Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DrawTargetSkia.h"
#include "SourceSurfaceSkia.h"
#include "ScaledFontBase.h"
#include "FilterNodeSoftware.h"
#include "HelpersSkia.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/Vector.h"
#include "skia/include/core/SkBitmap.h"
#include "skia/include/core/SkCanvas.h"
#include "skia/include/core/SkFont.h"
#include "skia/include/core/SkSurface.h"
#include "skia/include/core/SkTextBlob.h"
#include "skia/include/core/SkTypeface.h"
#include "skia/include/effects/SkGradientShader.h"
#include "skia/include/core/SkColorFilter.h"
#include "skia/include/core/SkRegion.h"
#include "skia/include/effects/SkImageFilters.h"
#include "skia/include/private/base/SkMalloc.h"
#include "Blur.h"
#include "Logging.h"
#include "Tools.h"
#include "PathHelpers.h"
#include "PathSkia.h"
#include "Swizzle.h"
#include <algorithm>
#include <cmath>
#ifdef MOZ_WIDGET_COCOA
# include "BorrowedContext.h"
# include <ApplicationServices/ApplicationServices.h>
#endif
#ifdef XP_WIN
# include "ScaledFontDWrite.h"
#endif
namespace mozilla {
void RefPtrTraits<SkSurface>::Release(SkSurface* aSurface) {
SkSafeUnref(aSurface);
}
void RefPtrTraits<SkSurface>::AddRef(SkSurface* aSurface) {
SkSafeRef(aSurface);
}
} // namespace mozilla
namespace mozilla::gfx {
class GradientStopsSkia : public GradientStops {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(GradientStopsSkia, override)
GradientStopsSkia(const std::vector<GradientStop>& aStops, uint32_t aNumStops,
ExtendMode aExtendMode)
: mCount(aNumStops), mExtendMode(aExtendMode) {
if (mCount == 0) {
return;
}
// Skia gradients always require a stop at 0.0 and 1.0, insert these if
// we don't have them.
uint32_t shift = 0;
if (aStops[0].offset != 0) {
mCount++;
shift = 1;
}
if (aStops[aNumStops - 1].offset != 1) {
mCount++;
}
mColors.resize(mCount);
mPositions.resize(mCount);
if (aStops[0].offset != 0) {
mColors[0] = ColorToSkColor(aStops[0].color, 1.0);
mPositions[0] = 0;
}
for (uint32_t i = 0; i < aNumStops; i++) {
mColors[i + shift] = ColorToSkColor(aStops[i].color, 1.0);
mPositions[i + shift] = SkFloatToScalar(aStops[i].offset);
}
if (aStops[aNumStops - 1].offset != 1) {
mColors[mCount - 1] = ColorToSkColor(aStops[aNumStops - 1].color, 1.0);
mPositions[mCount - 1] = SK_Scalar1;
}
}
BackendType GetBackendType() const override { return BackendType::SKIA; }
std::vector<SkColor> mColors;
std::vector<SkScalar> mPositions;
int mCount;
ExtendMode mExtendMode;
};
/**
* When constructing a temporary SkImage via GetSkImageForSurface, we may also
* have to construct a temporary DataSourceSurface, which must live as long as
* the SkImage. We attach this temporary surface to the image's pixelref, so
* that it can be released once the pixelref is freed.
*/
static void ReleaseTemporarySurface(const void* aPixels, void* aContext) {
DataSourceSurface* surf = static_cast<DataSourceSurface*>(aContext);
if (surf) {
surf->Release();
}
}
static void ReleaseTemporaryMappedSurface(const void* aPixels, void* aContext) {
DataSourceSurface* surf = static_cast<DataSourceSurface*>(aContext);
if (surf) {
surf->Unmap();
surf->Release();
}
}
static void WriteRGBXFormat(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return;
}
SwizzleData(aData, aStride, SurfaceFormat::X8R8G8B8_UINT32, aData, aStride,
SurfaceFormat::A8R8G8B8_UINT32, aSize);
}
#ifdef DEBUG
static IntRect CalculateSurfaceBounds(const IntSize& aSize, const Rect* aBounds,
const Matrix* aMatrix) {
IntRect surfaceBounds(IntPoint(0, 0), aSize);
if (!aBounds) {
return surfaceBounds;
}
MOZ_ASSERT(aMatrix);
Matrix inverse(*aMatrix);
if (!inverse.Invert()) {
return surfaceBounds;
}
IntRect bounds;
Rect sampledBounds = inverse.TransformBounds(*aBounds);
if (!sampledBounds.ToIntRect(&bounds)) {
return surfaceBounds;
}
return surfaceBounds.Intersect(bounds);
}
static const int kARGBAlphaOffset =
SurfaceFormat::A8R8G8B8_UINT32 == SurfaceFormat::B8G8R8A8 ? 3 : 0;
static bool VerifyRGBXFormat(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return true;
}
// We should've initialized the data to be opaque already
// On debug builds, verify that this is actually true.
int height = aSize.height;
int width = aSize.width * 4;
for (int row = 0; row < height; ++row) {
for (int column = 0; column < width; column += 4) {
if (aData[column + kARGBAlphaOffset] != 0xFF) {
gfxCriticalError() << "RGBX pixel at (" << column << "," << row
<< ") in " << width << "x" << height
<< " surface is not opaque: " << int(aData[column])
<< "," << int(aData[column + 1]) << ","
<< int(aData[column + 2]) << ","
<< int(aData[column + 3]);
}
}
aData += aStride;
}
return true;
}
// Since checking every pixel is expensive, this only checks the four corners
// and center of a surface that their alpha value is 0xFF.
