Source code

Revision control

Copy as Markdown

Other Tools

//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// GLES1Shaders.inc: Defines GLES1 emulation shader.
// The following variables are added in GLES1Renderer::initializeRendererProgram
// bool clip_plane_enables
// bool enable_alpha_test
// bool enable_clip_planes
// bool enable_color_material
// bool enable_draw_texture
// bool enable_fog
// bool enable_lighting
// bool enable_normalize
// bool enable_rescale_normal
// bool enable_texture_2d[kMaxTexUnits]
// bool enable_texture_cube_map[kMaxTexUnits]
// bool light_enables[kMaxLights]
// bool light_model_two_sided
// bool point_rasterization
// bool point_sprite_coord_replace
// bool point_sprite_enabled
// bool shade_model_flat
// int texture_format[kMaxTexUnits];
// int texture_env_mode[kMaxTexUnits];
// int combine_rgb[kMaxTexUnits];
// int combine_alpha[kMaxTexUnits];
// int src0_rgb[kMaxTexUnits];
// int src0_alpha[kMaxTexUnits];
// int src1_rgb[kMaxTexUnits];
// int src1_alpha[kMaxTexUnits];
// int src2_rgb[kMaxTexUnits];
// int src2_alpha[kMaxTexUnits];
// int op0_rgb[kMaxTexUnits];
// int op0_alpha[kMaxTexUnits];
// int op1_rgb[kMaxTexUnits];
// int op1_alpha[kMaxTexUnits];
// int op2_rgb[kMaxTexUnits];
// int op2_alpha[kMaxTexUnits];
// int alpha_func;
// int fog_mode;
constexpr char kGLES1DrawVShaderHeader[] = R"(#version 300 es
precision highp float;
#define kMaxTexUnits 4
#define kMaxLights 8
)";
constexpr char kGLES1DrawVShader[] = R"(
in vec4 pos;
in vec3 normal;
in vec4 color;
in float pointsize;
in vec4 texcoord0;
in vec4 texcoord1;
in vec4 texcoord2;
in vec4 texcoord3;
uniform mat4 projection;
uniform mat4 modelview;
uniform mat4 modelview_invtr;
uniform mat4 texture_matrix[kMaxTexUnits];
// Point rasterization//////////////////////////////////////////////////////////
uniform float point_size_min;
uniform float point_size_max;
uniform vec3 point_distance_attenuation;
// Shading: flat shading, lighting, and materials///////////////////////////////
uniform vec4 material_ambient;
uniform vec4 material_diffuse;
uniform vec4 material_specular;
uniform vec4 material_emissive;
uniform float material_specular_exponent;
uniform vec4 light_model_scene_ambient;
uniform vec4 light_ambients[kMaxLights];
uniform vec4 light_diffuses[kMaxLights];
uniform vec4 light_speculars[kMaxLights];
uniform vec4 light_positions[kMaxLights];
uniform vec3 light_directions[kMaxLights];
uniform float light_spotlight_exponents[kMaxLights];
uniform float light_spotlight_cutoff_angles[kMaxLights];
uniform float light_attenuation_consts[kMaxLights];
uniform float light_attenuation_linears[kMaxLights];
uniform float light_attenuation_quadratics[kMaxLights];
// GL_OES_draw_texture uniforms/////////////////////////////////////////////////
uniform vec4 draw_texture_coords;
uniform vec2 draw_texture_dims;
uniform vec4 draw_texture_normalized_crop_rect[kMaxTexUnits];
// Varyings/////////////////////////////////////////////////////////////////////
out vec4 pos_varying;
out vec3 normal_varying;
out vec4 color_varying;
flat out vec4 color_varying_flat;
out vec4 texcoord0_varying;
out vec4 texcoord1_varying;
out vec4 texcoord2_varying;
out vec4 texcoord3_varying;
float posDot(vec3 a, vec3 b)
{
return max(dot(a, b), 0.0);
}
vec4 doLighting(vec4 vertexColor)
{
vec4 materialAmbientActual = material_ambient;
vec4 materialDiffuseActual = material_diffuse;
