8888, 8888, uint32_t, uint32_t, SRC, NORMAL)
FAST_NEAREST (x888_8888_cover, x888, 8888, uint32_t, uint32_t, SRC, COVER)
FAST_NEAREST (x888_8888_pad, x888, 8888, uint32_t, uint32_t, SRC, PAD)
FAST_NEAREST (x888_8888_normal, x888, 8888, uint32_t, uint32_t, SRC, NORMAL)
FAST_NEAREST (8888_8888_cover, 8888, 8888, uint32_t, uint32_t, OVER, COVER)
FAST_NEAREST (8888_8888_none, 8888, 8888, uint32_t, uint32_t, OVER, NONE)
FAST_NEAREST (8888_8888_pad, 8888, 8888, uint32_t, uint32_t, OVER, PAD)
FAST_NEAREST (8888_8888_normal, 8888, 8888, uint32_t, uint32_t, OVER, NORMAL)
FAST_NEAREST (8888_565_cover, 8888, 0565, uint32_t, uint16_t, SRC, COVER)
FAST_NEAREST (8888_565_none, 8888, 0565, uint32_t, uint16_t, SRC, NONE)
FAST_NEAREST (8888_565_pad, 8888, 0565, uint32_t, uint16_t, SRC, PAD)
FAST_NEAREST (8888_565_normal, 8888, 0565, uint32_t, uint16_t, SRC, NORMAL)
FAST_NEAREST (565_565_normal, 0565, 0565, uint16_t, uint16_t, SRC, NORMAL)
FAST_NEAREST (8888_565_cover, 8888, 0565, uint32_t, uint16_t, OVER, COVER)
FAST_NEAREST (8888_565_none, 8888, 0565, uint32_t, uint16_t, OVER, NONE)
FAST_NEAREST (8888_565_pad, 8888, 0565, uint32_t, uint16_t, OVER, PAD)
FAST_NEAREST (8888_565_normal, 8888, 0565, uint32_t, uint16_t, OVER, NORMAL)
#define REPEAT_MIN_WIDTH 32
static void
fast_composite_tiled_repeat (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
pixman_composite_func_t func;
pixman_format_code_t mask_format;
uint32_t src_flags, mask_flags;
int32_t sx, sy;
int32_t width_remain;
int32_t num_pixels;
int32_t src_width;
int32_t i, j;
pixman_image_t extended_src_image;
uint32_t extended_src[REPEAT_MIN_WIDTH * 2];
pixman_bool_t need_src_extension;
uint32_t *src_line;
int32_t src_stride;
int32_t src_bpp;
pixman_composite_info_t info2 = *info;
src_flags = (info->src_flags & ~FAST_PATH_NORMAL_REPEAT) |
FAST_PATH_SAMPLES_COVER_CLIP_NEAREST;
if (mask_image)
{
mask_format = mask_image->common.extended_format_code;
mask_flags = info->mask_flags;
}
else
{
mask_format = PIXMAN_null;
mask_flags = FAST_PATH_IS_OPAQUE;
}
_pixman_implementation_lookup_composite (
imp->toplevel, info->op,
src_image->common.extended_format_code, src_flags,
mask_format, mask_flags,
dest_image->common.extended_format_code, info->dest_flags,
&imp, &func);
src_bpp = PIXMAN_FORMAT_BPP (src_image->bits.format);
if (src_image->bits.width < REPEAT_MIN_WIDTH &&
(src_bpp == 32 || src_bpp == 16 || src_bpp == 8) &&
!src_image->bits.indexed)
{
sx = src_x;
sx = MOD (sx, src_image->bits.width);
sx += width;
src_width = 0;
while (src_width < REPEAT_MIN_WIDTH && src_width <= sx)
src_width += src_image->bits.width;
src_stride = (src_width * (src_bpp >> 3) + 3) / (int) sizeof (uint32_t);
/* Initialize/validate stack-allocated temporary image */
_pixman_bits_image_init (&extended_src_image, src_image->bits.format,
src_width, 1, &extended_src[0], src_stride,
FALSE);
_pixman_image_validate (&extended_src_image);
info2.src_image = &extended_src_image;
need_src_extension = TRUE;
}
else
{
src_width = src_image->bits.width;
need_src_extension = FALSE;
}
sx = src_x;
sy = src_y;
while (--height >= 0)
{
sx = MOD (sx, src_width);
sy = MOD (sy, src_image->bits.height);
if (need_src_extension)
{
if (src_bpp == 32)
{
PIXMAN_IMAGE_GET_LINE (src_image, 0, sy, uint32_t, src_stride, src_line, 1);
for (i = 0; i < src_width; )
{
for (j = 0; j < src_image->bits.width; j++, i++)
extended_src[i] = src_line[j];
}
}
else if (src_bpp == 16)
{
uint16_t *src_line_16;
PIXMAN_IMAGE_GET_LINE (src_image, 0, sy, uint16_t, src_stride,
src_line_16, 1);
src_line = (uint32_t*)src_line_16;
for (i = 0; i < src_width; )
{
for (j = 0; j < src_image->bits.width; j++, i++)
((uint16_t*)extended_src)[i] = ((uint16_t*)src_line)[j];
}
}
else if (src_bpp == 8)
{
uint8_t *src_line_8;
PIXMAN_IMAGE_GET_LINE (src_image, 0, sy, uint8_t, src_stride,
src_line_8, 1);
src_line = (uint32_t*)src_line_8;
for (i = 0; i < src_width; )
{
for (j = 0; j < src_image->bits.width; j++, i++)
((uint8_t*)extended_src)[i] = ((uint8_t*)src_line)[j];
}
}
info2.src_y = 0;
}
else
{
info2.src_y = sy;
}
width_remain = width;
while (width_remain > 0)
{
num_pixels = src_width - sx;
if (num_pixels > width_remain)
num_pixels = width_remain;
info2.src_x = sx;
info2.width = num_pixels;
info2.height = 1;
func (imp, &info2);
width_remain -= num_pixels;
info2.mask_x += num_pixels;
info2.dest_x += num_pixels;
sx = 0;
}
sx = src_x;
sy++;
info2.mask_x = info->mask_x;
info2.mask_y++;
info2.dest_x = info->dest_x;
info2.dest_y++;
}
if (need_src_extension)
_pixman_image_fini (&extended_src_image);
}
/* Use more unrolling for src_0565_0565 because it is typically CPU bound */
static force_inline void
scaled_nearest_scanline_565_565_SRC (uint16_t * dst,
const uint16_t * src,
int32_t w,
pixman_fixed_t vx,
pixman_fixed_t unit_x,
pixman_fixed_t max_vx,
pixman_bool_t fully_transparent_src)
{
uint16_t tmp1, tmp2, tmp3, tmp4;
while ((w -= 4) >= 0)
{
tmp1 = *(src + pixman_fixed_to_int (vx));
vx += unit_x;
tmp2 = *(src + pixman_fixed_to_int (vx));
vx += unit_x;
tmp3 = *(src + pixman_fixed_to_int (vx));
vx += unit_x;
tmp4 = *(src + pixman_fixed_to_int (vx));
vx += unit_x;
*dst++ = tmp1;
*dst++ = tmp2;
*dst++ = tmp3;
*dst++ = tmp4;
}
if (w & 2)
{
tmp1 = *(src + pixman_fixed_to_int (vx));
vx += unit_x;
tmp2 = *(src + pixman_fixed_to_int (vx));
vx += unit_x;
*dst++ = tmp1;
*dst++ = tmp2;
}
if (w & 1)
*dst = *(src + pixman_fixed_to_int (vx));
}
FAST_NEAREST_MAINLOOP (565_565_cover_SRC,
scaled_nearest_scanline_565_565_SRC,
uint16_t, uint16_t, COVER)
FAST_NEAREST_MAINLOOP (565_565_none_SRC,
scaled_nearest_scanline_565_565_SRC,
uint16_t, uint16_t, NONE)
FAST_NEAREST_MAINLOOP (565_565_pad_SRC,
scaled_nearest_scanline_565_565_SRC,
uint16_t, uint16_t, PAD)
static force_inline uint32_t
fetch_nearest (pixman_repeat_t src_repeat,
pixman_format_code_t format,
uint32_t *src, int x, int src_width)
{
if (repeat (src_repeat, &x, src_width))
{
if (format == PIXMAN_x8r8g8b8 || format == PIXMAN_x8b8g8r8)
return *(src + x) | 0xff000000;
else
return *(src + x);
}
else
{
return 0;
}
}
static force_inline void
combine_over (uint32_t s, uint32_t *dst)
{
if (s)
{
uint8_t ia = 0xff - (s >> 24);
if (ia)
UN8x4_MUL_UN8_ADD_UN8x4 (*dst, ia, s);
else
*dst = s;
}
}
static force_inline void
combine_src (uint32_t s, uint32_t *dst)
{
*dst = s;
}
static void
fast_composite_scaled_nearest (pixman_implementation_t *imp,
pixman_composite_info_t *info)
{
PIXMAN_COMPOSITE_ARGS (info);
uint32_t *dst_line;
uint32_t *src_line;
int dst_stride, src_stride;
int src_width, src_height;
pixman_repeat_t src_repeat;
pixman_fixed_t unit_x, unit_y;
pixman_format_code_t src_format;
pixman_vector_t v;
pixman_fixed_t vy;
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
/* pass in 0 instead of src_x and src_y because src_x and src_y need to be