static bool VerifyRGBXCorners(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat,
const Rect* aBounds = nullptr,
const Matrix* aMatrix = nullptr) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return true;
}
IntRect bounds = CalculateSurfaceBounds(aSize, aBounds, aMatrix);
if (bounds.IsEmpty()) {
return true;
}
const int height = bounds.Height();
const int width = bounds.Width();
const int pixelSize = 4;
MOZ_ASSERT(aSize.width * pixelSize <= aStride);
const int translation = bounds.Y() * aStride + bounds.X() * pixelSize;
const int topLeft = translation;
const int topRight = topLeft + (width - 1) * pixelSize;
const int bottomLeft = translation + (height - 1) * aStride;
const int bottomRight = bottomLeft + (width - 1) * pixelSize;
// Lastly the center pixel
const int middleRowHeight = height / 2;
const int middleRowWidth = (width / 2) * pixelSize;
const int middle = translation + aStride * middleRowHeight + middleRowWidth;
const int offsets[] = {topLeft, topRight, bottomRight, bottomLeft, middle};
for (int offset : offsets) {
if (aData[offset + kARGBAlphaOffset] != 0xFF) {
int row = offset / aStride;
int column = (offset % aStride) / pixelSize;
gfxCriticalError() << "RGBX corner pixel at (" << column << "," << row
<< ") in " << aSize.width << "x" << aSize.height
<< " surface, bounded by "
<< "(" << bounds.X() << "," << bounds.Y() << ","
<< width << "," << height
<< ") is not opaque: " << int(aData[offset]) << ","
<< int(aData[offset + 1]) << ","
<< int(aData[offset + 2]) << ","
<< int(aData[offset + 3]);
}
}
return true;
}
#endif
static sk_sp<SkImage> GetSkImageForSurface(SourceSurface* aSurface,
Maybe<MutexAutoLock>* aLock,
const Rect* aBounds = nullptr,
const Matrix* aMatrix = nullptr) {
if (!aSurface) {
gfxDebug() << "Creating null Skia image from null SourceSurface";
return nullptr;
}
if (aSurface->GetType() == SurfaceType::SKIA) {
return static_cast<SourceSurfaceSkia*>(aSurface)->GetImage(aLock);
}
RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface();
if (!dataSurface) {
gfxWarning() << "Failed getting DataSourceSurface for Skia image";
return nullptr;
}
DataSourceSurface::MappedSurface map;
SkImage::RasterReleaseProc releaseProc;
if (dataSurface->GetType() == SurfaceType::DATA_SHARED_WRAPPER) {
// Technically all surfaces should be mapped and unmapped explicitly but it
// appears SourceSurfaceSkia and DataSourceSurfaceWrapper have issues with
// this. For now, we just map SourceSurfaceSharedDataWrapper to ensure we
// don't unmap the data during the transaction (for blob images).
if (!dataSurface->Map(DataSourceSurface::MapType::READ, &map)) {
gfxWarning() << "Failed mapping DataSourceSurface for Skia image";
return nullptr;
}
releaseProc = ReleaseTemporaryMappedSurface;
} else {
map.mData = dataSurface->GetData();
map.mStride = dataSurface->Stride();
releaseProc = ReleaseTemporarySurface;
}
DataSourceSurface* surf = dataSurface.forget().take();
// Skia doesn't support RGBX surfaces so ensure that the alpha value is opaque
// white.
MOZ_ASSERT(VerifyRGBXCorners(map.mData, surf->GetSize(), map.mStride,
surf->GetFormat(), aBounds, aMatrix));
SkPixmap pixmap(MakeSkiaImageInfo(surf->GetSize(), surf->GetFormat()),
map.mData, map.mStride);
sk_sp<SkImage> image = SkImage::MakeFromRaster(pixmap, releaseProc, surf);
if (!image) {
releaseProc(map.mData, surf);
gfxDebug() << "Failed making Skia raster image for temporary surface";
}
return image;
}
DrawTargetSkia::DrawTargetSkia()
: mCanvas(nullptr),
mSnapshot(nullptr),
mSnapshotLock{"DrawTargetSkia::mSnapshotLock"}
#ifdef MOZ_WIDGET_COCOA
,
mCG(nullptr),
mColorSpace(nullptr),
mCanvasData(nullptr),
mCGSize(0, 0),
mNeedLayer(false)
#endif
{
}
DrawTargetSkia::~DrawTargetSkia() {
if (mSnapshot) {
MutexAutoLock lock(mSnapshotLock);
// We're going to go away, hand our SkSurface to the SourceSurface.
mSnapshot->GiveSurface(mSurface.forget().take());
}
#ifdef MOZ_WIDGET_COCOA
if (mCG) {
CGContextRelease(mCG);
mCG = nullptr;
}
if (mColorSpace) {
CGColorSpaceRelease(mColorSpace);
mColorSpace = nullptr;
}
#endif
}
already_AddRefed<SourceSurface> DrawTargetSkia::Snapshot(
SurfaceFormat aFormat) {
// Without this lock, this could cause us to get out a snapshot and race with
// Snapshot::~Snapshot() actually destroying itself.
MutexAutoLock lock(mSnapshotLock);
if (mSnapshot && aFormat != mSnapshot->GetFormat()) {
if (!mSnapshot->hasOneRef()) {
mSnapshot->DrawTargetWillChange();
}
mSnapshot = nullptr;
}
RefPtr<SourceSurfaceSkia> snapshot = mSnapshot;
if (mSurface && !snapshot) {
snapshot = new SourceSurfaceSkia();
sk_sp<SkImage> image;
// If the surface is raster, making a snapshot may trigger a pixel copy.
// Instead, try to directly make a raster image referencing the surface
// pixels.
SkPixmap pixmap;
if (mSurface->peekPixels(&pixmap)) {
image = SkImage::MakeFromRaster(pixmap, nullptr, nullptr);
} else {
image = mSurface->makeImageSnapshot();
}
if (!snapshot->InitFromImage(image, aFormat, this)) {
return nullptr;
}
mSnapshot = snapshot;
}
return snapshot.forget();
}
already_AddRefed<SourceSurface> DrawTargetSkia::GetBackingSurface() {
if (mBackingSurface) {
RefPtr<SourceSurface> snapshot = mBackingSurface;
return snapshot.forget();
}
return Snapshot();
}
bool DrawTargetSkia::LockBits(uint8_t** aData, IntSize* aSize, int32_t* aStride,
SurfaceFormat* aFormat, IntPoint* aOrigin) {
SkImageInfo info;
size_t rowBytes;
SkIPoint origin;
void* pixels = mCanvas->accessTopLayerPixels(&info, &rowBytes, &origin);
if (!pixels ||
// Ensure the layer is at the origin if required.
(!aOrigin && !origin.isZero())) {
return false;
}
MarkChanged();
*aData = reinterpret_cast<uint8_t*>(pixels);
*aSize = IntSize(info.width(), info.height());
*aStride = int32_t(rowBytes);
*aFormat = SkiaColorTypeToGfxFormat(info.colorType(), info.alphaType());
if (aOrigin) {
*aOrigin = IntPoint(origin.x(), origin.y());
}
return true;
}
void DrawTargetSkia::ReleaseBits(uint8_t* aData) {}
static void ReleaseImage(const void* aPixels, void* aContext) {
SkImage* image = static_cast<SkImage*>(aContext);
SkSafeUnref(image);
}
static sk_sp<SkImage> ExtractSubset(sk_sp<SkImage> aImage,
const IntRect& aRect) {
SkIRect subsetRect = IntRectToSkIRect(aRect);
if (aImage->bounds() == subsetRect) {
return aImage;
}
// makeSubset is slow, so prefer to use SkPixmap::extractSubset where
// possible.
