Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
* 2005 Lars Knoll & Zack Rusin, Trolltech
* 2008 Aaron Plattner, NVIDIA Corporation
* Copyright © 2000 SuSE, Inc.
* Copyright © 2007, 2009 Red Hat, Inc.
* Copyright © 2008 André Tupinambá <andrelrt@gmail.com>
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Keith Packard not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Keith Packard makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pixman-private.h"
#include "pixman-combine32.h"
#include "pixman-inlines.h"
#include "dither/blue-noise-64x64.h"
/* Fetch functions */
static force_inline void
fetch_pixel_no_alpha_32 (bits_image_t *image,
int x, int y, pixman_bool_t check_bounds,
void *out)
{
uint32_t *ret = out;
if (check_bounds &&
(x < 0 || x >= image->width || y < 0 || y >= image->height))
*ret = 0;
else
*ret = image->fetch_pixel_32 (image, x, y);
}
static force_inline void
fetch_pixel_no_alpha_float (bits_image_t *image,
int x, int y, pixman_bool_t check_bounds,
void *out)
{
argb_t *ret = out;
if (check_bounds &&
(x < 0 || x >= image->width || y < 0 || y >= image->height))
ret->a = ret->r = ret->g = ret->b = 0.f;
else
*ret = image->fetch_pixel_float (image, x, y);
}
typedef void (* get_pixel_t) (bits_image_t *image,
int x, int y, pixman_bool_t check_bounds, void *out);
static force_inline void
bits_image_fetch_pixel_nearest (bits_image_t *image,
pixman_fixed_t x,
pixman_fixed_t y,
get_pixel_t get_pixel,
void *out)
{
int x0 = pixman_fixed_to_int (x - pixman_fixed_e);
int y0 = pixman_fixed_to_int (y - pixman_fixed_e);
if (image->common.repeat != PIXMAN_REPEAT_NONE)
{
repeat (image->common.repeat, &x0, image->width);
repeat (image->common.repeat, &y0, image->height);
get_pixel (image, x0, y0, FALSE, out);
}
else
{
get_pixel (image, x0, y0, TRUE, out);
}
}
static force_inline void
bits_image_fetch_pixel_bilinear_32 (bits_image_t *image,
pixman_fixed_t x,
pixman_fixed_t y,
get_pixel_t get_pixel,
void *out)
{
pixman_repeat_t repeat_mode = image->common.repeat;
int width = image->width;
int height = image->height;
int x1, y1, x2, y2;
uint32_t tl, tr, bl, br;
int32_t distx, disty;
uint32_t *ret = out;
x1 = x - pixman_fixed_1 / 2;
y1 = y - pixman_fixed_1 / 2;
distx = pixman_fixed_to_bilinear_weight (x1);
disty = pixman_fixed_to_bilinear_weight (y1);
x1 = pixman_fixed_to_int (x1);
y1 = pixman_fixed_to_int (y1);
x2 = x1 + 1;
y2 = y1 + 1;
if (repeat_mode != PIXMAN_REPEAT_NONE)
{
repeat (repeat_mode, &x1, width);
repeat (repeat_mode, &y1, height);
repeat (repeat_mode, &x2, width);
repeat (repeat_mode, &y2, height);
get_pixel (image, x1, y1, FALSE, &tl);
get_pixel (image, x2, y1, FALSE, &tr);
get_pixel (image, x1, y2, FALSE, &bl);
get_pixel (image, x2, y2, FALSE, &br);
}
else
{
get_pixel (image, x1, y1, TRUE, &tl);
get_pixel (image, x2, y1, TRUE, &tr);
get_pixel (image, x1, y2, TRUE, &bl);
get_pixel (image, x2, y2, TRUE, &br);
}
*ret = bilinear_interpolation (tl, tr, bl, br, distx, disty);
}
static force_inline void
bits_image_fetch_pixel_bilinear_float (bits_image_t *image,
pixman_fixed_t x,
pixman_fixed_t y,
get_pixel_t get_pixel,
void *out)
{
pixman_repeat_t repeat_mode = image->common.repeat;
int width = image->width;
int height = image->height;
int x1, y1, x2, y2;
argb_t tl, tr, bl, br;
float distx, disty;
argb_t *ret = out;
x1 = x - pixman_fixed_1 / 2;
y1 = y - pixman_fixed_1 / 2;
distx = ((float)pixman_fixed_fraction(x1)) / 65536.f;
disty = ((float)pixman_fixed_fraction(y1)) / 65536.f;
x1 = pixman_fixed_to_int (x1);
y1 = pixman_fixed_to_int (y1);
x2 = x1 + 1;
y2 = y1 + 1;
if (repeat_mode != PIXMAN_REPEAT_NONE)
{