if (enable_color_material)
{
materialAmbientActual = vertexColor;
materialDiffuseActual = vertexColor;
}
vec4 lightingResult = material_emissive + materialAmbientActual * light_model_scene_ambient;
for (int i = 0; i < kMaxLights; i++)
{
if (!light_enables[i])
continue;
vec4 lightAmbient = light_ambients[i];
vec4 lightDiffuse = light_diffuses[i];
vec4 lightSpecular = light_speculars[i];
vec4 lightPos = light_positions[i];
vec3 lightDir = light_directions[i];
float attConst = light_attenuation_consts[i];
float attLinear = light_attenuation_linears[i];
float attQuadratic = light_attenuation_quadratics[i];
float spotAngle = light_spotlight_cutoff_angles[i];
float spotExponent = light_spotlight_exponents[i];
vec3 toLight;
if (lightPos.w == 0.0)
{
toLight = lightPos.xyz;
}
else
{
toLight = (lightPos.xyz / lightPos.w - pos_varying.xyz);
}
float lightDist = length(toLight);
vec3 h = normalize(toLight) + vec3(0.0, 0.0, 1.0);
float ndotL = posDot(normal_varying, normalize(toLight));
float ndoth = posDot(normal_varying, normalize(h));
float specAtt;
if (ndotL != 0.0)
{
specAtt = 1.0;
}
else
{
specAtt = 0.0;
}
float att;
if (lightPos.w != 0.0)
{
float attDenom =
(attConst + attLinear * lightDist + attQuadratic * lightDist * lightDist);
att = 1.0 / attDenom;
}
else
{
att = 1.0;
}
float spot;
float spotAngleCos = cos(radians(spotAngle));
vec3 toSurfaceDir = -normalize(toLight);
float spotDot = posDot(toSurfaceDir, normalize(lightDir));
if (spotAngle == 180.0 || lightPos.w == 0.0)
{
spot = 1.0;
}
else
{
if (spotDot < spotAngleCos)
{
spot = 0.0;
}
else
{
spot = pow(spotDot, spotExponent);
}
}
vec4 contrib = materialAmbientActual * lightAmbient;
contrib += ndotL * materialDiffuseActual * lightDiffuse;
if (ndoth > 0.0 && material_specular_exponent > 0.0)
{
contrib += specAtt * pow(ndoth, material_specular_exponent) * material_specular *
lightSpecular;
}
else
{
if (ndoth > 0.0)
{
contrib += specAtt * material_specular * lightSpecular;
}
}
contrib *= att * spot;
lightingResult += contrib;
}
return lightingResult;
}
const vec4 drawTextureVertices[6] = vec4[](
vec4(0.0, 0.0, 0.0, 1.0),
vec4(1.0, 0.0, 0.0, 1.0),
vec4(1.0, 1.0, 0.0, 1.0),
vec4(0.0, 0.0, 0.0, 1.0),
vec4(1.0, 1.0, 0.0, 1.0),
vec4(0.0, 1.0, 0.0, 1.0));
vec4 drawTexturePosition(int vertexId)
{
float drawTexX = draw_texture_coords[0];
float drawTexY = draw_texture_coords[1];
float drawTexZ = draw_texture_coords[2];
float drawTexW = draw_texture_dims[0];
float drawTexH = draw_texture_dims[1];
return vec4(drawTexX, drawTexY, drawTexZ, 0.0) +
drawTextureVertices[vertexId] *
vec4(drawTexW, drawTexH, 1.0, 1.0);
}
vec4 drawTextureTexCoord(int vertexId, int textureUnit)
{
float texCropU = draw_texture_normalized_crop_rect[textureUnit].x;
float texCropV = draw_texture_normalized_crop_rect[textureUnit].y;
float texCropW = draw_texture_normalized_crop_rect[textureUnit].z;
float texCropH = draw_texture_normalized_crop_rect[textureUnit].w;
return vec4(texCropU, texCropV, 0.0, 0.0) +
drawTextureVertices[vertexId] *
vec4(texCropW, texCropH, 0.0, 0.0);
}
vec4 calcWorldPosition(vec4 posInput)
{
return modelview * posInput;
}
vec4 calcNdcFromWorldPosition(vec4 worldPos)
{
return projection * worldPos;
}
float calcPointSize(vec4 ndcPos)
{
float dist = length(ndcPos.z);
float attConst = point_distance_attenuation[0];
float attLinear = point_distance_attenuation[1];
float attQuad = point_distance_attenuation[2];