SkPixmap pixmap, subsetPixmap;
if (aImage->peekPixels(&pixmap) &&
pixmap.extractSubset(&subsetPixmap, subsetRect)) {
// Release the original image reference so only the subset image keeps it
// alive.
return SkImage::MakeFromRaster(subsetPixmap, ReleaseImage,
aImage.release());
}
return aImage->makeSubset(subsetRect);
}
static void FreeAlphaPixels(void* aBuf, void*) { sk_free(aBuf); }
static bool ExtractAlphaBitmap(const sk_sp<SkImage>& aImage,
SkBitmap* aResultBitmap,
bool aAllowReuse = false) {
SkPixmap pixmap;
if (aAllowReuse && aImage->isAlphaOnly() && aImage->peekPixels(&pixmap)) {
SkBitmap bitmap;
bitmap.installPixels(pixmap.info(), pixmap.writable_addr(),
pixmap.rowBytes());
*aResultBitmap = bitmap;
return true;
}
SkImageInfo info = SkImageInfo::MakeA8(aImage->width(), aImage->height());
// Skia does not fully allocate the last row according to stride.
// Since some of our algorithms (i.e. blur) depend on this, we must allocate
// the bitmap pixels manually.
size_t stride = GetAlignedStride<4>(info.width(), info.bytesPerPixel());
if (stride) {
CheckedInt<size_t> size = stride;
size *= info.height();
// We need to leave room for an additional 3 bytes for a potential overrun
// in our blurring code.
size += 3;
if (size.isValid()) {
void* buf = sk_malloc_flags(size.value(), 0);
if (buf) {
SkBitmap bitmap;
if (bitmap.installPixels(info, buf, stride, FreeAlphaPixels, nullptr) &&
aImage->readPixels(bitmap.info(), bitmap.getPixels(),
bitmap.rowBytes(), 0, 0)) {
*aResultBitmap = bitmap;
return true;
}
}
}
}
gfxWarning() << "Failed reading alpha pixels for Skia bitmap";
return false;
}
static void SetPaintPattern(SkPaint& aPaint, const Pattern& aPattern,
Maybe<MutexAutoLock>& aLock, Float aAlpha = 1.0,
const SkMatrix* aMatrix = nullptr,
const Rect* aBounds = nullptr) {
switch (aPattern.GetType()) {
case PatternType::COLOR: {
DeviceColor color = static_cast<const ColorPattern&>(aPattern).mColor;
aPaint.setColor(ColorToSkColor(color, aAlpha));
break;
}
case PatternType::LINEAR_GRADIENT: {
const LinearGradientPattern& pat =
static_cast<const LinearGradientPattern&>(aPattern);
GradientStopsSkia* stops =
pat.mStops && pat.mStops->GetBackendType() == BackendType::SKIA
? static_cast<GradientStopsSkia*>(pat.mStops.get())
: nullptr;
if (!stops || stops->mCount < 2 || !pat.mBegin.IsFinite() ||
!pat.mEnd.IsFinite() || pat.mBegin == pat.mEnd) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkTileMode mode = ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
SkPoint points[2];
points[0] = SkPoint::Make(SkFloatToScalar(pat.mBegin.x),
SkFloatToScalar(pat.mBegin.y));
points[1] = SkPoint::Make(SkFloatToScalar(pat.mEnd.x),
SkFloatToScalar(pat.mEnd.y));
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
sk_sp<SkShader> shader = SkGradientShader::MakeLinear(
points, &stops->mColors.front(), &stops->mPositions.front(),
stops->mCount, mode, 0, &mat);
if (shader) {
aPaint.setShader(shader);
} else {
aPaint.setColor(SK_ColorTRANSPARENT);
}
}
break;
}
case PatternType::RADIAL_GRADIENT: {
const RadialGradientPattern& pat =
static_cast<const RadialGradientPattern&>(aPattern);
GradientStopsSkia* stops =
pat.mStops && pat.mStops->GetBackendType() == BackendType::SKIA
? static_cast<GradientStopsSkia*>(pat.mStops.get())
: nullptr;
if (!stops || stops->mCount < 2 || !pat.mCenter1.IsFinite() ||
!std::isfinite(pat.mRadius1) || !pat.mCenter2.IsFinite() ||
!std::isfinite(pat.mRadius2) ||
(pat.mCenter1 == pat.mCenter2 && pat.mRadius1 == pat.mRadius2)) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkTileMode mode = ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
SkPoint points[2];
points[0] = SkPoint::Make(SkFloatToScalar(pat.mCenter1.x),
SkFloatToScalar(pat.mCenter1.y));
points[1] = SkPoint::Make(SkFloatToScalar(pat.mCenter2.x),
SkFloatToScalar(pat.mCenter2.y));
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
sk_sp<SkShader> shader = SkGradientShader::MakeTwoPointConical(
points[0], SkFloatToScalar(pat.mRadius1), points[1],
SkFloatToScalar(pat.mRadius2), &stops->mColors.front(),
&stops->mPositions.front(), stops->mCount, mode, 0, &mat);
if (shader) {
aPaint.setShader(shader);
} else {
aPaint.setColor(SK_ColorTRANSPARENT);
}
}
break;
}
case PatternType::CONIC_GRADIENT: {
const ConicGradientPattern& pat =
static_cast<const ConicGradientPattern&>(aPattern);
GradientStopsSkia* stops =
pat.mStops && pat.mStops->GetBackendType() == BackendType::SKIA
? static_cast<GradientStopsSkia*>(pat.mStops.get())
: nullptr;
if (!stops || stops->mCount < 2 || !pat.mCenter.IsFinite() ||
!std::isfinite(pat.mAngle)) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
SkScalar cx = SkFloatToScalar(pat.mCenter.x);
SkScalar cy = SkFloatToScalar(pat.mCenter.y);
// Skia's sweep gradient angles are relative to the x-axis, not the
// y-axis.