* transformed from destination space to source space
*/
PIXMAN_IMAGE_GET_LINE (src_image, 0, 0, uint32_t, src_stride, src_line, 1);
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (src_x) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (src_y) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
if (!pixman_transform_point_3d (src_image->common.transform, &v))
return;
unit_x = src_image->common.transform->matrix[0][0];
unit_y = src_image->common.transform->matrix[1][1];
/* Round down to closest integer, ensuring that 0.5 rounds to 0, not 1 */
v.vector[0] -= pixman_fixed_e;
v.vector[1] -= pixman_fixed_e;
src_height = src_image->bits.height;
src_width = src_image->bits.width;
src_repeat = src_image->common.repeat;
src_format = src_image->bits.format;
vy = v.vector[1];
while (height--)
{
pixman_fixed_t vx = v.vector[0];
int y = pixman_fixed_to_int (vy);
uint32_t *dst = dst_line;
dst_line += dst_stride;
/* adjust the y location by a unit vector in the y direction
* this is equivalent to transforming y+1 of the destination point to source space */
vy += unit_y;
if (!repeat (src_repeat, &y, src_height))
{
if (op == PIXMAN_OP_SRC)
memset (dst, 0, sizeof (*dst) * width);
}
else
{
int w = width;
uint32_t *src = src_line + y * src_stride;
while (w >= 2)
{
uint32_t s1, s2;
int x1, x2;
x1 = pixman_fixed_to_int (vx);
vx += unit_x;
x2 = pixman_fixed_to_int (vx);
vx += unit_x;
w -= 2;
s1 = fetch_nearest (src_repeat, src_format, src, x1, src_width);
s2 = fetch_nearest (src_repeat, src_format, src, x2, src_width);
if (op == PIXMAN_OP_OVER)
{
combine_over (s1, dst++);
combine_over (s2, dst++);
}
else
{
combine_src (s1, dst++);
combine_src (s2, dst++);
}
}
while (w--)
{
uint32_t s;
int x;
x = pixman_fixed_to_int (vx);
vx += unit_x;
s = fetch_nearest (src_repeat, src_format, src, x, src_width);
if (op == PIXMAN_OP_OVER)
combine_over (s, dst++);
else
combine_src (s, dst++);
}
}
}
}
#define CACHE_LINE_SIZE 64
#define FAST_SIMPLE_ROTATE(suffix, pix_type) \
\
static void \
blt_rotated_90_trivial_##suffix (pix_type *dst, \
int dst_stride, \
const pix_type *src, \
int src_stride, \
int w, \
int h) \
{ \
int x, y; \
for (y = 0; y < h; y++) \
{ \
const pix_type *s = src + (h - y - 1); \
pix_type *d = dst + dst_stride * y; \
for (x = 0; x < w; x++) \
{ \
*d++ = *s; \
s += src_stride; \
} \
} \
} \
\
static void \
blt_rotated_270_trivial_##suffix (pix_type *dst, \
int dst_stride, \
const pix_type *src, \
int src_stride, \
int w, \
int h) \
{ \
int x, y; \
for (y = 0; y < h; y++) \
{ \
const pix_type *s = src + src_stride * (w - 1) + y; \
pix_type *d = dst + dst_stride * y; \
for (x = 0; x < w; x++) \
{ \
*d++ = *s; \
s -= src_stride; \
} \
} \
} \
\
static void \
blt_rotated_90_##suffix (pix_type *dst, \
int dst_stride, \
const pix_type *src, \
int src_stride, \
int W, \
int H) \
{ \
int x; \
int leading_pixels = 0, trailing_pixels = 0; \
const int TILE_SIZE = CACHE_LINE_SIZE / sizeof(pix_type); \
\
/* \
* split processing into handling destination as TILE_SIZExH cache line \
* aligned vertical stripes (optimistically assuming that destination \
* stride is a multiple of cache line, if not - it will be just a bit \
* slower) \
*/ \
\
if ((uintptr_t)dst & (CACHE_LINE_SIZE - 1)) \
{ \
leading_pixels = TILE_SIZE - (((uintptr_t)dst & \
(CACHE_LINE_SIZE - 1)) / sizeof(pix_type)); \
if (leading_pixels > W) \
leading_pixels = W; \
\
/* unaligned leading part NxH (where N < TILE_SIZE) */ \
blt_rotated_90_trivial_##suffix ( \
dst, \
dst_stride, \
src, \
src_stride, \
leading_pixels, \
H); \
\
dst += leading_pixels; \
src += leading_pixels * src_stride; \
W -= leading_pixels; \
} \
\
if ((uintptr_t)(dst + W) & (CACHE_LINE_SIZE - 1)) \
{ \
trailing_pixels = (((uintptr_t)(dst + W) & \
(CACHE_LINE_SIZE - 1)) / sizeof(pix_type)); \
if (trailing_pixels > W) \
trailing_pixels = W; \
W -= trailing_pixels; \
} \
\
for (x = 0; x < W; x += TILE_SIZE) \
{ \
/* aligned middle part TILE_SIZExH */ \
blt_rotated_90_trivial_##suffix ( \
dst + x, \
dst_stride, \
src + src_stride * x, \
src_stride, \
TILE_SIZE, \
H); \
} \
\
if (trailing_pixels) \
{ \
/* unaligned trailing part NxH (where N < TILE_SIZE) */ \
blt_rotated_90_trivial_##suffix ( \
dst + W, \
dst_stride, \
src + W * src_stride, \
src_stride, \
trailing_pixels, \
H); \
} \
} \
\
static void \
blt_rotated_270_##suffix (pix_type *dst, \
int dst_stride, \
const pix_type *src, \
int src_stride, \
int W, \
int H) \
{ \
int x; \
int leading_pixels = 0, trailing_pixels = 0; \
const int TILE_SIZE = CACHE_LINE_SIZE / sizeof(pix_type); \
\
/* \
* split processing into handling destination as TILE_SIZExH cache line \
* aligned vertical stripes (optimistically assuming that destination \
* stride is a multiple of cache line, if not - it will be just a bit \
* slower) \
*/ \
\
if ((uintptr_t)dst & (CACHE_LINE_SIZE - 1)) \
{ \
leading_pixels = TILE_SIZE - (((uintptr_t)dst & \
(CACHE_LINE_SIZE - 1)) / sizeof(pix_type)); \
if (leading_pixels > W) \
leading_pixels = W; \
\
/* unaligned leading part NxH (where N < TILE_SIZE) */ \
blt_rotated_270_trivial_##suffix ( \
dst, \
dst_stride, \
src + src_stride * (W - leading_pixels), \
src_stride, \
leading_pixels, \
H); \
\
dst += leading_pixels; \
W -= leading_pixels; \
} \
\
if ((uintptr_t)(dst + W) & (CACHE_LINE_SIZE - 1)) \
{ \
trailing_pixels = (((uintptr_t)(dst + W) & \
(CACHE_LINE_SIZE - 1)) / sizeof(pix_type)); \
if (trailing_pixels > W) \
trailing_pixels = W; \
W -= trailing_pixels; \
src += trailing_pixels * src_stride; \
} \
\
for (x = 0; x < W; x += TILE_SIZE) \
{ \
/* aligned middle part TILE_SIZExH */ \
blt_rotated_270_trivial_##suffix ( \
dst + x, \
dst_stride, \
src + src_stride * (W - x - TILE_SIZE), \
src_stride, \
TILE_SIZE, \
H); \
} \
\
if (trailing_pixels) \
{ \
/* unaligned trailing part NxH (where N < TILE_SIZE) */ \
blt_rotated_270_trivial_##suffix ( \
dst + W, \
dst_stride, \
src - trailing_pixels * src_stride, \
src_stride, \
trailing_pixels, \
H); \
} \
} \
\
static void \
fast_composite_rotate_90_##suffix (pixman_implementation_t *imp, \
pixman_composite_info_t *info) \
{ \
PIXMAN_COMPOSITE_ARGS (info); \
pix_type *dst_line; \
pix_type *src_line; \
int dst_stride, src_stride; \
int src_x_t, src_y_t; \
\
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, pix_type, \
dst_stride, dst_line, 1); \
src_x_t = -src_y + pixman_fixed_to_int ( \
src_image->common.transform->matrix[0][2] + \
pixman_fixed_1 / 2 - pixman_fixed_e) - height;\
src_y_t = src_x + pixman_fixed_to_int ( \
src_image->common.transform->matrix[1][2] + \
pixman_fixed_1 / 2 - pixman_fixed_e); \
PIXMAN_IMAGE_GET_LINE (src_image, src_x_t, src_y_t, pix_type, \
src_stride, src_line, 1); \
blt_rotated_90_##suffix (dst_line, dst_stride, src_line, src_stride, \
width, height); \