repeat (repeat_mode, &x1, width);
repeat (repeat_mode, &y1, height);
repeat (repeat_mode, &x2, width);
repeat (repeat_mode, &y2, height);
get_pixel (image, x1, y1, FALSE, &tl);
get_pixel (image, x2, y1, FALSE, &tr);
get_pixel (image, x1, y2, FALSE, &bl);
get_pixel (image, x2, y2, FALSE, &br);
}
else
{
get_pixel (image, x1, y1, TRUE, &tl);
get_pixel (image, x2, y1, TRUE, &tr);
get_pixel (image, x1, y2, TRUE, &bl);
get_pixel (image, x2, y2, TRUE, &br);
}
*ret = bilinear_interpolation_float (tl, tr, bl, br, distx, disty);
}
static force_inline void accum_32(unsigned int *satot, unsigned int *srtot,
unsigned int *sgtot, unsigned int *sbtot,
const void *p, pixman_fixed_t f)
{
uint32_t pixel = *(uint32_t *)p;
*srtot += (int)RED_8 (pixel) * f;
*sgtot += (int)GREEN_8 (pixel) * f;
*sbtot += (int)BLUE_8 (pixel) * f;
*satot += (int)ALPHA_8 (pixel) * f;
}
static force_inline void reduce_32(unsigned int satot, unsigned int srtot,
unsigned int sgtot, unsigned int sbtot,
void *p)
{
uint32_t *ret = p;
satot = (satot + 0x8000) >> 16;
srtot = (srtot + 0x8000) >> 16;
sgtot = (sgtot + 0x8000) >> 16;
sbtot = (sbtot + 0x8000) >> 16;
satot = CLIP (satot, 0, 0xff);
srtot = CLIP (srtot, 0, 0xff);
sgtot = CLIP (sgtot, 0, 0xff);
sbtot = CLIP (sbtot, 0, 0xff);
*ret = ((satot << 24) | (srtot << 16) | (sgtot << 8) | (sbtot));
}
static force_inline void accum_float(unsigned int *satot, unsigned int *srtot,
unsigned int *sgtot, unsigned int *sbtot,
const void *p, pixman_fixed_t f)
{
const argb_t *pixel = p;
*satot += pixel->a * f;
*srtot += pixel->r * f;
*sgtot += pixel->g * f;
*sbtot += pixel->b * f;
}
static force_inline void reduce_float(unsigned int satot, unsigned int srtot,
unsigned int sgtot, unsigned int sbtot,
void *p)
{
argb_t *ret = p;
ret->a = CLIP (satot / 65536.f, 0.f, 1.f);
ret->r = CLIP (srtot / 65536.f, 0.f, 1.f);
ret->g = CLIP (sgtot / 65536.f, 0.f, 1.f);
ret->b = CLIP (sbtot / 65536.f, 0.f, 1.f);
}
typedef void (* accumulate_pixel_t) (unsigned int *satot, unsigned int *srtot,
unsigned int *sgtot, unsigned int *sbtot,
const void *pixel, pixman_fixed_t f);
typedef void (* reduce_pixel_t) (unsigned int satot, unsigned int srtot,
unsigned int sgtot, unsigned int sbtot,
void *out);
static force_inline void
bits_image_fetch_pixel_convolution (bits_image_t *image,
pixman_fixed_t x,
pixman_fixed_t y,
get_pixel_t get_pixel,
void *out,
accumulate_pixel_t accum,
reduce_pixel_t reduce)
{
pixman_fixed_t *params = image->common.filter_params;
int x_off = (params[0] - pixman_fixed_1) >> 1;
int y_off = (params[1] - pixman_fixed_1) >> 1;
int32_t cwidth = pixman_fixed_to_int (params[0]);
int32_t cheight = pixman_fixed_to_int (params[1]);
int32_t i, j, x1, x2, y1, y2;
pixman_repeat_t repeat_mode = image->common.repeat;
int width = image->width;
int height = image->height;
unsigned int srtot, sgtot, sbtot, satot;
params += 2;
x1 = pixman_fixed_to_int (x - pixman_fixed_e - x_off);
y1 = pixman_fixed_to_int (y - pixman_fixed_e - y_off);
x2 = x1 + cwidth;
y2 = y1 + cheight;
srtot = sgtot = sbtot = satot = 0;
for (i = y1; i < y2; ++i)
{
for (j = x1; j < x2; ++j)
{
int rx = j;
int ry = i;
pixman_fixed_t f = *params;
if (f)
{
/* Must be big enough to hold a argb_t */
argb_t pixel;
if (repeat_mode != PIXMAN_REPEAT_NONE)
{
repeat (repeat_mode, &rx, width);
repeat (repeat_mode, &ry, height);
get_pixel (image, rx, ry, FALSE, &pixel);
}
else
{
get_pixel (image, rx, ry, TRUE, &pixel);
}
accum (&satot, &srtot, &sgtot, &sbtot, &pixel, f);
}
params++;
}
}
reduce (satot, srtot, sgtot, sbtot, out);
}
static void
bits_image_fetch_pixel_separable_convolution (bits_image_t *image,
pixman_fixed_t x,
pixman_fixed_t y,