float attPart = attConst + attLinear * dist + attQuad * dist * dist;
float attPointSize = pointsize / pow(attPart, 0.5);
return clamp(attPointSize, point_size_min, point_size_max);
}
vec3 calcNormal(vec3 normalInput)
{
mat3 mvInvTr3 = mat3(modelview_invtr);
vec3 result = mvInvTr3 * normalInput;
if (enable_rescale_normal)
{
float rescale = 1.0;
vec3 rescaleVec = vec3(mvInvTr3[2]);
float len = length(rescaleVec);
if (len > 0.0)
{
rescale = 1.0 / len;
}
result *= rescale;
}
if (enable_normalize)
{
result = normalize(result);
}
return result;
}
void main()
{
if (enable_draw_texture)
{
int vertexId = gl_VertexID;
vec4 posDrawTexture = drawTexturePosition(vertexId);
gl_Position = posDrawTexture;
pos_varying = posDrawTexture;
normal_varying = normal;
gl_PointSize = pointsize;
texcoord0_varying = drawTextureTexCoord(vertexId, 0);
texcoord1_varying = drawTextureTexCoord(vertexId, 1);
texcoord2_varying = drawTextureTexCoord(vertexId, 2);
texcoord3_varying = drawTextureTexCoord(vertexId, 3);
}
else
{
vec4 worldPos = calcWorldPosition(pos);
vec4 ndcPos = calcNdcFromWorldPosition(worldPos);
gl_Position = ndcPos;
pos_varying = worldPos;
normal_varying = calcNormal(normal);
// Avoid calculating point size stuff
// if we are not rendering points.
if (point_rasterization)
{
gl_PointSize = calcPointSize(ndcPos);
}
else
{
gl_PointSize = pointsize;
}
texcoord0_varying = texture_matrix[0] * texcoord0;
texcoord1_varying = texture_matrix[1] * texcoord1;
texcoord2_varying = texture_matrix[2] * texcoord2;
texcoord3_varying = texture_matrix[3] * texcoord3;
}
vec4 vertex_color = color;
if (enable_lighting)
{
vertex_color = doLighting(color);
}
vertex_color = clamp(vertex_color, vec4(0), vec4(1));
color_varying = vertex_color;
color_varying_flat = vertex_color;
}
)";
constexpr char kGLES1DrawFShaderVersion[] = R"(#version 300 es
)";
constexpr char kGLES1DrawFShaderHeader[] = R"(precision highp float;
// Defines for GL constants
#define kMaxTexUnits 4
#define kMaxClipPlanes 6
#define kModulate 0x2100
#define kDecal 0x2101
#define kCombine 0x8570
#define kReplace 0x1E01
#define kBlend 0x0BE2
#define kAdd 0x0104
#define kAddSigned 0x8574
#define kInterpolate 0x8575
#define kSubtract 0x84E7
#define kDot3Rgb 0x86AE
#define kDot3Rgba 0x86AF
#define kAlpha 0x1906
#define kRGB 0x1907
#define kRGBA 0x1908
#define kLuminance 0x1909
#define kLuminanceAlpha 0x190A
#define kTexture 0x1702
#define kConstant 0x8576
#define kPrimaryColor 0x8577
#define kPrevious 0x8578
#define kSrcColor 0x0300
#define kOneMinusSrcColor 0x0301
#define kSrcAlpha 0x0302
#define kOneMinusSrcAlpha 0x0303
#define kLinear 0x2601
#define kExp 0x0800
#define kExp2 0x0801
#define kNever 0x0200
#define kLess 0x0201
#define kEqual 0x0202
#define kLequal 0x0203
#define kGreater 0x0204
#define kNotequal 0x0205
#define kGequal 0x0206
#define kAlways 0x0207
#define kZero 0x0
#define kOne 0x1
#define kAnd 0u
#define kAndInverted 1u
#define kAndReverse 2u
#define kClear 3u
#define kCopy 4u
#define kCopyInverted 5u
#define kEquiv 6u
#define kInvert 7u
#define kNand 8u
#define kNoop 9u
#define kNor 10u
#define kOr 11u
#define kOrInverted 12u
#define kOrReverse 13u
#define kSet 14u
#define kXor 15u
)";
constexpr char kGLES1DrawFShaderUniformDefs[] = R"(
// Texture units ///////////////////////////////////////////////////////////////
// These are not arrays because hw support for arrays
// of samplers is rather lacking.
