Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaCache.h"
#include "ChannelMediaResource.h"
#include "FileBlockCache.h"
#include "MediaBlockCacheBase.h"
#include "MediaResource.h"
#include "MemoryBlockCache.h"
#include "mozilla/Attributes.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/ErrorNames.h"
#include "mozilla/Logging.h"
#include "mozilla/Monitor.h"
#include "mozilla/Preferences.h"
#include "mozilla/Services.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/StaticPrefs_browser.h"
#include "mozilla/StaticPrefs_media.h"
#include "nsContentUtils.h"
#include "nsINetworkLinkService.h"
#include "nsIObserverService.h"
#include "nsPrintfCString.h"
#include "nsProxyRelease.h"
#include "nsTHashSet.h"
#include "nsThreadUtils.h"
#include "prio.h"
#include "VideoUtils.h"
#include <algorithm>
namespace mozilla {
#undef LOG
#undef LOGI
#undef LOGE
LazyLogModule gMediaCacheLog("MediaCache");
#define LOG(...) MOZ_LOG(gMediaCacheLog, LogLevel::Debug, (__VA_ARGS__))
#define LOGI(...) MOZ_LOG(gMediaCacheLog, LogLevel::Info, (__VA_ARGS__))
#define LOGE(...) \
NS_DebugBreak(NS_DEBUG_WARNING, nsPrintfCString(__VA_ARGS__).get(), nullptr, \
__FILE__, __LINE__)
// For HTTP seeking, if number of bytes needing to be
// seeked forward is less than this value then a read is
// done rather than a byte range request.
//
// If we assume a 100Mbit connection, and assume reissuing an HTTP seek causes
// a delay of 200ms, then in that 200ms we could have simply read ahead 2MB. So
// setting SEEK_VS_READ_THRESHOLD to 1MB sounds reasonable.
static const int64_t SEEK_VS_READ_THRESHOLD = 1 * 1024 * 1024;
// Readahead blocks for non-seekable streams will be limited to this
// fraction of the cache space. We don't normally evict such blocks
// because replacing them requires a seek, but we need to make sure
// they don't monopolize the cache.
static const double NONSEEKABLE_READAHEAD_MAX = 0.5;
// Data N seconds before the current playback position is given the same
// priority as data REPLAY_PENALTY_FACTOR*N seconds ahead of the current
// playback position. REPLAY_PENALTY_FACTOR is greater than 1 to reflect that
// data in the past is less likely to be played again than data in the future.
// We want to give data just behind the current playback position reasonably
// high priority in case codecs need to retrieve that data (e.g. because
// tracks haven't been muxed well or are being decoded at uneven rates).
// 1/REPLAY_PENALTY_FACTOR as much data will be kept behind the
// current playback position as will be kept ahead of the current playback
// position.
static const uint32_t REPLAY_PENALTY_FACTOR = 3;
// When looking for a reusable block, scan forward this many blocks
// from the desired "best" block location to look for free blocks,
// before we resort to scanning the whole cache. The idea is to try to
// store runs of stream blocks close-to-consecutively in the cache if we
// can.
static const uint32_t FREE_BLOCK_SCAN_LIMIT = 16;
#ifdef DEBUG
// Turn this on to do very expensive cache state validation
// #define DEBUG_VERIFY_CACHE
#endif
class MediaCacheFlusher final : public nsIObserver,
public nsSupportsWeakReference {
public:
NS_DECL_ISUPPORTS
NS_DECL_NSIOBSERVER
static void RegisterMediaCache(MediaCache* aMediaCache);
static void UnregisterMediaCache(MediaCache* aMediaCache);
private:
MediaCacheFlusher() = default;
~MediaCacheFlusher() = default;
// Singleton instance created when a first MediaCache is registered, and
// released when the last MediaCache is unregistered.
// The observer service will keep a weak reference to it, for notifications.
static StaticRefPtr<MediaCacheFlusher> gMediaCacheFlusher;
nsTArray<MediaCache*> mMediaCaches;
};
/* static */
StaticRefPtr<MediaCacheFlusher> MediaCacheFlusher::gMediaCacheFlusher;
NS_IMPL_ISUPPORTS(MediaCacheFlusher, nsIObserver, nsISupportsWeakReference)
/* static */
void MediaCacheFlusher::RegisterMediaCache(MediaCache* aMediaCache) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
if (!gMediaCacheFlusher) {
gMediaCacheFlusher = new MediaCacheFlusher();
nsCOMPtr<nsIObserverService> observerService =
mozilla::services::GetObserverService();
if (observerService) {
observerService->AddObserver(gMediaCacheFlusher, "last-pb-context-exited",
true);
observerService->AddObserver(gMediaCacheFlusher,
"cacheservice:empty-cache", true);
observerService->AddObserver(
gMediaCacheFlusher, "contentchild:network-link-type-changed", true);
observerService->AddObserver(gMediaCacheFlusher,
NS_NETWORK_LINK_TYPE_TOPIC, true);
}
}
gMediaCacheFlusher->mMediaCaches.AppendElement(aMediaCache);
}
/* static */
void MediaCacheFlusher::UnregisterMediaCache(MediaCache* aMediaCache) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
gMediaCacheFlusher->mMediaCaches.RemoveElement(aMediaCache);
if (gMediaCacheFlusher->mMediaCaches.Length() == 0) {
gMediaCacheFlusher = nullptr;
}
}
class MediaCache {
using AutoLock = MonitorAutoLock;
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaCache)
friend class MediaCacheStream::BlockList;
typedef MediaCacheStream::BlockList BlockList;
static const int64_t BLOCK_SIZE = MediaCacheStream::BLOCK_SIZE;
// Get an instance of a MediaCache (or nullptr if initialization failed).