get_pixel_t get_pixel,
void *out,
accumulate_pixel_t accum,
reduce_pixel_t reduce)
{
pixman_fixed_t *params = image->common.filter_params;
pixman_repeat_t repeat_mode = image->common.repeat;
int width = image->width;
int height = image->height;
int cwidth = pixman_fixed_to_int (params[0]);
int cheight = pixman_fixed_to_int (params[1]);
int x_phase_bits = pixman_fixed_to_int (params[2]);
int y_phase_bits = pixman_fixed_to_int (params[3]);
int x_phase_shift = 16 - x_phase_bits;
int y_phase_shift = 16 - y_phase_bits;
int x_off = ((cwidth << 16) - pixman_fixed_1) >> 1;
int y_off = ((cheight << 16) - pixman_fixed_1) >> 1;
pixman_fixed_t *y_params;
unsigned int srtot, sgtot, sbtot, satot;
int32_t x1, x2, y1, y2;
int32_t px, py;
int i, j;
/* Round x and y to the middle of the closest phase before continuing. This
* ensures that the convolution matrix is aligned right, since it was
* positioned relative to a particular phase (and not relative to whatever
* exact fraction we happen to get here).
*/
x = ((x >> x_phase_shift) << x_phase_shift) + ((1 << x_phase_shift) >> 1);
y = ((y >> y_phase_shift) << y_phase_shift) + ((1 << y_phase_shift) >> 1);
px = (x & 0xffff) >> x_phase_shift;
py = (y & 0xffff) >> y_phase_shift;
y_params = params + 4 + (1 << x_phase_bits) * cwidth + py * cheight;
x1 = pixman_fixed_to_int (x - pixman_fixed_e - x_off);
y1 = pixman_fixed_to_int (y - pixman_fixed_e - y_off);
x2 = x1 + cwidth;
y2 = y1 + cheight;
srtot = sgtot = sbtot = satot = 0;
for (i = y1; i < y2; ++i)
{
pixman_fixed_48_16_t fy = *y_params++;
pixman_fixed_t *x_params = params + 4 + px * cwidth;
if (fy)
{
for (j = x1; j < x2; ++j)
{
pixman_fixed_t fx = *x_params++;
int rx = j;
int ry = i;
if (fx)
{
/* Must be big enough to hold a argb_t */
argb_t pixel;
pixman_fixed_t f;
if (repeat_mode != PIXMAN_REPEAT_NONE)
{
repeat (repeat_mode, &rx, width);
repeat (repeat_mode, &ry, height);
get_pixel (image, rx, ry, FALSE, &pixel);
}
else
{
get_pixel (image, rx, ry, TRUE, &pixel);
}
f = (fy * fx + 0x8000) >> 16;
accum(&satot, &srtot, &sgtot, &sbtot, &pixel, f);
}
}
}
}
reduce(satot, srtot, sgtot, sbtot, out);
}
static force_inline void
bits_image_fetch_pixel_filtered (bits_image_t *image,
pixman_bool_t wide,
pixman_fixed_t x,
pixman_fixed_t y,
get_pixel_t get_pixel,
void *out)
{
switch (image->common.filter)
{
case PIXMAN_FILTER_NEAREST:
case PIXMAN_FILTER_FAST:
bits_image_fetch_pixel_nearest (image, x, y, get_pixel, out);
break;
case PIXMAN_FILTER_BILINEAR:
case PIXMAN_FILTER_GOOD:
case PIXMAN_FILTER_BEST:
if (wide)
bits_image_fetch_pixel_bilinear_float (image, x, y, get_pixel, out);
else
bits_image_fetch_pixel_bilinear_32 (image, x, y, get_pixel, out);
break;
case PIXMAN_FILTER_CONVOLUTION:
if (wide)
{
bits_image_fetch_pixel_convolution (image, x, y,
get_pixel, out,
accum_float,
reduce_float);
}
else
{
bits_image_fetch_pixel_convolution (image, x, y,
get_pixel, out,
accum_32, reduce_32);
}
break;
case PIXMAN_FILTER_SEPARABLE_CONVOLUTION:
if (wide)
{
bits_image_fetch_pixel_separable_convolution (image, x, y,
get_pixel, out,
accum_float,
reduce_float);
}
else
{
bits_image_fetch_pixel_separable_convolution (image, x, y,
get_pixel, out,
accum_32, reduce_32);
}
break;
default:
assert (0);
break;
}
}
static uint32_t *
__bits_image_fetch_affine_no_alpha (pixman_iter_t * iter,
pixman_bool_t wide,
const uint32_t * mask)
{
pixman_image_t *image = iter->image;
int offset = iter->x;
int line = iter->y++;
int width = iter->width;
uint32_t * buffer = iter->buffer;
const uint32_t wide_zero[4] = {0};
pixman_fixed_t x, y;
pixman_fixed_t ux, uy;
pixman_vector_t v;
int i;
get_pixel_t get_pixel =