} \
\
static void \
fast_composite_rotate_270_##suffix (pixman_implementation_t *imp, \
pixman_composite_info_t *info) \
{ \
PIXMAN_COMPOSITE_ARGS (info); \
pix_type *dst_line; \
pix_type *src_line; \
int dst_stride, src_stride; \
int src_x_t, src_y_t; \
\
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, pix_type, \
dst_stride, dst_line, 1); \
src_x_t = src_y + pixman_fixed_to_int ( \
src_image->common.transform->matrix[0][2] + \
pixman_fixed_1 / 2 - pixman_fixed_e); \
src_y_t = -src_x + pixman_fixed_to_int ( \
src_image->common.transform->matrix[1][2] + \
pixman_fixed_1 / 2 - pixman_fixed_e) - width; \
PIXMAN_IMAGE_GET_LINE (src_image, src_x_t, src_y_t, pix_type, \
src_stride, src_line, 1); \
blt_rotated_270_##suffix (dst_line, dst_stride, src_line, src_stride, \
width, height); \
}
FAST_SIMPLE_ROTATE (8, uint8_t)
FAST_SIMPLE_ROTATE (565, uint16_t)
FAST_SIMPLE_ROTATE (8888, uint32_t)
static const pixman_fast_path_t c_fast_paths[] =
{
PIXMAN_STD_FAST_PATH (OVER, solid, a8, r5g6b5, fast_composite_over_n_8_0565),
PIXMAN_STD_FAST_PATH (OVER, solid, a8, b5g6r5, fast_composite_over_n_8_0565),
PIXMAN_STD_FAST_PATH (OVER, solid, a8, r8g8b8, fast_composite_over_n_8_0888),
PIXMAN_STD_FAST_PATH (OVER, solid, a8, b8g8r8, fast_composite_over_n_8_0888),
PIXMAN_STD_FAST_PATH (OVER, solid, a8, a8r8g8b8, fast_composite_over_n_8_8888),
PIXMAN_STD_FAST_PATH (OVER, solid, a8, x8r8g8b8, fast_composite_over_n_8_8888),
PIXMAN_STD_FAST_PATH (OVER, solid, a8, a8b8g8r8, fast_composite_over_n_8_8888),
PIXMAN_STD_FAST_PATH (OVER, solid, a8, x8b8g8r8, fast_composite_over_n_8_8888),
PIXMAN_STD_FAST_PATH (OVER, solid, a1, a8r8g8b8, fast_composite_over_n_1_8888),
PIXMAN_STD_FAST_PATH (OVER, solid, a1, x8r8g8b8, fast_composite_over_n_1_8888),
PIXMAN_STD_FAST_PATH (OVER, solid, a1, a8b8g8r8, fast_composite_over_n_1_8888),
PIXMAN_STD_FAST_PATH (OVER, solid, a1, x8b8g8r8, fast_composite_over_n_1_8888),
PIXMAN_STD_FAST_PATH (OVER, solid, a1, r5g6b5, fast_composite_over_n_1_0565),
PIXMAN_STD_FAST_PATH (OVER, solid, a1, b5g6r5, fast_composite_over_n_1_0565),
PIXMAN_STD_FAST_PATH_CA (OVER, solid, a8r8g8b8, a8r8g8b8, fast_composite_over_n_8888_8888_ca),
PIXMAN_STD_FAST_PATH_CA (OVER, solid, a8r8g8b8, x8r8g8b8, fast_composite_over_n_8888_8888_ca),
PIXMAN_STD_FAST_PATH_CA (OVER, solid, a8r8g8b8, r5g6b5, fast_composite_over_n_8888_0565_ca),
PIXMAN_STD_FAST_PATH_CA (OVER, solid, a8b8g8r8, a8b8g8r8, fast_composite_over_n_8888_8888_ca),
PIXMAN_STD_FAST_PATH_CA (OVER, solid, a8b8g8r8, x8b8g8r8, fast_composite_over_n_8888_8888_ca),
PIXMAN_STD_FAST_PATH_CA (OVER, solid, a8b8g8r8, b5g6r5, fast_composite_over_n_8888_0565_ca),
PIXMAN_STD_FAST_PATH (OVER, x8r8g8b8, a8, x8r8g8b8, fast_composite_over_x888_8_8888),
PIXMAN_STD_FAST_PATH (OVER, x8r8g8b8, a8, a8r8g8b8, fast_composite_over_x888_8_8888),
PIXMAN_STD_FAST_PATH (OVER, x8b8g8r8, a8, x8b8g8r8, fast_composite_over_x888_8_8888),
PIXMAN_STD_FAST_PATH (OVER, x8b8g8r8, a8, a8b8g8r8, fast_composite_over_x888_8_8888),
PIXMAN_STD_FAST_PATH (OVER, a8r8g8b8, null, a8r8g8b8, fast_composite_over_8888_8888),
PIXMAN_STD_FAST_PATH (OVER, a8r8g8b8, null, x8r8g8b8, fast_composite_over_8888_8888),
PIXMAN_STD_FAST_PATH (OVER, a8r8g8b8, null, r5g6b5, fast_composite_over_8888_0565),
PIXMAN_STD_FAST_PATH (OVER, a8b8g8r8, null, a8b8g8r8, fast_composite_over_8888_8888),
PIXMAN_STD_FAST_PATH (OVER, a8b8g8r8, null, x8b8g8r8, fast_composite_over_8888_8888),
PIXMAN_STD_FAST_PATH (OVER, a8b8g8r8, null, b5g6r5, fast_composite_over_8888_0565),
PIXMAN_STD_FAST_PATH (ADD, r5g6b5, null, r5g6b5, fast_composite_add_0565_0565),
PIXMAN_STD_FAST_PATH (ADD, b5g6r5, null, b5g6r5, fast_composite_add_0565_0565),
PIXMAN_STD_FAST_PATH (ADD, a8r8g8b8, null, a8r8g8b8, fast_composite_add_8888_8888),
PIXMAN_STD_FAST_PATH (ADD, a8b8g8r8, null, a8b8g8r8, fast_composite_add_8888_8888),
PIXMAN_STD_FAST_PATH (ADD, a8, null, a8, fast_composite_add_8_8),
PIXMAN_STD_FAST_PATH (ADD, a1, null, a1, fast_composite_add_1_1),
PIXMAN_STD_FAST_PATH_CA (ADD, solid, a8r8g8b8, a8r8g8b8, fast_composite_add_n_8888_8888_ca),
PIXMAN_STD_FAST_PATH (ADD, solid, a8, a8, fast_composite_add_n_8_8),
PIXMAN_STD_FAST_PATH (SRC, solid, null, a8r8g8b8, fast_composite_solid_fill),
PIXMAN_STD_FAST_PATH (SRC, solid, null, x8r8g8b8, fast_composite_solid_fill),
PIXMAN_STD_FAST_PATH (SRC, solid, null, a8b8g8r8, fast_composite_solid_fill),
PIXMAN_STD_FAST_PATH (SRC, solid, null, x8b8g8r8, fast_composite_solid_fill),
PIXMAN_STD_FAST_PATH (SRC, solid, null, a1, fast_composite_solid_fill),
PIXMAN_STD_FAST_PATH (SRC, solid, null, a8, fast_composite_solid_fill),
PIXMAN_STD_FAST_PATH (SRC, solid, null, r5g6b5, fast_composite_solid_fill),
PIXMAN_STD_FAST_PATH (SRC, x8r8g8b8, null, a8r8g8b8, fast_composite_src_x888_8888),
PIXMAN_STD_FAST_PATH (SRC, x8b8g8r8, null, a8b8g8r8, fast_composite_src_x888_8888),
PIXMAN_STD_FAST_PATH (SRC, a8r8g8b8, null, x8r8g8b8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, a8r8g8b8, null, a8r8g8b8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, x8r8g8b8, null, x8r8g8b8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, a8b8g8r8, null, x8b8g8r8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, a8b8g8r8, null, a8b8g8r8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, x8b8g8r8, null, x8b8g8r8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, b8g8r8a8, null, b8g8r8x8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, b8g8r8a8, null, b8g8r8a8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, b8g8r8x8, null, b8g8r8x8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, r5g6b5, null, r5g6b5, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, b5g6r5, null, b5g6r5, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, r8g8b8, null, r8g8b8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, b8g8r8, null, b8g8r8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, x1r5g5b5, null, x1r5g5b5, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, a1r5g5b5, null, x1r5g5b5, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (SRC, a8, null, a8, fast_composite_src_memcpy),
PIXMAN_STD_FAST_PATH (IN, a8, null, a8, fast_composite_in_8_8),
PIXMAN_STD_FAST_PATH (IN, solid, a8, a8, fast_composite_in_n_8_8),
SIMPLE_NEAREST_FAST_PATH (SRC, x8r8g8b8, x8r8g8b8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (SRC, a8r8g8b8, x8r8g8b8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (SRC, x8b8g8r8, x8b8g8r8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (SRC, a8b8g8r8, x8b8g8r8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (SRC, a8r8g8b8, a8r8g8b8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (SRC, a8b8g8r8, a8b8g8r8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (SRC, x8r8g8b8, r5g6b5, 8888_565),