uniform sampler2D tex_sampler0;
uniform samplerCube tex_cube_sampler0;
uniform sampler2D tex_sampler1;
uniform samplerCube tex_cube_sampler1;
uniform sampler2D tex_sampler2;
uniform samplerCube tex_cube_sampler2;
uniform sampler2D tex_sampler3;
uniform samplerCube tex_cube_sampler3;
uniform vec4 texture_env_color[kMaxTexUnits];
uniform float texture_env_rgb_scale[kMaxTexUnits];
uniform float texture_env_alpha_scale[kMaxTexUnits];
// Vertex attributes////////////////////////////////////////////////////////////
in vec4 pos_varying;
in vec3 normal_varying;
in vec4 color_varying;
flat in vec4 color_varying_flat;
in vec4 texcoord0_varying;
in vec4 texcoord1_varying;
in vec4 texcoord2_varying;
in vec4 texcoord3_varying;
// Alpha test///////////////////////////////////////////////////////////////////
uniform float alpha_test_ref;
// Fog /////////////////////////////////////////////////////////////////////////
uniform float fog_density;
uniform float fog_start;
uniform float fog_end;
uniform vec4 fog_color;
// User clip plane /////////////////////////////////////////////////////////////
uniform vec4 clip_planes[kMaxClipPlanes];
// Logic Op ////////////////////////////////////////////////////////////////////
// Format is:
// - 4x4 bits depicting the bit width of each channel of color output
// - 4 bits for the op based on LogicalOperation's packing
uniform highp uint logic_op;
// Point rasterization//////////////////////////////////////////////////////////
// GL_OES_draw_texture//////////////////////////////////////////////////////////
)";
constexpr char kGLES1DrawFShaderOutputDef[] = R"(
out vec4 frag_color;
)";
constexpr char kGLES1DrawFShaderFramebufferFetchOutputDef[] = R"(
inout vec4 frag_color;
)";
constexpr char kGLES1DrawFShaderFramebufferFetchNonCoherentOutputDef[] = R"(
layout(noncoherent) inout vec4 frag_color;
)";
constexpr char kGLES1DrawFShaderFunctions[] = R"(
bool doAlphaTest(vec4 currentFragment)
{
bool shouldPassAlpha = false;
float incAlpha = currentFragment.a;
switch (alpha_func)
{
case kNever:
shouldPassAlpha = false;
break;
case kLess:
shouldPassAlpha = incAlpha < alpha_test_ref;
break;
case kLequal:
shouldPassAlpha = incAlpha <= alpha_test_ref;
break;
case kEqual:
shouldPassAlpha = incAlpha == alpha_test_ref;
break;
case kGequal:
shouldPassAlpha = incAlpha >= alpha_test_ref;
break;
case kGreater:
shouldPassAlpha = incAlpha > alpha_test_ref;
break;
case kNotequal:
shouldPassAlpha = incAlpha != alpha_test_ref;
break;
case kAlways:
default:
shouldPassAlpha = true;
break;
}
return shouldPassAlpha;
}
bool doClipPlaneTest()
{
bool res = true;
for (int i = 0; i < kMaxClipPlanes; i++)
{
if (clip_plane_enables[i])
{
float dist = dot(clip_planes[i].xyz, pos_varying.xyz) + clip_planes[i].w * pos_varying.w;
res = res && (dist >= 0.0);
}
}
return res;
}
vec4 doFog(vec4 currentFragment)
{