wide ? fetch_pixel_no_alpha_float : fetch_pixel_no_alpha_32;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (offset) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (line) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
if (image->common.transform)
{
if (!pixman_transform_point_3d (image->common.transform, &v))
return iter->buffer;
ux = image->common.transform->matrix[0][0];
uy = image->common.transform->matrix[1][0];
}
else
{
ux = pixman_fixed_1;
uy = 0;
}
x = v.vector[0];
y = v.vector[1];
for (i = 0; i < width; ++i)
{
if (!mask || (!wide && mask[i]) ||
(wide && memcmp(&mask[4 * i], wide_zero, 16) != 0))
{
bits_image_fetch_pixel_filtered (
&image->bits, wide, x, y, get_pixel, buffer);
}
x += ux;
y += uy;
buffer += wide ? 4 : 1;
}
return iter->buffer;
}
static uint32_t *
bits_image_fetch_affine_no_alpha_32 (pixman_iter_t *iter,
const uint32_t *mask)
{
return __bits_image_fetch_affine_no_alpha(iter, FALSE, mask);
}
static uint32_t *
bits_image_fetch_affine_no_alpha_float (pixman_iter_t *iter,
const uint32_t *mask)
{
return __bits_image_fetch_affine_no_alpha(iter, TRUE, mask);
}
/* General fetcher */
static force_inline void
fetch_pixel_general_32 (bits_image_t *image,
int x, int y, pixman_bool_t check_bounds,
void *out)
{
uint32_t pixel, *ret = out;
if (check_bounds &&
(x < 0 || x >= image->width || y < 0 || y >= image->height))
{
*ret = 0;
return;
}
pixel = image->fetch_pixel_32 (image, x, y);
if (image->common.alpha_map)
{
uint32_t pixel_a;
x -= image->common.alpha_origin_x;
y -= image->common.alpha_origin_y;
if (x < 0 || x >= image->common.alpha_map->width ||
y < 0 || y >= image->common.alpha_map->height)
{
pixel_a = 0;
}
else
{
pixel_a = image->common.alpha_map->fetch_pixel_32 (
image->common.alpha_map, x, y);
pixel_a = ALPHA_8 (pixel_a);
}
pixel &= 0x00ffffff;
pixel |= (pixel_a << 24);
}
*ret = pixel;
}
static force_inline void
fetch_pixel_general_float (bits_image_t *image,
int x, int y, pixman_bool_t check_bounds,
void *out)
{
argb_t *ret = out;
if (check_bounds &&
(x < 0 || x >= image->width || y < 0 || y >= image->height))
{
ret->a = ret->r = ret->g = ret->b = 0;
return;
}
*ret = image->fetch_pixel_float (image, x, y);
if (image->common.alpha_map)
{
x -= image->common.alpha_origin_x;
y -= image->common.alpha_origin_y;
if (x < 0 || x >= image->common.alpha_map->width ||
y < 0 || y >= image->common.alpha_map->height)
{
ret->a = 0.f;
}
else
{
argb_t alpha;
alpha = image->common.alpha_map->fetch_pixel_float (
image->common.alpha_map, x, y);
ret->a = alpha.a;
}
}
}
static uint32_t *
__bits_image_fetch_general (pixman_iter_t *iter,
pixman_bool_t wide,
const uint32_t *mask)
{
pixman_image_t *image = iter->image;
int offset = iter->x;
int line = iter->y++;
int width = iter->width;
uint32_t * buffer = iter->buffer;
get_pixel_t get_pixel =
wide ? fetch_pixel_general_float : fetch_pixel_general_32;
const uint32_t wide_zero[4] = {0};
pixman_fixed_t x, y, w;
pixman_fixed_t ux, uy, uw;
pixman_vector_t v;
int i;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (offset) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (line) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
if (image->common.transform)
{
if (!pixman_transform_point_3d (image->common.transform, &v))
return buffer;
ux = image->common.transform->matrix[0][0];
uy = image->common.transform->matrix[1][0];
uw = image->common.transform->matrix[2][0];
}
else
{
ux = pixman_fixed_1;
uy = 0;
uw = 0;
}
x = v.vector[0];
y = v.vector[1];
w = v.vector[2];
for (i = 0; i < width; ++i)
{
pixman_fixed_t x0, y0;
if (!mask || (!wide && mask[i]) ||