// aContentLength is the content length if known already, otherwise -1.
// If the length is known and considered small enough, a discrete MediaCache
// with memory backing will be given. Otherwise the one MediaCache with
// file backing will be provided.
// If aIsPrivateBrowsing is true, only initialization of a memory backed
// MediaCache will be attempted, returning nullptr if that fails.
static RefPtr<MediaCache> GetMediaCache(int64_t aContentLength,
bool aIsPrivateBrowsing);
nsISerialEventTarget* OwnerThread() const { return sThread; }
// Brutally flush the cache contents. Main thread only.
void Flush();
// Close all streams associated with private browsing windows. This will
// also remove the blocks from the cache since we don't want to leave any
// traces when PB is done.
void CloseStreamsForPrivateBrowsing();
// Cache-file access methods. These are the lowest-level cache methods.
// mMonitor must be held; these can be called on any thread.
// This can return partial reads.
// Note mMonitor will be dropped while doing IO. The caller need
// to handle changes happening when the monitor is not held.
nsresult ReadCacheFile(AutoLock&, int64_t aOffset, void* aData,
int32_t aLength, int32_t* aBytes);
// The generated IDs are always positive.
int64_t AllocateResourceID(AutoLock&) { return ++mNextResourceID; }
// mMonitor must be held, called on main thread.
// These methods are used by the stream to set up and tear down streams,
// and to handle reads and writes.
// Add aStream to the list of streams.
void OpenStream(AutoLock&, MediaCacheStream* aStream, bool aIsClone = false);
// Remove aStream from the list of streams.
void ReleaseStream(AutoLock&, MediaCacheStream* aStream);
// Free all blocks belonging to aStream.
void ReleaseStreamBlocks(AutoLock&, MediaCacheStream* aStream);
// Find a cache entry for this data, and write the data into it
void AllocateAndWriteBlock(
AutoLock&, MediaCacheStream* aStream, int32_t aStreamBlockIndex,
Span<const uint8_t> aData1,
Span<const uint8_t> aData2 = Span<const uint8_t>());
// mMonitor must be held; can be called on any thread
// Notify the cache that a seek has been requested. Some blocks may
// need to change their class between PLAYED_BLOCK and READAHEAD_BLOCK.
// This does not trigger channel seeks directly, the next Update()
// will do that if necessary. The caller will call QueueUpdate().
void NoteSeek(AutoLock&, MediaCacheStream* aStream, int64_t aOldOffset);
// Notify the cache that a block has been read from. This is used
// to update last-use times. The block may not actually have a
// cache entry yet since Read can read data from a stream's
// in-memory mPartialBlockBuffer while the block is only partly full,
// and thus hasn't yet been committed to the cache. The caller will
// call QueueUpdate().
void NoteBlockUsage(AutoLock&, MediaCacheStream* aStream, int32_t aBlockIndex,
int64_t aStreamOffset, MediaCacheStream::ReadMode aMode,
TimeStamp aNow);
// Mark aStream as having the block, adding it as an owner.
void AddBlockOwnerAsReadahead(AutoLock&, int32_t aBlockIndex,
MediaCacheStream* aStream,
int32_t aStreamBlockIndex);
// This queues a call to Update() on the media cache thread.
void QueueUpdate(AutoLock&);
// Notify all streams for the resource ID that the suspended status changed
// at the end of MediaCache::Update.
void QueueSuspendedStatusUpdate(AutoLock&, int64_t aResourceID);
// Updates the cache state asynchronously on the media cache thread:
// -- try to trim the cache back to its desired size, if necessary
// -- suspend channels that are going to read data that's lower priority
// than anything currently cached
// -- resume channels that are going to read data that's higher priority
// than something currently cached
// -- seek channels that need to seek to a new location
void Update();
#ifdef DEBUG_VERIFY_CACHE
// Verify invariants, especially block list invariants
void Verify(AutoLock&);
#else
void Verify(AutoLock&) {}
#endif
mozilla::Monitor& Monitor() {
// This method should only be called outside the main thread.
// The MOZ_DIAGNOSTIC_ASSERT(!NS_IsMainThread()) assertion should be
// re-added as part of bug 1464045
return mMonitor;
}
// Polls whether we're on a cellular network connection, and posts a task
// to the MediaCache thread to set the value of MediaCache::sOnCellular.