SIMPLE_NEAREST_FAST_PATH (SRC, a8r8g8b8, r5g6b5, 8888_565),
SIMPLE_NEAREST_FAST_PATH (SRC, r5g6b5, r5g6b5, 565_565),
SIMPLE_NEAREST_FAST_PATH_COVER (SRC, x8r8g8b8, a8r8g8b8, x888_8888),
SIMPLE_NEAREST_FAST_PATH_COVER (SRC, x8b8g8r8, a8b8g8r8, x888_8888),
SIMPLE_NEAREST_FAST_PATH_PAD (SRC, x8r8g8b8, a8r8g8b8, x888_8888),
SIMPLE_NEAREST_FAST_PATH_PAD (SRC, x8b8g8r8, a8b8g8r8, x888_8888),
SIMPLE_NEAREST_FAST_PATH_NORMAL (SRC, x8r8g8b8, a8r8g8b8, x888_8888),
SIMPLE_NEAREST_FAST_PATH_NORMAL (SRC, x8b8g8r8, a8b8g8r8, x888_8888),
SIMPLE_NEAREST_FAST_PATH (OVER, a8r8g8b8, x8r8g8b8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (OVER, a8b8g8r8, x8b8g8r8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (OVER, a8r8g8b8, a8r8g8b8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (OVER, a8b8g8r8, a8b8g8r8, 8888_8888),
SIMPLE_NEAREST_FAST_PATH (OVER, a8r8g8b8, r5g6b5, 8888_565),
#define NEAREST_FAST_PATH(op,s,d) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, SCALED_NEAREST_FLAGS, \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest, \
}
NEAREST_FAST_PATH (SRC, x8r8g8b8, x8r8g8b8),
NEAREST_FAST_PATH (SRC, a8r8g8b8, x8r8g8b8),
NEAREST_FAST_PATH (SRC, x8b8g8r8, x8b8g8r8),
NEAREST_FAST_PATH (SRC, a8b8g8r8, x8b8g8r8),
NEAREST_FAST_PATH (SRC, x8r8g8b8, a8r8g8b8),
NEAREST_FAST_PATH (SRC, a8r8g8b8, a8r8g8b8),
NEAREST_FAST_PATH (SRC, x8b8g8r8, a8b8g8r8),
NEAREST_FAST_PATH (SRC, a8b8g8r8, a8b8g8r8),
NEAREST_FAST_PATH (OVER, x8r8g8b8, x8r8g8b8),
NEAREST_FAST_PATH (OVER, a8r8g8b8, x8r8g8b8),
NEAREST_FAST_PATH (OVER, x8b8g8r8, x8b8g8r8),
NEAREST_FAST_PATH (OVER, a8b8g8r8, x8b8g8r8),
NEAREST_FAST_PATH (OVER, x8r8g8b8, a8r8g8b8),
NEAREST_FAST_PATH (OVER, a8r8g8b8, a8r8g8b8),
NEAREST_FAST_PATH (OVER, x8b8g8r8, a8b8g8r8),
NEAREST_FAST_PATH (OVER, a8b8g8r8, a8b8g8r8),
#define SIMPLE_ROTATE_FLAGS(angle) \
(FAST_PATH_ROTATE_ ## angle ## _TRANSFORM | \
FAST_PATH_NEAREST_FILTER | \
FAST_PATH_SAMPLES_COVER_CLIP_NEAREST | \
FAST_PATH_STANDARD_FLAGS)
#define SIMPLE_ROTATE_FAST_PATH(op,s,d,suffix) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, SIMPLE_ROTATE_FLAGS (90), \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_rotate_90_##suffix, \
}, \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, SIMPLE_ROTATE_FLAGS (270), \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_rotate_270_##suffix, \
}
SIMPLE_ROTATE_FAST_PATH (SRC, a8r8g8b8, a8r8g8b8, 8888),
SIMPLE_ROTATE_FAST_PATH (SRC, a8r8g8b8, x8r8g8b8, 8888),
SIMPLE_ROTATE_FAST_PATH (SRC, x8r8g8b8, x8r8g8b8, 8888),
SIMPLE_ROTATE_FAST_PATH (SRC, r5g6b5, r5g6b5, 565),
SIMPLE_ROTATE_FAST_PATH (SRC, a8, a8, 8),
/* Simple repeat fast path entry. */
{ PIXMAN_OP_any,
PIXMAN_any,
(FAST_PATH_STANDARD_FLAGS | FAST_PATH_ID_TRANSFORM | FAST_PATH_BITS_IMAGE |
FAST_PATH_NORMAL_REPEAT),
PIXMAN_any, 0,
PIXMAN_any, FAST_PATH_STD_DEST_FLAGS,
fast_composite_tiled_repeat
},
{ PIXMAN_OP_NONE },
};
#ifdef WORDS_BIGENDIAN
#define A1_FILL_MASK(n, offs) (((1U << (n)) - 1) << (32 - (offs) - (n)))
#else
#define A1_FILL_MASK(n, offs) (((1U << (n)) - 1) << (offs))
#endif
static force_inline void
pixman_fill1_line (uint32_t *dst, int offs, int width, int v)
{
if (offs)
{
int leading_pixels = 32 - offs;
if (leading_pixels >= width)
{
if (v)
*dst |= A1_FILL_MASK (width, offs);
else
*dst &= ~A1_FILL_MASK (width, offs);
return;
}
else
{
if (v)
*dst++ |= A1_FILL_MASK (leading_pixels, offs);
else
*dst++ &= ~A1_FILL_MASK (leading_pixels, offs);
width -= leading_pixels;
}
}
while (width >= 32)
{
if (v)
*dst++ = 0xFFFFFFFF;
else
*dst++ = 0;
width -= 32;
}
if (width > 0)
{
if (v)
*dst |= A1_FILL_MASK (width, 0);
else
*dst &= ~A1_FILL_MASK (width, 0);
}
}
static void
pixman_fill1 (uint32_t *bits,
int stride,
int x,
int y,
int width,
int height,
uint32_t filler)
{
uint32_t *dst = bits + y * stride + (x >> 5);
int offs = x & 31;
if (filler & 1)
{
while (height--)
{
pixman_fill1_line (dst, offs, width, 1);
dst += stride;
}
}
else
{
while (height--)
{
pixman_fill1_line (dst, offs, width, 0);
dst += stride;
}
}
}
static void
pixman_fill8 (uint32_t *bits,
int stride,
int x,
int y,
int width,
int height,
uint32_t filler)
{
int byte_stride = stride * (int) sizeof (uint32_t);
uint8_t *dst = (uint8_t *) bits;
uint8_t v = filler & 0xff;
int i;
dst = dst + y * byte_stride + x;
while (height--)
{
for (i = 0; i < width; ++i)
dst[i] = v;
dst += byte_stride;
}
}
static void
pixman_fill16 (uint32_t *bits,
int stride,
int x,
int y,
int width,
int height,
uint32_t filler)
{
int short_stride =
(stride * (int)sizeof (uint32_t)) / (int)sizeof (uint16_t);
uint16_t *dst = (uint16_t *)bits;
uint16_t v = filler & 0xffff;
int i;
dst = dst + y * short_stride + x;
while (height--)
{
for (i = 0; i < width; ++i)
dst[i] = v;
dst += short_stride;
}
}
static void
pixman_fill32 (uint32_t *bits,
int stride,
int x,
int y,
int width,
int height,
uint32_t filler)
{
int i;
bits = bits + y * stride + x;
while (height--)
{
for (i = 0; i < width; ++i)
bits[i] = filler;
bits += stride;
}
}
static pixman_bool_t
fast_path_fill (pixman_implementation_t *imp,
uint32_t * bits,
int stride,
int bpp,
int x,
int y,
int width,
int height,
uint32_t filler)
{
switch (bpp)
{
case 1:
pixman_fill1 (bits, stride, x, y, width, height, filler);
break;
case 8:
pixman_fill8 (bits, stride, x, y, width, height, filler);
break;
case 16:
pixman_fill16 (bits, stride, x, y, width, height, filler);
break;
case 32:
pixman_fill32 (bits, stride, x, y, width, height, filler);
break;
default:
return FALSE;
}
return TRUE;
}
/*****************************************************************************/
static uint32_t *
fast_fetch_r5g6b5 (pixman_iter_t *iter, const uint32_t *mask)
{
int32_t w = iter->width;
uint32_t *dst = iter->buffer;
const uint16_t *src = (const uint16_t *)iter->bits;
iter->bits += iter->stride;
/* Align the source buffer at 4 bytes boundary */
if (w > 0 && ((uintptr_t)src & 3))
{
*dst++ = convert_0565_to_8888 (*src++);
w--;
}
/* Process two pixels per iteration */
while ((w -= 2) >= 0)
{
uint32_t sr, sb, sg, t0, t1;
uint32_t s = *(const uint32_t *)src;
src += 2;
sr = (s >> 8) & 0x00F800F8;
sb = (s << 3) & 0x00F800F8;
sg = (s >> 3) & 0x00FC00FC;
sr |= sr >> 5;
sb |= sb >> 5;
sg |= sg >> 6;
t0 = ((sr << 16) & 0x00FF0000) | ((sg << 8) & 0x0000FF00) |
(sb & 0xFF) | 0xFF000000;
t1 = (sr & 0x00FF0000) | ((sg >> 8) & 0x0000FF00) |
(sb >> 16) | 0xFF000000;
#ifdef WORDS_BIGENDIAN
*dst++ = t1;
*dst++ = t0;
#else
*dst++ = t0;
*dst++ = t1;
#endif
}
if (w & 1)
{
*dst = convert_0565_to_8888 (*src);
}
return iter->buffer;
}
static uint32_t *
fast_dest_fetch_noop (pixman_iter_t *iter, const uint32_t *mask)
{
iter->bits += iter->stride;
return iter->buffer;
}
/* Helper function for a workaround, which tries to ensure that 0x1F001F
* constant is always allocated in a register on RISC architectures.