Float angle = (pat.mAngle * 180.0 / M_PI) - 90.0;
if (angle != 0.0) {
mat.preRotate(angle, cx, cy);
}
SkTileMode mode = ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
sk_sp<SkShader> shader = SkGradientShader::MakeSweep(
cx, cy, &stops->mColors.front(), &stops->mPositions.front(),
stops->mCount, mode, 360 * pat.mStartOffset, 360 * pat.mEndOffset,
0, &mat);
if (shader) {
aPaint.setShader(shader);
} else {
aPaint.setColor(SK_ColorTRANSPARENT);
}
}
break;
}
case PatternType::SURFACE: {
const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
sk_sp<SkImage> image =
GetSkImageForSurface(pat.mSurface, &aLock, aBounds, &pat.mMatrix);
if (!image) {
aPaint.setColor(SK_ColorTRANSPARENT);
break;
}
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
if (!pat.mSamplingRect.IsEmpty()) {
image = ExtractSubset(image, pat.mSamplingRect);
if (!image) {
aPaint.setColor(SK_ColorTRANSPARENT);
break;
}
mat.preTranslate(pat.mSamplingRect.X(), pat.mSamplingRect.Y());
}
SkTileMode xTile = ExtendModeToTileMode(pat.mExtendMode, Axis::X_AXIS);
SkTileMode yTile = ExtendModeToTileMode(pat.mExtendMode, Axis::Y_AXIS);
SkFilterMode filterMode = pat.mSamplingFilter == SamplingFilter::POINT
? SkFilterMode::kNearest
: SkFilterMode::kLinear;
sk_sp<SkShader> shader =
image->makeShader(xTile, yTile, SkSamplingOptions(filterMode), mat);
if (shader) {
aPaint.setShader(shader);
} else {
gfxDebug() << "Failed creating Skia surface shader: x-tile="
<< (int)xTile << " y-tile=" << (int)yTile
<< " matrix=" << (mat.isFinite() ? "finite" : "non-finite");
aPaint.setColor(SK_ColorTRANSPARENT);
}
break;
}
}
}
static inline Rect GetClipBounds(SkCanvas* aCanvas) {
// Use a manually transformed getClipDeviceBounds instead of
// getClipBounds because getClipBounds inflates the the bounds
// by a pixel in each direction to compensate for antialiasing.
SkIRect deviceBounds;
if (!aCanvas->getDeviceClipBounds(&deviceBounds)) {
return Rect();
}
SkMatrix inverseCTM;
if (!aCanvas->getTotalMatrix().invert(&inverseCTM)) {
return Rect();
}
SkRect localBounds;
inverseCTM.mapRect(&localBounds, SkRect::Make(deviceBounds));
return SkRectToRect(localBounds);
}
struct AutoPaintSetup {
AutoPaintSetup(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Pattern& aPattern, const Rect* aMaskBounds = nullptr,
const SkMatrix* aMatrix = nullptr,
const Rect* aSourceBounds = nullptr)
: mNeedsRestore(false), mAlpha(1.0) {
Init(aCanvas, aOptions, aMaskBounds, false);
SetPaintPattern(mPaint, aPattern, mLock, mAlpha, aMatrix, aSourceBounds);
}
AutoPaintSetup(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Rect* aMaskBounds = nullptr, bool aForceGroup = false)
: mNeedsRestore(false), mAlpha(1.0) {
Init(aCanvas, aOptions, aMaskBounds, aForceGroup);
}
~AutoPaintSetup() {
if (mNeedsRestore) {
mCanvas->restore();
}
}
void Init(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Rect* aMaskBounds, bool aForceGroup) {
mPaint.setBlendMode(GfxOpToSkiaOp(aOptions.mCompositionOp));
mCanvas = aCanvas;
// TODO: Can we set greyscale somehow?
if (aOptions.mAntialiasMode != AntialiasMode::NONE) {
mPaint.setAntiAlias(true);
} else {
mPaint.setAntiAlias(false);
}
bool needsGroup =
aForceGroup ||
(!IsOperatorBoundByMask(aOptions.mCompositionOp) &&
(!aMaskBounds || !aMaskBounds->Contains(GetClipBounds(aCanvas))));
// TODO: We could skip the temporary for operator_source and just
// clear the clip rect. The other operators would be harder
// but could be worth it to skip pushing a group.
if (needsGroup) {
mPaint.setBlendMode(SkBlendMode::kSrcOver);
SkPaint temp;
temp.setBlendMode(GfxOpToSkiaOp(aOptions.mCompositionOp));
temp.setAlpha(ColorFloatToByte(aOptions.mAlpha));
// TODO: Get a rect here
SkCanvas::SaveLayerRec rec(nullptr, &temp,
SkCanvas::kPreserveLCDText_SaveLayerFlag);
mCanvas->saveLayer(rec);
mNeedsRestore = true;
} else {
mPaint.setAlpha(ColorFloatToByte(aOptions.mAlpha));
mAlpha = aOptions.mAlpha;
}
}
// TODO: Maybe add an operator overload to access this easier?
SkPaint mPaint;
bool mNeedsRestore;
SkCanvas* mCanvas;
Maybe<MutexAutoLock> mLock;
Float mAlpha;
};
void DrawTargetSkia::Flush() { mCanvas->flush(); }
void DrawTargetSkia::DrawSurface(SourceSurface* aSurface, const Rect& aDest,
const Rect& aSource,
const DrawSurfaceOptions& aSurfOptions,
const DrawOptions& aOptions) {
if (aSource.IsEmpty()) {
return;
}
MarkChanged();
Maybe<MutexAutoLock> lock;
sk_sp<SkImage> image = GetSkImageForSurface(aSurface, &lock);
if (!image) {
return;
}
SkRect destRect = RectToSkRect(aDest);
SkRect sourceRect = RectToSkRect(aSource - aSurface->GetRect().TopLeft());
bool forceGroup =
image->isAlphaOnly() && aOptions.mCompositionOp != CompositionOp::OP_OVER;
AutoPaintSetup paint(mCanvas, aOptions, &aDest, forceGroup);
SkFilterMode filterMode =
aSurfOptions.mSamplingFilter == SamplingFilter::POINT
? SkFilterMode::kNearest
: SkFilterMode::kLinear;
mCanvas->drawImageRect(image, sourceRect, destRect,
SkSamplingOptions(filterMode), &paint.mPaint,
SkCanvas::kStrict_SrcRectConstraint);
}
DrawTargetType DrawTargetSkia::GetType() const {
return DrawTargetType::SOFTWARE_RASTER;
}
void DrawTargetSkia::DrawFilter(FilterNode* aNode, const Rect& aSourceRect,
const Point& aDestPoint,
const DrawOptions& aOptions) {
if (!aNode || aNode->GetBackendType() != FILTER_BACKEND_SOFTWARE) {
return;
}
FilterNodeSoftware* filter = static_cast<FilterNodeSoftware*>(aNode);
filter->Draw(this, aSourceRect, aDestPoint, aOptions);
}
void DrawTargetSkia::DrawSurfaceWithShadow(SourceSurface* aSurface,
const Point& aDest,
const ShadowOptions& aShadow,
CompositionOp aOperator) {
if (aSurface->GetSize().IsEmpty()) {
return;
}
MarkChanged();
Maybe<MutexAutoLock> lock;
sk_sp<SkImage> image = GetSkImageForSurface(aSurface, &lock);
if (!image) {
return;
}
mCanvas->save();
mCanvas->resetMatrix();
SkPaint paint;
paint.setBlendMode(GfxOpToSkiaOp(aOperator));
// We can't use the SkDropShadowImageFilter here because it applies the xfer
// mode first to render the bitmap to a temporary layer, and then implicitly
// uses src-over to composite the resulting shadow.