(wide && memcmp(&mask[4 * i], wide_zero, 16) != 0))
{
if (w != 0)
{
x0 = ((uint64_t)x << 16) / w;
y0 = ((uint64_t)y << 16) / w;
}
else
{
x0 = 0;
y0 = 0;
}
bits_image_fetch_pixel_filtered (
&image->bits, wide, x0, y0, get_pixel, buffer);
}
x += ux;
y += uy;
w += uw;
buffer += wide ? 4 : 1;
}
return iter->buffer;
}
static uint32_t *
bits_image_fetch_general_32 (pixman_iter_t *iter,
const uint32_t *mask)
{
return __bits_image_fetch_general(iter, FALSE, mask);
}
static uint32_t *
bits_image_fetch_general_float (pixman_iter_t *iter,
const uint32_t *mask)
{
return __bits_image_fetch_general(iter, TRUE, mask);
}
static void
replicate_pixel_32 (bits_image_t * bits,
int x,
int y,
int width,
uint32_t * buffer)
{
uint32_t color;
uint32_t *end;
color = bits->fetch_pixel_32 (bits, x, y);
end = buffer + width;
while (buffer < end)
*(buffer++) = color;
}
static void
replicate_pixel_float (bits_image_t * bits,
int x,
int y,
int width,
uint32_t * b)
{
argb_t color;
argb_t *buffer = (argb_t *)b;
argb_t *end;
color = bits->fetch_pixel_float (bits, x, y);
end = buffer + width;
while (buffer < end)
*(buffer++) = color;
}
static void
bits_image_fetch_untransformed_repeat_none (bits_image_t *image,
pixman_bool_t wide,
int x,
int y,
int width,
uint32_t * buffer)
{
uint32_t w;
if (y < 0 || y >= image->height)
{
memset (buffer, 0, width * (wide? sizeof (argb_t) : 4));
return;
}
if (x < 0)
{
w = MIN (width, -x);
memset (buffer, 0, w * (wide ? sizeof (argb_t) : 4));
width -= w;
buffer += w * (wide? 4 : 1);
x += w;
}
if (x < image->width)
{
w = MIN (width, image->width - x);
if (wide)
image->fetch_scanline_float (image, x, y, w, buffer, NULL);
else
image->fetch_scanline_32 (image, x, y, w, buffer, NULL);
width -= w;
buffer += w * (wide? 4 : 1);
x += w;
}
memset (buffer, 0, width * (wide ? sizeof (argb_t) : 4));
}
static void
bits_image_fetch_untransformed_repeat_normal (bits_image_t *image,
pixman_bool_t wide,
int x,
int y,
int width,
uint32_t * buffer)
{
uint32_t w;
while (y < 0)
y += image->height;
while (y >= image->height)
y -= image->height;
if (image->width == 1)
{
if (wide)
replicate_pixel_float (image, 0, y, width, buffer);
else
replicate_pixel_32 (image, 0, y, width, buffer);
return;
}
while (width)
{
while (x < 0)
x += image->width;
while (x >= image->width)
x -= image->width;
w = MIN (width, image->width - x);
if (wide)
image->fetch_scanline_float (image, x, y, w, buffer, NULL);
else
image->fetch_scanline_32 (image, x, y, w, buffer, NULL);
buffer += w * (wide? 4 : 1);
x += w;
width -= w;
}
}
static uint32_t *
bits_image_fetch_untransformed_32 (pixman_iter_t * iter,
const uint32_t *mask)
{
pixman_image_t *image = iter->image;
int x = iter->x;
int y = iter->y;
int width = iter->width;
uint32_t * buffer = iter->buffer;
if (image->common.repeat == PIXMAN_REPEAT_NONE)
{
bits_image_fetch_untransformed_repeat_none (
&image->bits, FALSE, x, y, width, buffer);
}
else
{
bits_image_fetch_untransformed_repeat_normal (
&image->bits, FALSE, x, y, width, buffer);
}
iter->y++;
return buffer;
}
static uint32_t *
bits_image_fetch_untransformed_float (pixman_iter_t * iter,
const uint32_t *mask)
{
pixman_image_t *image = iter->image;
int x = iter->x;
int y = iter->y;
int width = iter->width;
uint32_t * buffer = iter->buffer;
if (image->common.repeat == PIXMAN_REPEAT_NONE)
{
bits_image_fetch_untransformed_repeat_none (
&image->bits, TRUE, x, y, width, buffer);
}
else
{
bits_image_fetch_untransformed_repeat_normal (
&image->bits, TRUE, x, y, width, buffer);
}
iter->y++;
return buffer;
}
typedef struct
{
pixman_format_code_t format;
uint32_t flags;
pixman_iter_get_scanline_t get_scanline_32;