*/
static force_inline uint32_t
convert_8888_to_0565_workaround (uint32_t s, uint32_t x1F001F)
{
uint32_t a, b;
a = (s >> 3) & x1F001F;
b = s & 0xFC00;
a |= a >> 5;
a |= b >> 5;
return a;
}
static void
fast_write_back_r5g6b5 (pixman_iter_t *iter)
{
int32_t w = iter->width;
uint16_t *dst = (uint16_t *)(iter->bits - iter->stride);
const uint32_t *src = iter->buffer;
/* Workaround to ensure that x1F001F variable is allocated in a register */
static volatile uint32_t volatile_x1F001F = 0x1F001F;
uint32_t x1F001F = volatile_x1F001F;
while ((w -= 4) >= 0)
{
uint32_t s1 = *src++;
uint32_t s2 = *src++;
uint32_t s3 = *src++;
uint32_t s4 = *src++;
*dst++ = convert_8888_to_0565_workaround (s1, x1F001F);
*dst++ = convert_8888_to_0565_workaround (s2, x1F001F);
*dst++ = convert_8888_to_0565_workaround (s3, x1F001F);
*dst++ = convert_8888_to_0565_workaround (s4, x1F001F);
}
if (w & 2)
{
*dst++ = convert_8888_to_0565_workaround (*src++, x1F001F);
*dst++ = convert_8888_to_0565_workaround (*src++, x1F001F);
}
if (w & 1)
{
*dst = convert_8888_to_0565_workaround (*src, x1F001F);
}
}
typedef struct
{
int y;
uint64_t * buffer;
} line_t;
typedef struct
{
line_t lines[2];
pixman_fixed_t y;
pixman_fixed_t x;
uint64_t data[1];
} bilinear_info_t;
static void
fetch_horizontal (bits_image_t *image, line_t *line,
int y, pixman_fixed_t x, pixman_fixed_t ux, int n)
{
uint32_t *bits = image->bits + y * image->rowstride;
int i;
for (i = 0; i < n; ++i)
{
int x0 = pixman_fixed_to_int (x);
int x1 = x0 + 1;
int32_t dist_x;
uint32_t left = *(bits + x0);
uint32_t right = *(bits + x1);
dist_x = pixman_fixed_to_bilinear_weight (x);
dist_x <<= (8 - BILINEAR_INTERPOLATION_BITS);
#if SIZEOF_LONG <= 4
{
uint32_t lag, rag, ag;
uint32_t lrb, rrb, rb;
lag = (left & 0xff00ff00) >> 8;
rag = (right & 0xff00ff00) >> 8;
ag = (lag << 8) + dist_x * (rag - lag);
lrb = (left & 0x00ff00ff);
rrb = (right & 0x00ff00ff);
rb = (lrb << 8) + dist_x * (rrb - lrb);
*((uint32_t *)(line->buffer + i)) = ag;
*((uint32_t *)(line->buffer + i) + 1) = rb;
}
#else
{
uint64_t lagrb, ragrb;
uint32_t lag, rag;
uint32_t lrb, rrb;
lag = (left & 0xff00ff00);
lrb = (left & 0x00ff00ff);
rag = (right & 0xff00ff00);
rrb = (right & 0x00ff00ff);
lagrb = (((uint64_t)lag) << 24) | lrb;
ragrb = (((uint64_t)rag) << 24) | rrb;
line->buffer[i] = (lagrb << 8) + dist_x * (ragrb - lagrb);
}
#endif
x += ux;
}
line->y = y;
}
static uint32_t *
fast_fetch_bilinear_cover (pixman_iter_t *iter, const uint32_t *mask)
{
pixman_fixed_t fx, ux;
bilinear_info_t *info = iter->data;
line_t *line0, *line1;
int y0, y1;
int32_t dist_y;
int i;
COMPILE_TIME_ASSERT (BILINEAR_INTERPOLATION_BITS < 8);
fx = info->x;
ux = iter->image->common.transform->matrix[0][0];
y0 = pixman_fixed_to_int (info->y);
y1 = y0 + 1;
dist_y = pixman_fixed_to_bilinear_weight (info->y);
dist_y <<= (8 - BILINEAR_INTERPOLATION_BITS);
line0 = &info->lines[y0 & 0x01];
line1 = &info->lines[y1 & 0x01];
if (line0->y != y0)
{
fetch_horizontal (
&iter->image->bits, line0, y0, fx, ux, iter->width);
}
if (line1->y != y1)
{
fetch_horizontal (
&iter->image->bits, line1, y1, fx, ux, iter->width);
}
for (i = 0; i < iter->width; ++i)
{
#if SIZEOF_LONG <= 4
uint32_t ta, tr, tg, tb;
uint32_t ba, br, bg, bb;
uint32_t tag, trb;
uint32_t bag, brb;
uint32_t a, r, g, b;
tag = *((uint32_t *)(line0->buffer + i));
trb = *((uint32_t *)(line0->buffer + i) + 1);
bag = *((uint32_t *)(line1->buffer + i));
brb = *((uint32_t *)(line1->buffer + i) + 1);
ta = tag >> 16;
ba = bag >> 16;
a = (ta << 8) + dist_y * (ba - ta);
tr = trb >> 16;
br = brb >> 16;
r = (tr << 8) + dist_y * (br - tr);
tg = tag & 0xffff;
bg = bag & 0xffff;
g = (tg << 8) + dist_y * (bg - tg);
tb = trb & 0xffff;
bb = brb & 0xffff;
b = (tb << 8) + dist_y * (bb - tb);
a = (a << 8) & 0xff000000;
r = (r << 0) & 0x00ff0000;
g = (g >> 8) & 0x0000ff00;
b = (b >> 16) & 0x000000ff;
#else
uint64_t top = line0->buffer[i];
uint64_t bot = line1->buffer[i];
uint64_t tar = (top & 0xffff0000ffff0000ULL) >> 16;
uint64_t bar = (bot & 0xffff0000ffff0000ULL) >> 16;
uint64_t tgb = (top & 0x0000ffff0000ffffULL);
uint64_t bgb = (bot & 0x0000ffff0000ffffULL);
uint64_t ar, gb;
uint32_t a, r, g, b;
ar = (tar << 8) + dist_y * (bar - tar);
gb = (tgb << 8) + dist_y * (bgb - tgb);
a = ((ar >> 24) & 0xff000000);
r = ((ar >> 0) & 0x00ff0000);
g = ((gb >> 40) & 0x0000ff00);
b = ((gb >> 16) & 0x000000ff);
#endif
iter->buffer[i] = a | r | g | b;
}
info->y += iter->image->common.transform->matrix[1][1];
return iter->buffer;
}
static void
bilinear_cover_iter_fini (pixman_iter_t *iter)
{
free (iter->data);
}
static void
fast_bilinear_cover_iter_init (pixman_iter_t *iter, const pixman_iter_info_t *iter_info)
{
int width = iter->width;
bilinear_info_t *info;
pixman_vector_t v;
/* Reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (iter->x) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (iter->y) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
if (!pixman_transform_point_3d (iter->image->common.transform, &v))
goto fail;
info = malloc (sizeof (*info) + (2 * width - 1) * sizeof (uint64_t));
if (!info)
goto fail;
info->x = v.vector[0] - pixman_fixed_1 / 2;
info->y = v.vector[1] - pixman_fixed_1 / 2;
/* It is safe to set the y coordinates to -1 initially
* because COVER_CLIP_BILINEAR ensures that we will only
* be asked to fetch lines in the [0, height) interval
*/
info->lines[0].y = -1;
info->lines[0].buffer = &(info->data[0]);
info->lines[1].y = -1;
info->lines[1].buffer = &(info->data[width]);
iter->get_scanline = fast_fetch_bilinear_cover;
iter->fini = bilinear_cover_iter_fini;
iter->data = info;
return;
fail:
/* Something went wrong, either a bad matrix or OOM; in such cases,
* we don't guarantee any particular rendering.