// The canvas spec, however, states that the composite op must be used to
// composite the resulting shadow, so we must instead use a SkBlurImageFilter
// to blur the image ourselves.
SkPaint shadowPaint;
shadowPaint.setBlendMode(GfxOpToSkiaOp(aOperator));
auto shadowDest = IntPoint::Round(aDest + aShadow.mOffset);
SkBitmap blurMask;
// Extract the alpha channel of the image into a bitmap. If the image is A8
// format already, then we can directly reuse the bitmap rather than create a
// new one as the surface only needs to be drawn from once.
if (ExtractAlphaBitmap(image, &blurMask, true)) {
// Prefer using our own box blur instead of Skia's. It currently performs
// much better than SkBlurImageFilter or SkBlurMaskFilter on the CPU.
AlphaBoxBlur blur(Rect(0, 0, blurMask.width(), blurMask.height()),
int32_t(blurMask.rowBytes()), aShadow.mSigma,
aShadow.mSigma);
blur.Blur(reinterpret_cast<uint8_t*>(blurMask.getPixels()));
blurMask.notifyPixelsChanged();
shadowPaint.setColor(ColorToSkColor(aShadow.mColor, 1.0f));
mCanvas->drawImage(blurMask.asImage(), shadowDest.x, shadowDest.y,
SkSamplingOptions(SkFilterMode::kLinear), &shadowPaint);
} else {
sk_sp<SkImageFilter> blurFilter(
SkImageFilters::Blur(aShadow.mSigma, aShadow.mSigma, nullptr));
sk_sp<SkColorFilter> colorFilter(SkColorFilters::Blend(
ColorToSkColor(aShadow.mColor, 1.0f), SkBlendMode::kSrcIn));
shadowPaint.setImageFilter(blurFilter);
shadowPaint.setColorFilter(colorFilter);
mCanvas->drawImage(image, shadowDest.x, shadowDest.y,
SkSamplingOptions(SkFilterMode::kLinear), &shadowPaint);
}
if (aSurface->GetFormat() != SurfaceFormat::A8) {
// Composite the original image after the shadow
auto dest = IntPoint::Round(aDest);
mCanvas->drawImage(image, dest.x, dest.y,
SkSamplingOptions(SkFilterMode::kLinear), &paint);
}
mCanvas->restore();
}
void DrawTargetSkia::FillRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions) {
// The sprite blitting path in Skia can be faster than the shader blitter for
// operators other than source (or source-over with opaque surface). So, when
// possible/beneficial, route to DrawSurface which will use the sprite
// blitter.
if (aPattern.GetType() == PatternType::SURFACE &&
aOptions.mCompositionOp != CompositionOp::OP_SOURCE) {
const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
// Verify there is a valid surface and a pattern matrix without skew.
if (pat.mSurface &&
(aOptions.mCompositionOp != CompositionOp::OP_OVER ||
GfxFormatToSkiaAlphaType(pat.mSurface->GetFormat()) !=
kOpaque_SkAlphaType) &&
!pat.mMatrix.HasNonAxisAlignedTransform()) {
// Bound the sampling to smaller of the bounds or the sampling rect.
IntRect srcRect(IntPoint(0, 0), pat.mSurface->GetSize());
if (!pat.mSamplingRect.IsEmpty()) {
srcRect = srcRect.Intersect(pat.mSamplingRect);
}
// Transform the destination rectangle by the inverse of the pattern
// matrix so that it is in pattern space like the source rectangle.
Rect patRect = aRect - pat.mMatrix.GetTranslation();
patRect.Scale(1.0f / pat.mMatrix._11, 1.0f / pat.mMatrix._22);
// Verify the pattern rectangle will not tile or clamp.
if (!patRect.IsEmpty() && srcRect.Contains(RoundedOut(patRect))) {
// The pattern is a surface with an axis-aligned source rectangle
// fitting entirely in its bounds, so just treat it as a DrawSurface.
DrawSurface(pat.mSurface, aRect, patRect,
DrawSurfaceOptions(pat.mSamplingFilter), aOptions);
return;
}
}
}
MarkChanged();
SkRect rect = RectToSkRect(aRect);
AutoPaintSetup paint(mCanvas, aOptions, aPattern, &aRect, nullptr, &aRect);
mCanvas->drawRect(rect, paint.mPaint);
}
void DrawTargetSkia::Stroke(const Path* aPath, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
MarkChanged();
MOZ_ASSERT(aPath, "Null path");
if (aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia* skiaPath = static_cast<const PathSkia*>(aPath);
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
if (!skiaPath->GetPath().isFinite()) {
return;
}
mCanvas->drawPath(skiaPath->GetPath(), paint.mPaint);
}
static Double DashPeriodLength(const StrokeOptions& aStrokeOptions) {
Double length = 0;
for (size_t i = 0; i < aStrokeOptions.mDashLength; i++) {
length += aStrokeOptions.mDashPattern[i];
}
if (aStrokeOptions.mDashLength & 1) {
// "If an odd number of values is provided, then the list of values is
// repeated to yield an even number of values."
// Double the length.
length += length;
}
return length;
}
static inline Double RoundDownToMultiple(Double aValue, Double aFactor) {
return floor(aValue / aFactor) * aFactor;
}
static Rect UserSpaceStrokeClip(const IntRect& aDeviceClip,
const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
Matrix inverse = aTransform;
if (!inverse.Invert()) {
return Rect();
}
Rect deviceClip(aDeviceClip);
deviceClip.Inflate(MaxStrokeExtents(aStrokeOptions, aTransform));
return inverse.TransformBounds(deviceClip);
}
static Rect ShrinkClippedStrokedRect(const Rect& aStrokedRect,
const IntRect& aDeviceClip,
const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
Rect userSpaceStrokeClip =
UserSpaceStrokeClip(aDeviceClip, aTransform, aStrokeOptions);
RectDouble strokedRectDouble(aStrokedRect.X(), aStrokedRect.Y(),
aStrokedRect.Width(), aStrokedRect.Height());
RectDouble intersection = strokedRectDouble.Intersect(
RectDouble(userSpaceStrokeClip.X(), userSpaceStrokeClip.Y(),
userSpaceStrokeClip.Width(), userSpaceStrokeClip.Height()));
Double dashPeriodLength = DashPeriodLength(aStrokeOptions);
if (intersection.IsEmpty() || dashPeriodLength == 0.0f) {
return Rect(intersection.X(), intersection.Y(), intersection.Width(),
intersection.Height());
}
// Reduce the rectangle side lengths in multiples of the dash period length
// so that the visible dashes stay in the same place.