float eyeDist = -pos_varying.z / pos_varying.w;
float f = 1.0;
switch (fog_mode)
{
case kExp:
f = exp(-fog_density * eyeDist);
break;
case kExp2:
f = exp(-(pow(fog_density * eyeDist, 2.0)));
break;
case kLinear:
f = (fog_end - eyeDist) / (fog_end - fog_start);
break;
default:
break;
}
f = clamp(f, 0.0, 1.0);
vec4 result = vec4(f * currentFragment.rgb + (1.0 - f) * fog_color.rgb, currentFragment.a);
return result;
}
)";
constexpr char kGLES1DrawFShaderLogicOpFramebufferFetchDisabled[] = R"(
vec4 applyLogicOp(vec4 currentFragment)
{
return currentFragment;
}
)";
// applyLogicOp takes logic-op information from a packed uniform and applies it to the color
// attachment using framebuffer fetch. See the description of logic_op above for the format of the
// uniform.
//
// In particular, 4 bits in logic_op (at offset 16) contain the packed logical operation (of
// LogicalOperation type). Based on the selected operation, the formula specified in the spec is
// applied (applied as bitwise operations on unorm values).
constexpr char kGLES1DrawFShaderLogicOpFramebufferFetchEnabled[] = R"(
vec4 applyLogicOp(vec4 currentFragment)
{
vec4 previousFragment = frag_color;
mediump uvec4 channelWidths = uvec4(logic_op & 0xFu,
logic_op >> 4u & 0xFu,
logic_op >> 8u & 0xFu,
logic_op >> 12u & 0xFu);
mediump uvec4 channelMasks = (uvec4(1) << channelWidths) - 1u;
mediump uvec4 src = uvec4(round(currentFragment * vec4(channelMasks)));
mediump uvec4 dst = uvec4(round(previousFragment * vec4(channelMasks)));
mediump uvec4 result;
switch (logic_op >> 16u & 0xFu)
{
case kAnd:
result = src & dst;
break;
case kAndInverted:
result = ~src & dst;
break;
case kAndReverse:
result = src & ~dst;
break;
case kClear:
result = uvec4(0);
break;
case kCopy:
result = src;
break;
case kCopyInverted:
result = ~src;
break;
case kEquiv:
result = ~(src ^ dst);
break;
case kInvert:
result = ~dst;
break;
case kNand:
result = ~(src & dst);
break;
case kNoop:
result = dst;
break;
case kNor:
result = ~(src | dst);
break;
case kOr:
result = src | dst;
break;
case kOrInverted:
result = ~src | dst;
break;
case kOrReverse:
result = src | ~dst;
break;
case kSet:
result = channelMasks;
break;
case kXor:
result = src ^ dst;
break;
}
result &= channelMasks;
// Avoid division by zero for formats without alpha
channelMasks.a = max(channelMasks.a, 1u);
return vec4(result) / vec4(channelMasks);
}
)";
constexpr char kGLES1DrawFShaderMultitexturing[] = R"(
bool isTextureUnitEnabled(int unit)
{
return enable_texture_2d[unit] || enable_texture_cube_map[unit];
}
vec4 getTextureColor(int unit)
{
vec4 res;
switch (unit)
{
case 0:
if (enable_texture_2d[0])
{
res = texture(tex_sampler0, texcoord0_varying.xy);
}
else if (enable_texture_cube_map[0])
{
res = texture(tex_cube_sampler0, texcoord0_varying.xyz);
}
break;
case 1:
if (enable_texture_2d[1])
{
res = texture(tex_sampler1, texcoord1_varying.xy);