*/
_pixman_log_error (
FUNC, "Allocation failure or bad matrix, skipping rendering\n");
iter->get_scanline = _pixman_iter_get_scanline_noop;
iter->fini = NULL;
}
static uint32_t *
bits_image_fetch_bilinear_no_repeat_8888 (pixman_iter_t *iter,
const uint32_t *mask)
{
pixman_image_t * ima = iter->image;
int offset = iter->x;
int line = iter->y++;
int width = iter->width;
uint32_t * buffer = iter->buffer;
bits_image_t *bits = &ima->bits;
pixman_fixed_t x_top, x_bottom, x;
pixman_fixed_t ux_top, ux_bottom, ux;
pixman_vector_t v;
uint32_t top_mask, bottom_mask;
uint32_t *top_row;
uint32_t *bottom_row;
uint32_t *end;
uint32_t zero[2] = { 0, 0 };
uint32_t one = 1;
int y, y1, y2;
int disty;
int mask_inc;
int w;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (offset) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (line) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
if (!pixman_transform_point_3d (bits->common.transform, &v))
return iter->buffer;
ux = ux_top = ux_bottom = bits->common.transform->matrix[0][0];
x = x_top = x_bottom = v.vector[0] - pixman_fixed_1/2;
y = v.vector[1] - pixman_fixed_1/2;
disty = pixman_fixed_to_bilinear_weight (y);
/* Load the pointers to the first and second lines from the source
* image that bilinear code must read.
*
* The main trick in this code is about the check if any line are
* outside of the image;
*
* When I realize that a line (any one) is outside, I change
* the pointer to a dummy area with zeros. Once I change this, I
* must be sure the pointer will not change, so I set the
* variables to each pointer increments inside the loop.
*/
y1 = pixman_fixed_to_int (y);
y2 = y1 + 1;
if (y1 < 0 || y1 >= bits->height)
{
top_row = zero;
x_top = 0;
ux_top = 0;
}
else
{
top_row = bits->bits + y1 * bits->rowstride;
x_top = x;
ux_top = ux;
}
if (y2 < 0 || y2 >= bits->height)
{
bottom_row = zero;
x_bottom = 0;
ux_bottom = 0;
}
else
{
bottom_row = bits->bits + y2 * bits->rowstride;
x_bottom = x;
ux_bottom = ux;
}
/* Instead of checking whether the operation uses the mast in
* each loop iteration, verify this only once and prepare the
* variables to make the code smaller inside the loop.
*/
if (!mask)
{
mask_inc = 0;
mask = &one;
}
else
{
/* If have a mask, prepare the variables to check it */
mask_inc = 1;
}
/* If both are zero, then the whole thing is zero */
if (top_row == zero && bottom_row == zero)
{
memset (buffer, 0, width * sizeof (uint32_t));
return iter->buffer;
}
else if (bits->format == PIXMAN_x8r8g8b8)
{
if (top_row == zero)
{
top_mask = 0;
bottom_mask = 0xff000000;
}
else if (bottom_row == zero)
{
top_mask = 0xff000000;
bottom_mask = 0;
}
else
{
top_mask = 0xff000000;
bottom_mask = 0xff000000;
}
}
else
{
top_mask = 0;
bottom_mask = 0;
}
end = buffer + width;
/* Zero fill to the left of the image */
while (buffer < end && x < pixman_fixed_minus_1)
{
*buffer++ = 0;
x += ux;
x_top += ux_top;
x_bottom += ux_bottom;
mask += mask_inc;
}
/* Left edge
*/
while (buffer < end && x < 0)
{
uint32_t tr, br;
int32_t distx;
tr = top_row[pixman_fixed_to_int (x_top) + 1] | top_mask;
br = bottom_row[pixman_fixed_to_int (x_bottom) + 1] | bottom_mask;
distx = pixman_fixed_to_bilinear_weight (x);
*buffer++ = bilinear_interpolation (0, tr, 0, br, distx, disty);
x += ux;
x_top += ux_top;
x_bottom += ux_bottom;
mask += mask_inc;
}
/* Main part */
w = pixman_int_to_fixed (bits->width - 1);
while (buffer < end && x < w)
{
if (*mask)
{
uint32_t tl, tr, bl, br;
int32_t distx;
tl = top_row [pixman_fixed_to_int (x_top)] | top_mask;
tr = top_row [pixman_fixed_to_int (x_top) + 1] | top_mask;
bl = bottom_row [pixman_fixed_to_int (x_bottom)] | bottom_mask;
br = bottom_row [pixman_fixed_to_int (x_bottom) + 1] | bottom_mask;
distx = pixman_fixed_to_bilinear_weight (x);
*buffer = bilinear_interpolation (tl, tr, bl, br, distx, disty);
}
buffer++;
x += ux;
x_top += ux_top;
x_bottom += ux_bottom;
mask += mask_inc;
}
/* Right Edge */
w = pixman_int_to_fixed (bits->width);
while (buffer < end && x < w)
{
if (*mask)
{
uint32_t tl, bl;
int32_t distx;
tl = top_row [pixman_fixed_to_int (x_top)] | top_mask;
bl = bottom_row [pixman_fixed_to_int (x_bottom)] | bottom_mask;
distx = pixman_fixed_to_bilinear_weight (x);
*buffer = bilinear_interpolation (tl, 0, bl, 0, distx, disty);
}
buffer++;
x += ux;
x_top += ux_top;
x_bottom += ux_bottom;
mask += mask_inc;
}
/* Zero fill to the left of the image */
while (buffer < end)
*buffer++ = 0;
return iter->buffer;
}
typedef uint32_t (* convert_pixel_t) (const uint8_t *row, int x);
static force_inline void
bits_image_fetch_separable_convolution_affine (pixman_image_t * image,
int offset,
int line,
int width,
uint32_t * buffer,
const uint32_t * mask,
convert_pixel_t convert_pixel,
pixman_format_code_t format,
pixman_repeat_t repeat_mode)
{
bits_image_t *bits = &image->bits;
pixman_fixed_t *params = image->common.filter_params;
int cwidth = pixman_fixed_to_int (params[0]);
int cheight = pixman_fixed_to_int (params[1]);
int x_off = ((cwidth << 16) - pixman_fixed_1) >> 1;
int y_off = ((cheight << 16) - pixman_fixed_1) >> 1;
int x_phase_bits = pixman_fixed_to_int (params[2]);
int y_phase_bits = pixman_fixed_to_int (params[3]);
int x_phase_shift = 16 - x_phase_bits;
int y_phase_shift = 16 - y_phase_bits;
pixman_fixed_t vx, vy;
pixman_fixed_t ux, uy;
pixman_vector_t v;
int k;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (offset) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (line) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
if (!pixman_transform_point_3d (image->common.transform, &v))
return;
ux = image->common.transform->matrix[0][0];
uy = image->common.transform->matrix[1][0];
vx = v.vector[0];
vy = v.vector[1];
for (k = 0; k < width; ++k)
{
pixman_fixed_t *y_params;
int satot, srtot, sgtot, sbtot;
pixman_fixed_t x, y;
int32_t x1, x2, y1, y2;
int32_t px, py;
int i, j;
if (mask && !mask[k])
goto next;
/* Round x and y to the middle of the closest phase before continuing. This
* ensures that the convolution matrix is aligned right, since it was
* positioned relative to a particular phase (and not relative to whatever
* exact fraction we happen to get here).