pixman_iter_get_scanline_t get_scanline_float;
} fetcher_info_t;
static const fetcher_info_t fetcher_info[] =
{
{ PIXMAN_any,
(FAST_PATH_NO_ALPHA_MAP |
FAST_PATH_ID_TRANSFORM |
FAST_PATH_NO_CONVOLUTION_FILTER |
FAST_PATH_NO_PAD_REPEAT |
FAST_PATH_NO_REFLECT_REPEAT),
bits_image_fetch_untransformed_32,
bits_image_fetch_untransformed_float
},
/* Affine, no alpha */
{ PIXMAN_any,
(FAST_PATH_NO_ALPHA_MAP | FAST_PATH_HAS_TRANSFORM | FAST_PATH_AFFINE_TRANSFORM),
bits_image_fetch_affine_no_alpha_32,
bits_image_fetch_affine_no_alpha_float,
},
/* General */
{ PIXMAN_any,
0,
bits_image_fetch_general_32,
bits_image_fetch_general_float,
},
{ PIXMAN_null },
};
static void
bits_image_property_changed (pixman_image_t *image)
{
_pixman_bits_image_setup_accessors (&image->bits);
}
void
_pixman_bits_image_src_iter_init (pixman_image_t *image, pixman_iter_t *iter)
{
pixman_format_code_t format = image->common.extended_format_code;
uint32_t flags = image->common.flags;
const fetcher_info_t *info;
for (info = fetcher_info; info->format != PIXMAN_null; ++info)
{
if ((info->format == format || info->format == PIXMAN_any) &&
(info->flags & flags) == info->flags)
{
if (iter->iter_flags & ITER_NARROW)
{
iter->get_scanline = info->get_scanline_32;
}
else
{
iter->get_scanline = info->get_scanline_float;
}
return;
}
}
/* Just in case we somehow didn't find a scanline function */
iter->get_scanline = _pixman_iter_get_scanline_noop;
}
static uint32_t *
dest_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask)
{
pixman_image_t *image = iter->image;
int x = iter->x;
int y = iter->y;
int width = iter->width;
uint32_t * buffer = iter->buffer;
image->bits.fetch_scanline_32 (&image->bits, x, y, width, buffer, mask);
if (image->common.alpha_map)
{
uint32_t *alpha;
if ((alpha = malloc (width * sizeof (uint32_t))))
{
int i;
x -= image->common.alpha_origin_x;
y -= image->common.alpha_origin_y;
image->common.alpha_map->fetch_scanline_32 (
image->common.alpha_map, x, y, width, alpha, mask);
for (i = 0; i < width; ++i)
{
buffer[i] &= ~0xff000000;
buffer[i] |= (alpha[i] & 0xff000000);
}
free (alpha);
}
}
return iter->buffer;
}
static uint32_t *
dest_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
{
bits_image_t * image = &iter->image->bits;
int x = iter->x;
int y = iter->y;
int width = iter->width;
argb_t * buffer = (argb_t *)iter->buffer;
image->fetch_scanline_float (
image, x, y, width, (uint32_t *)buffer, mask);
if (image->common.alpha_map)
{
argb_t *alpha;
if ((alpha = malloc (width * sizeof (argb_t))))
{
int i;
x -= image->common.alpha_origin_x;
y -= image->common.alpha_origin_y;
image->common.alpha_map->fetch_scanline_float (
image->common.alpha_map, x, y, width, (uint32_t *)alpha, mask);
for (i = 0; i < width; ++i)
buffer[i].a = alpha[i].a;
free (alpha);
}
}
return iter->buffer;
}
static void
dest_write_back_narrow (pixman_iter_t *iter)
{
bits_image_t * image = &iter->image->bits;
int x = iter->x;
int y = iter->y;
int width = iter->width;
const uint32_t *buffer = iter->buffer;
image->store_scanline_32 (image, x, y, width, buffer);
if (image->common.alpha_map)
{
x -= image->common.alpha_origin_x;
y -= image->common.alpha_origin_y;
image->common.alpha_map->store_scanline_32 (
image->common.alpha_map, x, y, width, buffer);
}
iter->y++;
}
static float
dither_factor_blue_noise_64 (int x, int y)
{
float m = dither_blue_noise_64x64[((y & 0x3f) << 6) | (x & 0x3f)];
return m * (1. / 4096.f) + (1. / 8192.f);
}
static float
dither_factor_bayer_8 (int x, int y)
{
uint32_t m;
y ^= x;
/* Compute reverse(interleave(xor(x mod n, y mod n), x mod n))
* Here n = 8 and `mod n` is the bottom 3 bits.