}
else if (enable_texture_cube_map[1])
{
res = texture(tex_cube_sampler1, texcoord1_varying.xyz);
}
break;
case 2:
if (enable_texture_2d[2])
{
res = texture(tex_sampler2, texcoord2_varying.xy);
}
else if (enable_texture_cube_map[2])
{
res = texture(tex_cube_sampler2, texcoord2_varying.xyz);
}
break;
case 3:
if (enable_texture_2d[3])
{
res = texture(tex_sampler3, texcoord3_varying.xy);
}
else if (enable_texture_cube_map[3])
{
// TODO: Weird stuff happens
// res = texture(tex_cube_sampler3, texcoord3_varying.xyz);
}
break;
default:
break;
}
return res;
}
vec4 getPointSpriteTextureColor(int unit)
{
vec4 res;
switch (unit)
{
case 0:
if (enable_texture_2d[0])
{
res = texture(tex_sampler0, gl_PointCoord.xy);
}
break;
case 1:
if (enable_texture_2d[1])
{
res = texture(tex_sampler1, gl_PointCoord.xy);
}
break;
case 2:
if (enable_texture_2d[2])
{
res = texture(tex_sampler2, gl_PointCoord.xy);
}
break;
case 3:
if (enable_texture_2d[3])
{
res = texture(tex_sampler3, gl_PointCoord.xy);
}
break;
default:
break;
}
return res;
}
vec3 textureCombineSrcnOpnRgb(int srcnRgb,
int opnRgb,
vec4 textureEnvColor,
vec4 vertexColor,
vec4 texturePrevColor,
vec4 textureColor)
{
vec3 res;
vec4 op;
switch (srcnRgb)
{
case kTexture:
op = textureColor;
break;
case kConstant:
op = textureEnvColor;
break;
case kPrimaryColor:
op = vertexColor;
break;
case kPrevious:
op = texturePrevColor;
break;
default:
op = texturePrevColor;
break;
}
switch (opnRgb)
{
case kSrcColor:
res = op.rgb;
break;
case kOneMinusSrcColor:
res = 1.0 - op.rgb;
break;
case kSrcAlpha:
res = vec3(op.a, op.a, op.a);
break;
case kOneMinusSrcAlpha:
res = vec3(1.0 - op.a, 1.0 - op.a, 1.0 - op.a);
break;
default:
break;
}
return res;
}
float textureCombineSrcnOpnAlpha(int srcn,
int opn,
vec4 textureEnvColor,
vec4 vertexColor,
vec4 texturePrevColor,
vec4 textureColor)
{
float res;
vec4 op;
switch (srcn)
{
case kTexture:
op = textureColor;
break;
case kConstant:
op = textureEnvColor;
break;
case kPrimaryColor:
op = vertexColor;
break;
case kPrevious:
op = texturePrevColor;
break;
default:
op = texturePrevColor;
break;
}
switch (opn)
{
case kSrcAlpha:
res = op.a;
break;
case kOneMinusSrcAlpha:
res = 1.0 - op.a;
break;
default:
break;
}
return res;
}
vec4 textureCombine(int combineRgb,
int combineAlpha,
int src0Rgb,
int src0Alpha,
int src1Rgb,
int src1Alpha,
int src2Rgb,
int src2Alpha,
int op0Rgb,
int op0Alpha,
int op1Rgb,
int op1Alpha,
int op2Rgb,
int op2Alpha,
vec4 textureEnvColor,
float rgbScale,
float alphaScale,
vec4 vertexColor,
vec4 texturePrevColor,
vec4 textureColor)
{
vec3 resRgb;
float resAlpha;
vec3 arg0Rgb;
float arg0Alpha;
vec3 arg1Rgb;
float arg1Alpha;
vec3 arg2Rgb;
float arg2Alpha;
float dotVal;
arg0Rgb = textureCombineSrcnOpnRgb(src0Rgb, op0Rgb, textureEnvColor, vertexColor,
texturePrevColor, textureColor);
arg0Alpha = textureCombineSrcnOpnAlpha(src0Alpha, op0Alpha, textureEnvColor, vertexColor,
