Source code

Revision control

Copy as Markdown

Other Tools

/**
* Utilities to improve the performance of the CTS, by caching data that is
* expensive to build using a two-level cache (in-memory, pre-computed file).
*/
import { assert } from '../util/util.js';
interface DataStore {
load(path: string): Promise<Uint8Array>;
}
/** Logger is a basic debug logger function */
export type Logger = (s: string) => void;
/**
* DataCacheNode represents a single cache entry in the LRU DataCache.
* DataCacheNode is a doubly linked list, so that least-recently-used entries can be removed, and
* cache hits can move the node to the front of the list.
*/
class DataCacheNode {
public constructor(path: string, data: unknown) {
this.path = path;
this.data = data;
}
/** insertAfter() re-inserts this node in the doubly-linked list after `prev` */
public insertAfter(prev: DataCacheNode) {
this.unlink();
this.next = prev.next;
this.prev = prev;
prev.next = this;
if (this.next) {
this.next.prev = this;
}
}
/** unlink() removes this node from the doubly-linked list */
public unlink() {
const prev = this.prev;
const next = this.next;
if (prev) {
prev.next = next;
}
if (next) {
next.prev = prev;
}
this.prev = null;
this.next = null;
}
public readonly path: string; // The file path this node represents
public readonly data: unknown; // The deserialized data for this node
public prev: DataCacheNode | null = null; // The previous node in the doubly-linked list
public next: DataCacheNode | null = null; // The next node in the doubly-linked list
}
/** DataCache is an interface to a LRU-cached data store used to hold data cached by path */
export class DataCache {
public constructor() {
this.lruHeadNode.next = this.lruTailNode;
this.lruTailNode.prev = this.lruHeadNode;
}
/** setDataStore() sets the backing data store used by the data cache */
public setStore(dataStore: DataStore) {
this.dataStore = dataStore;
}
/** setDebugLogger() sets the verbose logger */
public setDebugLogger(logger: Logger) {
this.debugLogger = logger;
}
/**
* fetch() retrieves cacheable data from the data cache, first checking the
* in-memory cache, then the data store (if specified), then resorting to
* building the data and storing it in the cache.
*/
public async fetch<Data>(cacheable: Cacheable<Data>): Promise<Data> {
{
// First check the in-memory cache
const node = this.cache.get(cacheable.path);
if (node !== undefined) {
this.log('in-memory cache hit');
node.insertAfter(this.lruHeadNode);
return Promise.resolve(node.data as Data);
}
}
this.log('in-memory cache miss');
// In in-memory cache miss.
// Next, try the data store.
if (this.dataStore !== null && !this.unavailableFiles.has(cacheable.path)) {
let serialized: Uint8Array | undefined;
try {
serialized = await this.dataStore.load(cacheable.path);
this.log('loaded serialized');
} catch (err) {
// not found in data store
this.log(`failed to load (${cacheable.path}): ${err}`);
this.unavailableFiles.add(cacheable.path);
}
if (serialized !== undefined) {
this.log(`deserializing`);
const data = cacheable.deserialize(serialized);
this.addToCache(cacheable.path, data);
return data;
}
}
// Not found anywhere. Build the data, and cache for future lookup.
this.log(`cache: building (${cacheable.path})`);
const data = await cacheable.build();
this.addToCache(cacheable.path, data);
return data;
}
/**
* addToCache() creates a new node for `path` and `data`, inserting the new node at the front of
* the doubly-linked list. If the number of entries in the cache exceeds this.maxCount, then the
* least recently used entry is evicted
* @param path the file path for the data
* @param data the deserialized data
*/
private addToCache(path: string, data: unknown) {
if (this.cache.size >= this.maxCount) {
const toEvict = this.lruTailNode.prev;
assert(toEvict !== null);
toEvict.unlink();
this.cache.delete(toEvict.path);
this.log(`evicting ${toEvict.path}`);
}
const node = new DataCacheNode(path, data);
node.insertAfter(this.lruHeadNode);
this.cache.set(path, node);
this.log(`added ${path}. new count: ${this.cache.size}`);
}
private log(msg: string) {
if (this.debugLogger !== null) {
this.debugLogger(`DataCache: ${msg}`);
}
}
// Max number of entries in the cache before LRU entries are evicted.
private readonly maxCount = 4;
private cache = new Map<string, DataCacheNode>();
private lruHeadNode = new DataCacheNode('', null); // placeholder node (no path or data)
private lruTailNode = new DataCacheNode('', null); // placeholder node (no path or data)
private unavailableFiles = new Set<string>();
private dataStore: DataStore | null = null;
private debugLogger: Logger | null = null;
}
/** The data cache */
export const dataCache = new DataCache();
/** true if the current process is building the cache */
let isBuildingDataCache = false;
/** @returns true if the data cache is currently being built */
export function getIsBuildingDataCache() {
return isBuildingDataCache;
}
/** Sets whether the data cache is currently being built */
export function setIsBuildingDataCache(value = true) {
isBuildingDataCache = value;
}
/**
* Cacheable is the interface to something that can be stored into the
* DataCache.
* The 'npm run gen_cache' tool will look for module-scope variables of this
* interface, with the name `d`.
*/
export interface Cacheable<Data> {
/** the globally unique path for the cacheable data */
readonly path: string;
/**
* build() builds the cacheable data.
* This is assumed to be an expensive operation and will only happen if the
* cache does not already contain the built data.
*/
build(): Promise<Data>;
/**
* serialize() encodes `data` to a binary representation so that it can be stored in a cache file.
*/
serialize(data: Data): Uint8Array;
/**
* deserialize() is the inverse of serialize(), decoding the binary representation back to a Data
* object.
*/
deserialize(binary: Uint8Array): Data;
}