MarginDouble insetBy = strokedRectDouble - intersection;
insetBy.top = RoundDownToMultiple(insetBy.top, dashPeriodLength);
insetBy.right = RoundDownToMultiple(insetBy.right, dashPeriodLength);
insetBy.bottom = RoundDownToMultiple(insetBy.bottom, dashPeriodLength);
insetBy.left = RoundDownToMultiple(insetBy.left, dashPeriodLength);
strokedRectDouble.Deflate(insetBy);
return Rect(strokedRectDouble.X(), strokedRectDouble.Y(),
strokedRectDouble.Width(), strokedRectDouble.Height());
}
void DrawTargetSkia::StrokeRect(const Rect& aRect, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
// Stroking large rectangles with dashes is expensive with Skia (fixed
// overhead based on the number of dashes, regardless of whether the dashes
// are visible), so we try to reduce the size of the stroked rectangle as
// much as possible before passing it on to Skia.
Rect rect = aRect;
if (aStrokeOptions.mDashLength > 0 && !rect.IsEmpty()) {
IntRect deviceClip(IntPoint(0, 0), mSize);
SkIRect clipBounds;
if (mCanvas->getDeviceClipBounds(&clipBounds)) {
deviceClip = SkIRectToIntRect(clipBounds);
}
rect =
ShrinkClippedStrokedRect(rect, deviceClip, mTransform, aStrokeOptions);
if (rect.IsEmpty()) {
return;
}
}
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
mCanvas->drawRect(RectToSkRect(rect), paint.mPaint);
}
void DrawTargetSkia::StrokeLine(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
mCanvas->drawLine(SkFloatToScalar(aStart.x), SkFloatToScalar(aStart.y),
SkFloatToScalar(aEnd.x), SkFloatToScalar(aEnd.y),
paint.mPaint);
}
void DrawTargetSkia::Fill(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions) {
MarkChanged();
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia* skiaPath = static_cast<const PathSkia*>(aPath);
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!skiaPath->GetPath().isFinite()) {
return;
}
mCanvas->drawPath(skiaPath->GetPath(), paint.mPaint);
}
#ifdef MOZ_WIDGET_COCOA
static inline CGAffineTransform GfxMatrixToCGAffineTransform(const Matrix& m) {
CGAffineTransform t;
t.a = m._11;
t.b = m._12;
t.c = m._21;
t.d = m._22;
t.tx = m._31;
t.ty = m._32;
return t;
}
/***
* We have to do a lot of work to draw glyphs with CG because
* CG assumes that the origin of rects are in the bottom left
* while every other DrawTarget assumes the top left is the origin.
* This means we have to transform the CGContext to have rects
* actually be applied in top left fashion. We do this by:
*
* 1) Translating the context up by the height of the canvas
* 2) Flipping the context by the Y axis so it's upside down.
*
* These two transforms put the origin in the top left.
* Transforms are better understood thinking about them from right to left order
* (mathematically).
*
* Consider a point we want to draw at (0, 10) in normal cartesian planes with
* a box of (100, 100). in CG terms, this would be at (0, 10).
* Positive Y values point up.
* In our DrawTarget terms, positive Y values point down, so (0, 10) would be
* at (0, 90) in cartesian plane terms. That means our point at (0, 10) in
* DrawTarget terms should end up at (0, 90). How does this work with the
* current transforms?
*
* Going right to left with the transforms, a CGPoint of (0, 10) has cartesian
* coordinates of (0, 10). The first flip of the Y axis puts the point now at
* (0, -10); Next, we translate the context up by the size of the canvas
* (Positive Y values go up in CG coordinates but down in our draw target
* coordinates). Since our canvas size is (100, 100), the resulting coordinate
* becomes (0, 90), which is what we expect from our DrawTarget code. These two
* transforms put the CG context equal to what every other DrawTarget expects.
*
* Next, we need two more transforms for actual text. IF we left the transforms
* as is, the text would be drawn upside down, so we need another flip of the Y
* axis to draw the text right side up. However, with only the flip, the text
* would be drawn in the wrong place. Thus we also have to invert the Y position
* of the glyphs to get them in the right place.
*
* Thus we have the following transforms:
* 1) Translation of the context up
* 2) Flipping the context around the Y axis
* 3) Flipping the context around the Y axis
* 4) Inverting the Y position of each glyph
*
* We cannot cancel out (2) and (3) as we have to apply the clips and transforms
* of DrawTargetSkia between (2) and (3).
*
* Consider the example letter P, drawn at (0, 20) in CG coordinates in a
* (100, 100) rect.
* Again, going right to left of the transforms. We'd get:
*
* 1) The letter P drawn at (0, -20) due to the inversion of the Y axis
* 2) The letter P upside down (b) at (0, 20) due to the second flip
* 3) The letter P right side up at (0, -20) due to the first flip
* 4) The letter P right side up at (0, 80) due to the translation
*
* tl;dr - CGRects assume origin is bottom left, DrawTarget rects assume top
* left.
*/
static bool SetupCGContext(DrawTargetSkia* aDT, CGContextRef aCGContext,
SkCanvas* aCanvas, const IntPoint& aOrigin,
const IntSize& aSize, bool aClipped) {
// DrawTarget expects the origin to be at the top left, but CG
// expects it to be at the bottom left. Transform to set the origin to
// the top left. Have to set this before we do anything else.
// This is transform (1) up top
CGContextTranslateCTM(aCGContext, -aOrigin.x, aOrigin.y + aSize.height);
// Transform (2) from the comments.
CGContextScaleCTM(aCGContext, 1, -1);
// Want to apply clips BEFORE the transform since the transform
// will apply to the clips we apply.
if (aClipped) {
SkRegion clipRegion;
aCanvas->temporary_internal_getRgnClip(&clipRegion);
Vector<CGRect, 8> rects;
for (SkRegion::Iterator it(clipRegion); !it.done(); it.next()) {
const SkIRect& rect = it.rect();
if (!rects.append(
CGRectMake(rect.x(), rect.y(), rect.width(), rect.height()))) {
break;
}
}
if (rects.length()) {
CGContextClipToRects(aCGContext, rects.begin(), rects.length());
}
}
CGContextConcatCTM(aCGContext,
GfxMatrixToCGAffineTransform(aDT->GetTransform()));
return true;
}
// End long comment about transforms.
// The context returned from this method will have the origin
// in the top left and will have applied all the neccessary clips
// and transforms to the CGContext. See the comment above
// SetupCGContext.