*/
m = ((y & 0x1) << 5) | ((x & 0x1) << 4) |
((y & 0x2) << 2) | ((x & 0x2) << 1) |
((y & 0x4) >> 1) | ((x & 0x4) >> 2);
/* m is in range [0, 63]. We scale it to [0, 63.0f/64.0f], then
* shift it to to [1.0f/128.0f, 127.0f/128.0f] so that 0 < d < 1.
* This ensures exact values are not changed by dithering.
*/
return (float)(m) * (1 / 64.0f) + (1.0f / 128.0f);
}
typedef float (* dither_factor_t)(int x, int y);
static force_inline float
dither_apply_channel (float f, float d, float s)
{
/* float_to_unorm splits the [0, 1] segment in (1 << n_bits)
* subsections of equal length; however unorm_to_float does not
* map to the center of those sections. In fact, pixel value u is
* mapped to:
*
* u u u 1
* -------------- = ---------- + -------------- * ----------
* 2^n_bits - 1 2^n_bits 2^n_bits - 1 2^n_bits
*
* Hence if f = u / (2^n_bits - 1) is exactly representable on a
* n_bits palette, all the numbers between
*
* u
* ---------- = f - f * 2^n_bits = f + (0 - f) * 2^n_bits
* 2^n_bits
*
* and
*
* u + 1
* ---------- = f - (f - 1) * 2^n_bits = f + (1 - f) * 2^n_bits
* 2^n_bits
*
* are also mapped back to u.
*
* Hence the following calculation ensures that we add as much
* noise as possible without perturbing values which are exactly
* representable in the target colorspace. Note that this corresponds to
* mixing the original color with noise with a ratio of `1 / 2^n_bits`.
*/
return f + (d - f) * s;
}
static force_inline float
dither_compute_scale (int n_bits)
{
// No dithering for wide formats
if (n_bits == 0 || n_bits >= 32)
return 0.f;
return 1.f / (float)(1 << n_bits);
}
static const uint32_t *
dither_apply_ordered (pixman_iter_t *iter, dither_factor_t factor)
{
bits_image_t *image = &iter->image->bits;
int x = iter->x + image->dither_offset_x;
int y = iter->y + image->dither_offset_y;
int width = iter->width;
argb_t *buffer = (argb_t *)iter->buffer;
pixman_format_code_t format = image->format;
int a_size = PIXMAN_FORMAT_A (format);
int r_size = PIXMAN_FORMAT_R (format);
int g_size = PIXMAN_FORMAT_G (format);
int b_size = PIXMAN_FORMAT_B (format);
float a_scale = dither_compute_scale (a_size);
float r_scale = dither_compute_scale (r_size);
float g_scale = dither_compute_scale (g_size);
float b_scale = dither_compute_scale (b_size);
int i;
float d;
for (i = 0; i < width; ++i)
{
d = factor (x + i, y);
buffer->a = dither_apply_channel (buffer->a, d, a_scale);
buffer->r = dither_apply_channel (buffer->r, d, r_scale);
buffer->g = dither_apply_channel (buffer->g, d, g_scale);
buffer->b = dither_apply_channel (buffer->b, d, b_scale);
buffer++;
}
return iter->buffer;
}
static void
dest_write_back_wide (pixman_iter_t *iter)
{
bits_image_t * image = &iter->image->bits;
int x = iter->x;
int y = iter->y;
int width = iter->width;
const uint32_t *buffer = iter->buffer;
switch (image->dither)
{
case PIXMAN_DITHER_NONE:
break;
case PIXMAN_DITHER_GOOD:
case PIXMAN_DITHER_BEST:
case PIXMAN_DITHER_ORDERED_BLUE_NOISE_64:
buffer = dither_apply_ordered (iter, dither_factor_blue_noise_64);
break;
case PIXMAN_DITHER_FAST:
case PIXMAN_DITHER_ORDERED_BAYER_8:
buffer = dither_apply_ordered (iter, dither_factor_bayer_8);
break;
}
image->store_scanline_float (image, x, y, width, buffer);
if (image->common.alpha_map)
{
x -= image->common.alpha_origin_x;
y -= image->common.alpha_origin_y;
image->common.alpha_map->store_scanline_float (
image->common.alpha_map, x, y, width, buffer);
}
iter->y++;
}
void
_pixman_bits_image_dest_iter_init (pixman_image_t *image, pixman_iter_t *iter)