texturePrevColor, textureColor);
if (combineRgb != kReplace)
{
arg1Rgb = textureCombineSrcnOpnRgb(src1Rgb, op1Rgb, textureEnvColor, vertexColor,
texturePrevColor, textureColor);
}
if (combineAlpha != kReplace)
{
arg1Alpha = textureCombineSrcnOpnAlpha(src1Alpha, op1Alpha, textureEnvColor, vertexColor,
texturePrevColor, textureColor);
}
if (combineRgb == kInterpolate)
{
arg2Rgb = textureCombineSrcnOpnRgb(src2Rgb, op2Rgb, textureEnvColor, vertexColor,
texturePrevColor, textureColor);
}
if (combineAlpha == kInterpolate)
{
arg2Alpha = textureCombineSrcnOpnAlpha(src2Alpha, op2Alpha, textureEnvColor, vertexColor,
texturePrevColor, textureColor);
}
switch (combineRgb)
{
case kReplace:
resRgb = arg0Rgb;
break;
case kModulate:
resRgb = arg0Rgb * arg1Rgb;
break;
case kAdd:
resRgb = arg0Rgb + arg1Rgb;
break;
case kAddSigned:
resRgb = arg0Rgb + arg1Rgb - 0.5;
break;
case kInterpolate:
resRgb = arg0Rgb * arg2Rgb + arg1Rgb * (1.0 - arg2Rgb);
break;
case kSubtract:
resRgb = arg0Rgb - arg1Rgb;
break;
default:
break;
}
switch (combineAlpha)
{
case kReplace:
resAlpha = arg0Alpha;
break;
case kModulate:
resAlpha = arg0Alpha * arg1Alpha;
break;
case kAdd:
resAlpha = arg0Alpha + arg1Alpha;
break;
case kAddSigned:
resAlpha = arg0Alpha + arg1Alpha - 0.5;
break;
case kInterpolate:
resAlpha = arg0Alpha * arg2Alpha + arg1Alpha * (1.0 - arg2Alpha);
break;
case kSubtract:
resAlpha = arg0Alpha - arg1Alpha;
break;
default:
break;
}
if (combineRgb == kDot3Rgb || combineRgb == kDot3Rgba)
{
dotVal = 4.0 * dot(arg0Rgb - 0.5, arg1Rgb - 0.5);
if (combineRgb == kDot3Rgb)
{
return vec4(dotVal, dotVal, dotVal, resAlpha);
}
else
{
return vec4(dotVal, dotVal, dotVal, dotVal);
}
}
else
{
return vec4(resRgb, resAlpha);
}
}
vec4 textureFunction(int unit,
int texFormat,
int envMode,
int combineRgb,
int combineAlpha,
int src0Rgb,
int src0Alpha,
int src1Rgb,
int src1Alpha,
int src2Rgb,
int src2Alpha,
int op0Rgb,
int op0Alpha,
int op1Rgb,
int op1Alpha,
int op2Rgb,
int op2Alpha,
vec4 textureEnvColor,
float rgbScale,
float alphaScale,
vec4 vertexColor,
vec4 texturePrevColor,
vec4 textureColor)
{
if (!isTextureUnitEnabled(unit))
{
return texturePrevColor;
}
vec4 res;
switch (envMode)
{
case kReplace:
switch (texFormat)
{
case kAlpha:
res.rgb = texturePrevColor.rgb;
res.a = textureColor.a;
break;
case kRGBA:
case kLuminanceAlpha:
res.rgba = textureColor.rgba;
break;
case kRGB:
case kLuminance:
default:
res.rgb = textureColor.rgb;
res.a = texturePrevColor.a;
break;
}
break;
case kModulate:
switch (texFormat)
{
case kAlpha:
res.rgb = texturePrevColor.rgb;
res.a = texturePrevColor.a * textureColor.a;
break;
case kRGBA:
case kLuminanceAlpha:
res.rgba = texturePrevColor.rgba * textureColor.rgba;
break;
case kRGB:
case kLuminance:
default:
res.rgb = texturePrevColor.rgb * textureColor.rgb;
res.a = texturePrevColor.a;
break;
}
break;