CGContextRef DrawTargetSkia::BorrowCGContext(const DrawOptions& aOptions) {
// Since we can't replay Skia clips, we have to use a layer if we have a
// complex clip. After saving a layer, the SkCanvas queries for needing a
// layer change so save if we pushed a layer.
mNeedLayer = !mCanvas->isClipEmpty() && !mCanvas->isClipRect();
if (mNeedLayer) {
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
SkCanvas::SaveLayerRec rec(nullptr, &paint,
SkCanvas::kInitWithPrevious_SaveLayerFlag);
mCanvas->saveLayer(rec);
}
uint8_t* data = nullptr;
int32_t stride;
SurfaceFormat format;
IntSize size;
IntPoint origin;
if (!LockBits(&data, &size, &stride, &format, &origin)) {
NS_WARNING("Could not lock skia bits to wrap CG around");
return nullptr;
}
if (!mNeedLayer && (data == mCanvasData) && mCG && (mCGSize == size)) {
// If our canvas data still points to the same data,
// we can reuse the CG Context
CGContextSetAlpha(mCG, aOptions.mAlpha);
CGContextSetShouldAntialias(mCG,
aOptions.mAntialiasMode != AntialiasMode::NONE);
CGContextSaveGState(mCG);
SetupCGContext(this, mCG, mCanvas, origin, size, true);
return mCG;
}
if (!mColorSpace) {
mColorSpace = (format == SurfaceFormat::A8) ? CGColorSpaceCreateDeviceGray()
: CGColorSpaceCreateDeviceRGB();
}
if (mCG) {
// Release the old CG context since it's no longer valid.
CGContextRelease(mCG);
}
mCanvasData = data;
mCGSize = size;
uint32_t bitmapInfo =
(format == SurfaceFormat::A8)
? kCGImageAlphaOnly
: kCGImageAlphaPremultipliedFirst | kCGBitmapByteOrder32Host;
mCG = CGBitmapContextCreateWithData(
mCanvasData, mCGSize.width, mCGSize.height, 8, /* bits per component */
stride, mColorSpace, bitmapInfo, NULL, /* Callback when released */
NULL);
if (!mCG) {
if (mNeedLayer) {
mCanvas->restore();
}
ReleaseBits(mCanvasData);
NS_WARNING("Could not create bitmap around skia data\n");
return nullptr;
}
CGContextSetAlpha(mCG, aOptions.mAlpha);
CGContextSetShouldAntialias(mCG,
aOptions.mAntialiasMode != AntialiasMode::NONE);
CGContextSetShouldSmoothFonts(mCG, true);
CGContextSetTextDrawingMode(mCG, kCGTextFill);
CGContextSaveGState(mCG);
SetupCGContext(this, mCG, mCanvas, origin, size, !mNeedLayer);
return mCG;
}
void DrawTargetSkia::ReturnCGContext(CGContextRef aCGContext) {
MOZ_ASSERT(aCGContext == mCG);
ReleaseBits(mCanvasData);
CGContextRestoreGState(aCGContext);
if (mNeedLayer) {
// A layer was used for clipping and is about to be popped by the restore.
// Make sure the CG context referencing it is released first so the popped
// layer doesn't accidentally get used.
if (mCG) {
CGContextRelease(mCG);
mCG = nullptr;
}
mCanvas->restore();
}
}
CGContextRef BorrowedCGContext::BorrowCGContextFromDrawTarget(DrawTarget* aDT) {
DrawTargetSkia* skiaDT = static_cast<DrawTargetSkia*>(aDT);
return skiaDT->BorrowCGContext(DrawOptions());
}
void BorrowedCGContext::ReturnCGContextToDrawTarget(DrawTarget* aDT,
CGContextRef cg) {
DrawTargetSkia* skiaDT = static_cast<DrawTargetSkia*>(aDT);
skiaDT->ReturnCGContext(cg);
}
#endif
static bool CanDrawFont(ScaledFont* aFont) {
switch (aFont->GetType()) {
case FontType::FREETYPE:
case FontType::FONTCONFIG:
case FontType::MAC:
case FontType::GDI:
case FontType::DWRITE:
return true;
default:
return false;
}
}
void DrawTargetSkia::DrawGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions* aStrokeOptions,
const DrawOptions& aOptions) {
if (!CanDrawFont(aFont)) {
return;
}
MarkChanged();
ScaledFontBase* skiaFont = static_cast<ScaledFontBase*>(aFont);
SkTypeface* typeface = skiaFont->GetSkTypeface();
if (!typeface) {
return;
}
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (aStrokeOptions && !StrokeOptionsToPaint(paint.mPaint, *aStrokeOptions)) {
return;
}
AntialiasMode aaMode = aFont->GetDefaultAAMode();
if (aOptions.mAntialiasMode != AntialiasMode::DEFAULT) {
aaMode = aOptions.mAntialiasMode;
}
bool aaEnabled = aaMode != AntialiasMode::NONE;
paint.mPaint.setAntiAlias(aaEnabled);
SkFont font(sk_ref_sp(typeface), SkFloatToScalar(skiaFont->mSize));
bool useSubpixelAA =
GetPermitSubpixelAA() &&
(aaMode == AntialiasMode::DEFAULT || aaMode == AntialiasMode::SUBPIXEL);
font.setEdging(useSubpixelAA ? SkFont::Edging::kSubpixelAntiAlias
: (aaEnabled ? SkFont::Edging::kAntiAlias
: SkFont::Edging::kAlias));
skiaFont->SetupSkFontDrawOptions(font);
// Limit the amount of internal batch allocations Skia does.