{
if (iter->iter_flags & ITER_NARROW)
{
if ((iter->iter_flags & (ITER_IGNORE_RGB | ITER_IGNORE_ALPHA)) ==
(ITER_IGNORE_RGB | ITER_IGNORE_ALPHA))
{
iter->get_scanline = _pixman_iter_get_scanline_noop;
}
else
{
iter->get_scanline = dest_get_scanline_narrow;
}
iter->write_back = dest_write_back_narrow;
}
else
{
iter->get_scanline = dest_get_scanline_wide;
iter->write_back = dest_write_back_wide;
}
}
static uint32_t *
create_bits (pixman_format_code_t format,
int width,
int height,
int * rowstride_bytes,
pixman_bool_t clear)
{
int stride;
size_t buf_size;
int bpp;
/* what follows is a long-winded way, avoiding any possibility of integer
* overflows, of saying:
* stride = ((width * bpp + 0x1f) >> 5) * sizeof (uint32_t);
*/
bpp = PIXMAN_FORMAT_BPP (format);
if (_pixman_multiply_overflows_int (width, bpp))
return NULL;
stride = width * bpp;
if (_pixman_addition_overflows_int (stride, 0x1f))
return NULL;
stride += 0x1f;
stride >>= 5;
stride *= sizeof (uint32_t);
if (_pixman_multiply_overflows_size (height, stride))
return NULL;
buf_size = (size_t)height * stride;
if (rowstride_bytes)
*rowstride_bytes = stride;
if (clear)
return calloc (buf_size, 1);
else
return malloc (buf_size);
}
pixman_bool_t
_pixman_bits_image_init (pixman_image_t * image,
pixman_format_code_t format,
int width,
int height,
uint32_t * bits,
int rowstride,
pixman_bool_t clear)
{
uint32_t *free_me = NULL;
if (PIXMAN_FORMAT_BPP (format) == 128)
return_val_if_fail(!(rowstride % 4), FALSE);
if (!bits && width && height)
{
int rowstride_bytes;
free_me = bits = create_bits (format, width, height, &rowstride_bytes, clear);
if (!bits)
return FALSE;
rowstride = rowstride_bytes / (int) sizeof (uint32_t);
}
_pixman_image_init (image);
image->type = BITS;
image->bits.format = format;
image->bits.width = width;
image->bits.height = height;
image->bits.bits = bits;
image->bits.free_me = free_me;
image->bits.dither = PIXMAN_DITHER_NONE;
image->bits.dither_offset_x = 0;
image->bits.dither_offset_y = 0;
image->bits.read_func = NULL;
image->bits.write_func = NULL;
image->bits.rowstride = rowstride;
image->bits.indexed = NULL;
image->common.property_changed = bits_image_property_changed;
_pixman_image_reset_clip_region (image);
return TRUE;
}
static pixman_image_t *
create_bits_image_internal (pixman_format_code_t format,
int width,
int height,
uint32_t * bits,
int rowstride_bytes,
pixman_bool_t clear)
{
pixman_image_t *image;
/* must be a whole number of uint32_t's
*/
return_val_if_fail (
bits == NULL || (rowstride_bytes % sizeof (uint32_t)) == 0, NULL);
return_val_if_fail (PIXMAN_FORMAT_BPP (format) >= PIXMAN_FORMAT_DEPTH (format), NULL);
image = _pixman_image_allocate ();
if (!image)
return NULL;
if (!_pixman_bits_image_init (image, format, width, height, bits,
rowstride_bytes / (int) sizeof (uint32_t),
clear))
{
free (image);
return NULL;
}
return image;
}
/* If bits is NULL, a buffer will be allocated and initialized to 0 */
PIXMAN_EXPORT pixman_image_t *
pixman_image_create_bits (pixman_format_code_t format,
int width,
int height,
uint32_t * bits,
int rowstride_bytes)
{
return create_bits_image_internal (
format, width, height, bits, rowstride_bytes, TRUE);
}
/* If bits is NULL, a buffer will be allocated and _not_ initialized */
PIXMAN_EXPORT pixman_image_t *
pixman_image_create_bits_no_clear (pixman_format_code_t format,
int width,
int height,
uint32_t * bits,
int rowstride_bytes)
{
return create_bits_image_internal (
format, width, height, bits, rowstride_bytes, FALSE);
}