case kDecal:
switch (texFormat)
{
case kRGB:
res.rgb = textureColor.rgb;
res.a = texturePrevColor.a;
break;
case kRGBA:
res.rgb = texturePrevColor.rgb * (1.0 - textureColor.a) +
textureColor.rgb * textureColor.a;
res.a = texturePrevColor.a;
break;
case kAlpha:
case kLuminance:
case kLuminanceAlpha:
default:
res.rgb = texturePrevColor.rgb * textureColor.rgb;
res.a = texturePrevColor.a;
break;
}
break;
case kBlend:
switch (texFormat)
{
case kAlpha:
res.rgb = texturePrevColor.rgb;
res.a = textureColor.a * texturePrevColor.a;
break;
case kLuminance:
case kRGB:
res.rgb = texturePrevColor.rgb * (1.0 - textureColor.rgb) +
textureEnvColor.rgb * textureColor.rgb;
res.a = texturePrevColor.a;
break;
case kLuminanceAlpha:
case kRGBA:
default:
res.rgb = texturePrevColor.rgb * (1.0 - textureColor.rgb) +
textureEnvColor.rgb * textureColor.rgb;
res.a = textureColor.a * texturePrevColor.a;
break;
}
break;
case kAdd:
switch (texFormat)
{
case kAlpha:
res.rgb = texturePrevColor.rgb;
res.a = textureColor.a * texturePrevColor.a;
break;
case kLuminance:
case kRGB:
res.rgb = texturePrevColor.rgb + textureColor.rgb;
res.a = texturePrevColor.a;
break;
case kLuminanceAlpha:
case kRGBA:
default:
res.rgb = texturePrevColor.rgb + textureColor.rgb;
res.a = textureColor.a * texturePrevColor.a;
break;
}
break;
case kCombine:
res = textureCombine(combineRgb, combineAlpha, src0Rgb, src0Alpha, src1Rgb, src1Alpha,
src2Rgb, src2Alpha, op0Rgb, op0Alpha, op1Rgb, op1Alpha, op2Rgb,
op2Alpha, textureEnvColor, rgbScale, alphaScale, vertexColor,
texturePrevColor, textureColor);
res.rgb *= rgbScale;
res.a *= alphaScale;
break;
default:
break;
}
return clamp(res, 0.0, 1.0);
}
)";
constexpr char kGLES1DrawFShaderMain[] = R"(
void main()
{
if (enable_clip_planes && !enable_draw_texture)
{
if (!doClipPlaneTest())
{
discard;
}
}
vec4 vertex_color;
if (shade_model_flat)
{
vertex_color = color_varying_flat;
}
else
{
vertex_color = color_varying;
}
vec4 currentFragment = vertex_color;
vec4 texturePrevColor = currentFragment;
for (int i = 0; i < kMaxTexUnits; i++)
{
vec4 textureColor;
if (point_rasterization && point_sprite_enabled &&
point_sprite_coord_replace[i]) {
textureColor = getPointSpriteTextureColor(i);
} else {
textureColor = getTextureColor(i);
}
currentFragment = textureFunction(
i, texture_format[i], texture_env_mode[i], combine_rgb[i], combine_alpha[i],
src0_rgb[i], src0_alpha[i], src1_rgb[i], src1_alpha[i], src2_rgb[i], src2_alpha[i],
op0_rgb[i], op0_alpha[i], op1_rgb[i], op1_alpha[i], op2_rgb[i], op2_alpha[i],
texture_env_color[i], texture_env_rgb_scale[i], texture_env_alpha_scale[i],
vertex_color, texturePrevColor, textureColor);
texturePrevColor = currentFragment;
}
if (enable_fog)
{
currentFragment = doFog(currentFragment);
}
if (enable_alpha_test && !doAlphaTest(currentFragment))
{
discard;
}
frag_color = applyLogicOp(currentFragment);
}
)";