const uint32_t kMaxGlyphBatchSize = 8192;
for (uint32_t offset = 0; offset < aBuffer.mNumGlyphs;) {
uint32_t batchSize =
std::min(aBuffer.mNumGlyphs - offset, kMaxGlyphBatchSize);
SkTextBlobBuilder builder;
auto runBuffer = builder.allocRunPos(font, batchSize);
for (uint32_t i = 0; i < batchSize; i++, offset++) {
runBuffer.glyphs[i] = aBuffer.mGlyphs[offset].mIndex;
runBuffer.points()[i] = PointToSkPoint(aBuffer.mGlyphs[offset].mPosition);
}
sk_sp<SkTextBlob> text = builder.make();
mCanvas->drawTextBlob(text, 0, 0, paint.mPaint);
}
}
Maybe<Rect> DrawTargetSkia::GetGlyphLocalBounds(
ScaledFont* aFont, const GlyphBuffer& aBuffer, const Pattern& aPattern,
const StrokeOptions* aStrokeOptions, const DrawOptions& aOptions) {
if (!CanDrawFont(aFont)) {
return Nothing();
}
ScaledFontBase* skiaFont = static_cast<ScaledFontBase*>(aFont);
SkTypeface* typeface = skiaFont->GetSkTypeface();
if (!typeface) {
return Nothing();
}
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (aStrokeOptions && !StrokeOptionsToPaint(paint.mPaint, *aStrokeOptions)) {
return Nothing();
}
AntialiasMode aaMode = aFont->GetDefaultAAMode();
if (aOptions.mAntialiasMode != AntialiasMode::DEFAULT) {
aaMode = aOptions.mAntialiasMode;
}
bool aaEnabled = aaMode != AntialiasMode::NONE;
paint.mPaint.setAntiAlias(aaEnabled);
SkFont font(sk_ref_sp(typeface), SkFloatToScalar(skiaFont->mSize));
bool useSubpixelAA =
GetPermitSubpixelAA() &&
(aaMode == AntialiasMode::DEFAULT || aaMode == AntialiasMode::SUBPIXEL);
font.setEdging(useSubpixelAA ? SkFont::Edging::kSubpixelAntiAlias
: (aaEnabled ? SkFont::Edging::kAntiAlias
: SkFont::Edging::kAlias));
skiaFont->SetupSkFontDrawOptions(font);
// Limit the amount of internal batch allocations Skia does.
const uint32_t kMaxGlyphBatchSize = 8192;
// Avoid using TextBlobBuilder for bounds computations as the conservative
// bounds can be wrong due to buggy font metrics. Instead, explicitly compute
// tight bounds directly with the SkFont.
Vector<SkGlyphID, 32> glyphs;
Vector<SkRect, 32> rects;
Rect bounds;
for (uint32_t offset = 0; offset < aBuffer.mNumGlyphs;) {
uint32_t batchSize =
std::min(aBuffer.mNumGlyphs - offset, kMaxGlyphBatchSize);
if (glyphs.resizeUninitialized(batchSize) &&
rects.resizeUninitialized(batchSize)) {
for (uint32_t i = 0; i < batchSize; i++) {
glyphs[i] = aBuffer.mGlyphs[offset + i].mIndex;
}
font.getBounds(glyphs.begin(), batchSize, rects.begin(), nullptr);
for (uint32_t i = 0; i < batchSize; i++) {
bounds = bounds.Union(SkRectToRect(rects[i]) +
aBuffer.mGlyphs[offset + i].mPosition);
}
}
offset += batchSize;
}
SkRect storage;
bounds = SkRectToRect(
paint.mPaint.computeFastBounds(RectToSkRect(bounds), &storage));
if (bounds.IsEmpty()) {
return Nothing();
}
return Some(bounds);
}
void DrawTargetSkia::FillGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions) {
DrawGlyphs(aFont, aBuffer, aPattern, nullptr, aOptions);
}
void DrawTargetSkia::StrokeGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
DrawGlyphs(aFont, aBuffer, aPattern, &aStrokeOptions, aOptions);
}
void DrawTargetSkia::Mask(const Pattern& aSource, const Pattern& aMask,
const DrawOptions& aOptions) {
Maybe<MutexAutoLock> lock;
SkPaint maskPaint;
SetPaintPattern(maskPaint, aMask, lock);
sk_sp<SkShader> maskShader(maskPaint.refShader());
if (!maskShader && maskPaint.getAlpha() != 0xFF) {
if (maskPaint.getAlpha() == 0) {
return;
}
maskShader = SkShaders::Color(maskPaint.getColor());
if (!maskShader) {
gfxDebug() << "Failed creating Skia clip shader for Mask";
return;
}
}
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aSource);
mCanvas->save();
if (maskShader) {
mCanvas->clipShader(maskShader);
}
mCanvas->drawPaint(paint.mPaint);
mCanvas->restore();
}
void DrawTargetSkia::MaskSurface(const Pattern& aSource, SourceSurface* aMask,
Point aOffset, const DrawOptions& aOptions) {
Maybe<MutexAutoLock> lock;
sk_sp<SkImage> maskImage = GetSkImageForSurface(aMask, &lock);
SkMatrix maskOffset = SkMatrix::Translate(
PointToSkPoint(aOffset + Point(aMask->GetRect().TopLeft())));
sk_sp<SkShader> maskShader = maskImage->makeShader(
SkTileMode::kClamp, SkTileMode::kClamp,
SkSamplingOptions(SkFilterMode::kLinear), maskOffset);
if (!maskShader) {
gfxDebug() << "Failed creating Skia clip shader for MaskSurface";
return;
}
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aSource);
mCanvas->save();
mCanvas->clipShader(maskShader);
mCanvas->drawRect(RectToSkRect(Rect(aMask->GetRect()) + aOffset),
paint.mPaint);
mCanvas->restore();
}
bool DrawTarget::Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix) {
// Composite the 3D transform with the DT's transform.
Matrix4x4 fullMat = aMatrix * Matrix4x4::From2D(mTransform);
if (fullMat.IsSingular()) {
return false;
}
// Transform the surface bounds and clip to this DT.
IntRect xformBounds = RoundedOut(fullMat.TransformAndClipBounds(
Rect(Point(0, 0), Size(aSurface->GetSize())),
Rect(Point(0, 0), Size(GetSize()))));
if (xformBounds.IsEmpty()) {
return true;
}
// Offset the matrix by the transformed origin.
fullMat.PostTranslate(-xformBounds.X(), -xformBounds.Y(), 0);
// Read in the source data.
Maybe<MutexAutoLock> lock;
sk_sp<SkImage> srcImage = GetSkImageForSurface(aSurface, &lock);
if (!srcImage) {
return true;
}
// Set up an intermediate destination surface only the size of the transformed
// bounds. Try to pass through the source's format unmodified in both the BGRA
// and ARGB cases.
RefPtr<DataSourceSurface> dstSurf = Factory::CreateDataSourceSurface(
xformBounds.Size(),
!srcImage->isOpaque() ? aSurface->GetFormat()
: SurfaceFormat::A8R8G8B8_UINT32,
true);
if (!dstSurf) {
return false;
}
DataSourceSurface::ScopedMap map(dstSurf, DataSourceSurface::READ_WRITE);
if (!map.IsMapped()) {
return false;
}
std::unique_ptr<SkCanvas> dstCanvas(SkCanvas::MakeRasterDirect(
SkImageInfo::Make(xformBounds.Width(), xformBounds.Height(),
GfxFormatToSkiaColorType(dstSurf->GetFormat()),
kPremul_SkAlphaType),
map.GetData(), map.GetStride()));
if (!dstCanvas) {
return false;
}
// Do the transform.
SkPaint paint;
paint.setAntiAlias(true);
paint.setBlendMode(SkBlendMode::kSrc);