*/
x = ((vx >> x_phase_shift) << x_phase_shift) + ((1 << x_phase_shift) >> 1);
y = ((vy >> y_phase_shift) << y_phase_shift) + ((1 << y_phase_shift) >> 1);
px = (x & 0xffff) >> x_phase_shift;
py = (y & 0xffff) >> y_phase_shift;
x1 = pixman_fixed_to_int (x - pixman_fixed_e - x_off);
y1 = pixman_fixed_to_int (y - pixman_fixed_e - y_off);
x2 = x1 + cwidth;
y2 = y1 + cheight;
satot = srtot = sgtot = sbtot = 0;
y_params = params + 4 + (1 << x_phase_bits) * cwidth + py * cheight;
for (i = y1; i < y2; ++i)
{
pixman_fixed_t fy = *y_params++;
if (fy)
{
pixman_fixed_t *x_params = params + 4 + px * cwidth;
for (j = x1; j < x2; ++j)
{
pixman_fixed_t fx = *x_params++;
int rx = j;
int ry = i;
if (fx)
{
pixman_fixed_t f;
uint32_t pixel, mask;
uint8_t *row;
mask = PIXMAN_FORMAT_A (format)? 0 : 0xff000000;
if (repeat_mode != PIXMAN_REPEAT_NONE)
{
repeat (repeat_mode, &rx, bits->width);
repeat (repeat_mode, &ry, bits->height);
row = (uint8_t *)(bits->bits + bits->rowstride * ry);
pixel = convert_pixel (row, rx) | mask;
}
else
{
if (rx < 0 || ry < 0 || rx >= bits->width || ry >= bits->height)
{
pixel = 0;
}
else
{
row = (uint8_t *)(bits->bits + bits->rowstride * ry);
pixel = convert_pixel (row, rx) | mask;
}
}
f = ((pixman_fixed_32_32_t)fx * fy + 0x8000) >> 16;
srtot += (int)RED_8 (pixel) * f;
sgtot += (int)GREEN_8 (pixel) * f;
sbtot += (int)BLUE_8 (pixel) * f;
satot += (int)ALPHA_8 (pixel) * f;
}
}
}
}
satot = (satot + 0x8000) >> 16;
srtot = (srtot + 0x8000) >> 16;
sgtot = (sgtot + 0x8000) >> 16;
sbtot = (sbtot + 0x8000) >> 16;
satot = CLIP (satot, 0, 0xff);
srtot = CLIP (srtot, 0, 0xff);
sgtot = CLIP (sgtot, 0, 0xff);
sbtot = CLIP (sbtot, 0, 0xff);
buffer[k] = (satot << 24) | (srtot << 16) | (sgtot << 8) | (sbtot << 0);
next:
vx += ux;
vy += uy;
}
}
static const uint32_t zero[2] = { 0, 0 };
static force_inline void
bits_image_fetch_bilinear_affine (pixman_image_t * image,
int offset,
int line,
int width,
uint32_t * buffer,
const uint32_t * mask,
convert_pixel_t convert_pixel,
pixman_format_code_t format,
pixman_repeat_t repeat_mode)
{
pixman_fixed_t x, y;
pixman_fixed_t ux, uy;
pixman_vector_t v;
bits_image_t *bits = &image->bits;
int i;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (offset) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (line) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
if (!pixman_transform_point_3d (image->common.transform, &v))
return;
ux = image->common.transform->matrix[0][0];
uy = image->common.transform->matrix[1][0];
x = v.vector[0];
y = v.vector[1];
for (i = 0; i < width; ++i)
{
int x1, y1, x2, y2;
uint32_t tl, tr, bl, br;
int32_t distx, disty;
int width = image->bits.width;
int height = image->bits.height;
const uint8_t *row1;
const uint8_t *row2;
if (mask && !mask[i])
goto next;
x1 = x - pixman_fixed_1 / 2;
y1 = y - pixman_fixed_1 / 2;
distx = pixman_fixed_to_bilinear_weight (x1);
disty = pixman_fixed_to_bilinear_weight (y1);
y1 = pixman_fixed_to_int (y1);
y2 = y1 + 1;
x1 = pixman_fixed_to_int (x1);
x2 = x1 + 1;
if (repeat_mode != PIXMAN_REPEAT_NONE)
{
uint32_t mask;
mask = PIXMAN_FORMAT_A (format)? 0 : 0xff000000;
repeat (repeat_mode, &x1, width);
repeat (repeat_mode, &y1, height);
repeat (repeat_mode, &x2, width);
repeat (repeat_mode, &y2, height);
row1 = (uint8_t *)(bits->bits + bits->rowstride * y1);
row2 = (uint8_t *)(bits->bits + bits->rowstride * y2);
tl = convert_pixel (row1, x1) | mask;
tr = convert_pixel (row1, x2) | mask;
bl = convert_pixel (row2, x1) | mask;
br = convert_pixel (row2, x2) | mask;
}
else
{
uint32_t mask1, mask2;
int bpp;
/* Note: PIXMAN_FORMAT_BPP() returns an unsigned value,
* which means if you use it in expressions, those
* expressions become unsigned themselves. Since
* the variables below can be negative in some cases,
* that will lead to crashes on 64 bit architectures.
*
* So this line makes sure bpp is signed
*/
bpp = PIXMAN_FORMAT_BPP (format);
if (x1 >= width || x2 < 0 || y1 >= height || y2 < 0)
{
buffer[i] = 0;
goto next;
}
if (y2 == 0)
{
row1 = (const uint8_t *)zero;
mask1 = 0;
}
else
{
row1 = (uint8_t *)(bits->bits + bits->rowstride * y1);
row1 += bpp / 8 * x1;
mask1 = PIXMAN_FORMAT_A (format)? 0 : 0xff000000;
}
if (y1 == height - 1)
{
row2 = (const uint8_t *)zero;
mask2 = 0;
}
else
{
row2 = (uint8_t *)(bits->bits + bits->rowstride * y2);
row2 += bpp / 8 * x1;
mask2 = PIXMAN_FORMAT_A (format)? 0 : 0xff000000;
}
if (x2 == 0)
{
tl = 0;
bl = 0;
}
else
{
tl = convert_pixel (row1, 0) | mask1;
bl = convert_pixel (row2, 0) | mask2;
}
if (x1 == width - 1)
{
tr = 0;
br = 0;
}
else
{
tr = convert_pixel (row1, 1) | mask1;
br = convert_pixel (row2, 1) | mask2;
}
}
buffer[i] = bilinear_interpolation (
tl, tr, bl, br, distx, disty);
next:
x += ux;
y += uy;
}
}
static force_inline void
bits_image_fetch_nearest_affine (pixman_image_t * image,
int offset,
int line,
int width,
uint32_t * buffer,
const uint32_t * mask,
convert_pixel_t convert_pixel,
pixman_format_code_t format,
pixman_repeat_t repeat_mode)
{
pixman_fixed_t x, y;
pixman_fixed_t ux, uy;
pixman_vector_t v;
bits_image_t *bits = &image->bits;
int i;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (offset) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (line) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
if (!pixman_transform_point_3d (image->common.transform, &v))
return;
ux = image->common.transform->matrix[0][0];
uy = image->common.transform->matrix[1][0];
x = v.vector[0];
y = v.vector[1];
for (i = 0; i < width; ++i)
{
int width, height, x0, y0;
const uint8_t *row;
if (mask && !mask[i])
goto next;
width = image->bits.width;
height = image->bits.height;
x0 = pixman_fixed_to_int (x - pixman_fixed_e);
y0 = pixman_fixed_to_int (y - pixman_fixed_e);
if (repeat_mode == PIXMAN_REPEAT_NONE &&
(y0 < 0 || y0 >= height || x0 < 0 || x0 >= width))
{
buffer[i] = 0;
}
else
{
uint32_t mask = PIXMAN_FORMAT_A (format)? 0 : 0xff000000;
if (repeat_mode != PIXMAN_REPEAT_NONE)
{
repeat (repeat_mode, &x0, width);
repeat (repeat_mode, &y0, height);
}
row = (uint8_t *)(bits->bits + bits->rowstride * y0);
buffer[i] = convert_pixel (row, x0) | mask;
}
next:
x += ux;
y += uy;
}
}
static force_inline uint32_t
convert_a8r8g8b8 (const uint8_t *row, int x)
{
return *(((uint32_t *)row) + x);
}
static force_inline uint32_t
convert_x8r8g8b8 (const uint8_t *row, int x)
{
return *(((uint32_t *)row) + x);
}
static force_inline uint32_t
convert_a8 (const uint8_t *row, int x)
{
return (uint32_t) *(row + x) << 24;
}
static force_inline uint32_t
convert_r5g6b5 (const uint8_t *row, int x)
{
return convert_0565_to_0888 (*((uint16_t *)row + x));
}
#define MAKE_SEPARABLE_CONVOLUTION_FETCHER(name, format, repeat_mode) \
static uint32_t * \
bits_image_fetch_separable_convolution_affine_ ## name (pixman_iter_t *iter, \
const uint32_t * mask) \
{ \
bits_image_fetch_separable_convolution_affine ( \
iter->image, \
iter->x, iter->y++, \
iter->width, \
iter->buffer, mask, \
convert_ ## format, \
PIXMAN_ ## format, \
repeat_mode); \
\
return iter->buffer; \
}
#define MAKE_BILINEAR_FETCHER(name, format, repeat_mode) \
static uint32_t * \
bits_image_fetch_bilinear_affine_ ## name (pixman_iter_t *iter, \
const uint32_t * mask) \
{ \
bits_image_fetch_bilinear_affine (iter->image, \
iter->x, iter->y++, \
iter->width, \
iter->buffer, mask, \
convert_ ## format, \
PIXMAN_ ## format, \
repeat_mode); \
return iter->buffer; \
}
#define MAKE_NEAREST_FETCHER(name, format, repeat_mode) \
static uint32_t * \
bits_image_fetch_nearest_affine_ ## name (pixman_iter_t *iter, \
const uint32_t * mask) \
{ \
bits_image_fetch_nearest_affine (iter->image, \
iter->x, iter->y++, \
iter->width, \
iter->buffer, mask, \
convert_ ## format, \
PIXMAN_ ## format, \
repeat_mode); \
return iter->buffer; \
}
#define MAKE_FETCHERS(name, format, repeat_mode) \
MAKE_NEAREST_FETCHER (name, format, repeat_mode) \
MAKE_BILINEAR_FETCHER (name, format, repeat_mode) \
MAKE_SEPARABLE_CONVOLUTION_FETCHER (name, format, repeat_mode)
MAKE_FETCHERS (pad_a8r8g8b8, a8r8g8b8, PIXMAN_REPEAT_PAD)
MAKE_FETCHERS (none_a8r8g8b8, a8r8g8b8, PIXMAN_REPEAT_NONE)
MAKE_FETCHERS (reflect_a8r8g8b8, a8r8g8b8, PIXMAN_REPEAT_REFLECT)
MAKE_FETCHERS (normal_a8r8g8b8, a8r8g8b8, PIXMAN_REPEAT_NORMAL)
MAKE_FETCHERS (pad_x8r8g8b8, x8r8g8b8, PIXMAN_REPEAT_PAD)
MAKE_FETCHERS (none_x8r8g8b8, x8r8g8b8, PIXMAN_REPEAT_NONE)
MAKE_FETCHERS (reflect_x8r8g8b8, x8r8g8b8, PIXMAN_REPEAT_REFLECT)
MAKE_FETCHERS (normal_x8r8g8b8, x8r8g8b8, PIXMAN_REPEAT_NORMAL)
MAKE_FETCHERS (pad_a8, a8, PIXMAN_REPEAT_PAD)
MAKE_FETCHERS (none_a8, a8, PIXMAN_REPEAT_NONE)
MAKE_FETCHERS (reflect_a8, a8, PIXMAN_REPEAT_REFLECT)
MAKE_FETCHERS (normal_a8, a8, PIXMAN_REPEAT_NORMAL)
MAKE_FETCHERS (pad_r5g6b5, r5g6b5, PIXMAN_REPEAT_PAD)
MAKE_FETCHERS (none_r5g6b5, r5g6b5, PIXMAN_REPEAT_NONE)
MAKE_FETCHERS (reflect_r5g6b5, r5g6b5, PIXMAN_REPEAT_REFLECT)
MAKE_FETCHERS (normal_r5g6b5, r5g6b5, PIXMAN_REPEAT_NORMAL)
#define IMAGE_FLAGS \
(FAST_PATH_STANDARD_FLAGS | FAST_PATH_ID_TRANSFORM | \
FAST_PATH_BITS_IMAGE | FAST_PATH_SAMPLES_COVER_CLIP_NEAREST)
static const pixman_iter_info_t fast_iters[] =
{
{ PIXMAN_r5g6b5, IMAGE_FLAGS, ITER_NARROW | ITER_SRC,
_pixman_iter_init_bits_stride, fast_fetch_r5g6b5, NULL },
{ PIXMAN_r5g6b5, FAST_PATH_STD_DEST_FLAGS,
ITER_NARROW | ITER_DEST,
_pixman_iter_init_bits_stride,
fast_fetch_r5g6b5, fast_write_back_r5g6b5 },
{ PIXMAN_r5g6b5, FAST_PATH_STD_DEST_FLAGS,
ITER_NARROW | ITER_DEST | ITER_IGNORE_RGB | ITER_IGNORE_ALPHA,
_pixman_iter_init_bits_stride,
fast_dest_fetch_noop, fast_write_back_r5g6b5 },
{ PIXMAN_a8r8g8b8,
(FAST_PATH_STANDARD_FLAGS |
FAST_PATH_SCALE_TRANSFORM |
FAST_PATH_BILINEAR_FILTER |
FAST_PATH_SAMPLES_COVER_CLIP_BILINEAR),
ITER_NARROW | ITER_SRC,
fast_bilinear_cover_iter_init,
NULL, NULL
},
#define FAST_BILINEAR_FLAGS \
(FAST_PATH_NO_ALPHA_MAP | \
FAST_PATH_NO_ACCESSORS | \
FAST_PATH_HAS_TRANSFORM | \
FAST_PATH_AFFINE_TRANSFORM | \
FAST_PATH_X_UNIT_POSITIVE | \
FAST_PATH_Y_UNIT_ZERO | \
FAST_PATH_NONE_REPEAT | \
FAST_PATH_BILINEAR_FILTER)
{ PIXMAN_a8r8g8b8,
FAST_BILINEAR_FLAGS,
ITER_NARROW | ITER_SRC,
NULL, bits_image_fetch_bilinear_no_repeat_8888, NULL
},
{ PIXMAN_x8r8g8b8,
FAST_BILINEAR_FLAGS,
ITER_NARROW | ITER_SRC,
NULL, bits_image_fetch_bilinear_no_repeat_8888, NULL
},
#define GENERAL_BILINEAR_FLAGS \
(FAST_PATH_NO_ALPHA_MAP | \
FAST_PATH_NO_ACCESSORS | \
FAST_PATH_HAS_TRANSFORM | \
FAST_PATH_AFFINE_TRANSFORM | \
FAST_PATH_BILINEAR_FILTER)
#define GENERAL_NEAREST_FLAGS \
(FAST_PATH_NO_ALPHA_MAP | \
FAST_PATH_NO_ACCESSORS | \
FAST_PATH_HAS_TRANSFORM | \
FAST_PATH_AFFINE_TRANSFORM | \
FAST_PATH_NEAREST_FILTER)
#define GENERAL_SEPARABLE_CONVOLUTION_FLAGS \
(FAST_PATH_NO_ALPHA_MAP | \
FAST_PATH_NO_ACCESSORS | \
FAST_PATH_HAS_TRANSFORM | \
FAST_PATH_AFFINE_TRANSFORM | \
FAST_PATH_SEPARABLE_CONVOLUTION_FILTER)
#define SEPARABLE_CONVOLUTION_AFFINE_FAST_PATH(name, format, repeat) \
{ PIXMAN_ ## format, \
GENERAL_SEPARABLE_CONVOLUTION_FLAGS | FAST_PATH_ ## repeat ## _REPEAT, \
ITER_NARROW | ITER_SRC, \
NULL, bits_image_fetch_separable_convolution_affine_ ## name, NULL \
},
#define BILINEAR_AFFINE_FAST_PATH(name, format, repeat) \
{ PIXMAN_ ## format, \
GENERAL_BILINEAR_FLAGS | FAST_PATH_ ## repeat ## _REPEAT, \
ITER_NARROW | ITER_SRC, \
NULL, bits_image_fetch_bilinear_affine_ ## name, NULL, \
},
#define NEAREST_AFFINE_FAST_PATH(name, format, repeat) \
{ PIXMAN_ ## format, \
GENERAL_NEAREST_FLAGS | FAST_PATH_ ## repeat ## _REPEAT, \
ITER_NARROW | ITER_SRC, \
NULL, bits_image_fetch_nearest_affine_ ## name, NULL \
},
#define AFFINE_FAST_PATHS(name, format, repeat) \
NEAREST_AFFINE_FAST_PATH(name, format, repeat) \
BILINEAR_AFFINE_FAST_PATH(name, format, repeat) \
SEPARABLE_CONVOLUTION_AFFINE_FAST_PATH(name, format, repeat)
AFFINE_FAST_PATHS (pad_a8r8g8b8, a8r8g8b8, PAD)
AFFINE_FAST_PATHS (none_a8r8g8b8, a8r8g8b8, NONE)
AFFINE_FAST_PATHS (reflect_a8r8g8b8, a8r8g8b8, REFLECT)
AFFINE_FAST_PATHS (normal_a8r8g8b8, a8r8g8b8, NORMAL)
AFFINE_FAST_PATHS (pad_x8r8g8b8, x8r8g8b8, PAD)
AFFINE_FAST_PATHS (none_x8r8g8b8, x8r8g8b8, NONE)
AFFINE_FAST_PATHS (reflect_x8r8g8b8, x8r8g8b8, REFLECT)
AFFINE_FAST_PATHS (normal_x8r8g8b8, x8r8g8b8, NORMAL)
AFFINE_FAST_PATHS (pad_a8, a8, PAD)
AFFINE_FAST_PATHS (none_a8, a8, NONE)
AFFINE_FAST_PATHS (reflect_a8, a8, REFLECT)
AFFINE_FAST_PATHS (normal_a8, a8, NORMAL)
AFFINE_FAST_PATHS (pad_r5g6b5, r5g6b5, PAD)
AFFINE_FAST_PATHS (none_r5g6b5, r5g6b5, NONE)
AFFINE_FAST_PATHS (reflect_r5g6b5, r5g6b5, REFLECT)
AFFINE_FAST_PATHS (normal_r5g6b5, r5g6b5, NORMAL)
{ PIXMAN_null },
};
pixman_implementation_t *
_pixman_implementation_create_fast_path (pixman_implementation_t *fallback)
{
pixman_implementation_t *imp = _pixman_implementation_create (fallback, c_fast_paths);
imp->fill = fast_path_fill;
imp->iter_info = fast_iters;
return imp;
}