// Call on main thread only.
static void UpdateOnCellular();
/**
* An iterator that makes it easy to iterate through all streams that
* have a given resource ID and are not closed.
* Must be used while holding the media cache lock.
*/
class ResourceStreamIterator {
public:
ResourceStreamIterator(MediaCache* aMediaCache, int64_t aResourceID)
: mMediaCache(aMediaCache), mResourceID(aResourceID), mNext(0) {
aMediaCache->mMonitor.AssertCurrentThreadOwns();
}
MediaCacheStream* Next(AutoLock& aLock) {
while (mNext < mMediaCache->mStreams.Length()) {
MediaCacheStream* stream = mMediaCache->mStreams[mNext];
++mNext;
if (stream->GetResourceID() == mResourceID && !stream->IsClosed(aLock))
return stream;
}
return nullptr;
}
private:
MediaCache* mMediaCache;
int64_t mResourceID;
uint32_t mNext;
};
protected:
explicit MediaCache(MediaBlockCacheBase* aCache)
: mMonitor("MediaCache.mMonitor"),
mBlockCache(aCache),
mUpdateQueued(false)
#ifdef DEBUG
,
mInUpdate(false)
#endif
{
NS_ASSERTION(NS_IsMainThread(), "Only construct MediaCache on main thread");
MOZ_COUNT_CTOR(MediaCache);
MediaCacheFlusher::RegisterMediaCache(this);
UpdateOnCellular();
}
~MediaCache() {
NS_ASSERTION(NS_IsMainThread(), "Only destroy MediaCache on main thread");
if (this == gMediaCache) {
LOG("~MediaCache(Global file-backed MediaCache)");
// This is the file-backed MediaCache, reset the global pointer.
gMediaCache = nullptr;
} else {
LOG("~MediaCache(Memory-backed MediaCache %p)", this);
}
MediaCacheFlusher::UnregisterMediaCache(this);
NS_ASSERTION(mStreams.IsEmpty(), "Stream(s) still open!");
Truncate();
NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
MOZ_COUNT_DTOR(MediaCache);
}
static size_t CacheSize() {
MOZ_ASSERT(sThread->IsOnCurrentThread());
return sOnCellular ? StaticPrefs::media_cache_size_cellular()
: StaticPrefs::media_cache_size();
}
static size_t ReadaheadLimit() {
MOZ_ASSERT(sThread->IsOnCurrentThread());
return sOnCellular ? StaticPrefs::media_cache_readahead_limit_cellular()
: StaticPrefs::media_cache_readahead_limit();
}
static size_t ResumeThreshold() {
return sOnCellular ? StaticPrefs::media_cache_resume_threshold_cellular()
: StaticPrefs::media_cache_resume_threshold();
}
// Find a free or reusable block and return its index. If there are no
// free blocks and no reusable blocks, add a new block to the cache
// and return it. Can return -1 on OOM.
int32_t FindBlockForIncomingData(AutoLock&, TimeStamp aNow,
MediaCacheStream* aStream,
int32_t aStreamBlockIndex);
// Find a reusable block --- a free block, if there is one, otherwise
// the reusable block with the latest predicted-next-use, or -1 if
// there aren't any freeable blocks. Only block indices less than
// aMaxSearchBlockIndex are considered. If aForStream is non-null,
// then aForStream and aForStreamBlock indicate what media data will
// be placed; FindReusableBlock will favour returning free blocks
// near other blocks for that point in the stream.
int32_t FindReusableBlock(AutoLock&, TimeStamp aNow,
MediaCacheStream* aForStream,
int32_t aForStreamBlock,
int32_t aMaxSearchBlockIndex);
bool BlockIsReusable(AutoLock&, int32_t aBlockIndex);
// Given a list of blocks sorted with the most reusable blocks at the
// end, find the last block whose stream is not pinned (if any)
// and whose cache entry index is less than aBlockIndexLimit
// and append it to aResult.
void AppendMostReusableBlock(AutoLock&, BlockList* aBlockList,
nsTArray<uint32_t>* aResult,
int32_t aBlockIndexLimit);
enum BlockClass {
// block belongs to mMetadataBlockList because data has been consumed
// from it in "metadata mode" --- in particular blocks read during
// Ogg seeks go into this class. These blocks may have played data
// in them too.
METADATA_BLOCK,
// block belongs to mPlayedBlockList because its offset is
// less than the stream's current reader position
PLAYED_BLOCK,
// block belongs to the stream's mReadaheadBlockList because its
// offset is greater than or equal to the stream's current
// reader position
READAHEAD_BLOCK
};
struct BlockOwner {
constexpr BlockOwner() = default;
// The stream that owns this block, or null if the block is free.
MediaCacheStream* mStream = nullptr;
// The block index in the stream. Valid only if mStream is non-null.
// Initialized to an insane value to highlight misuse.
uint32_t mStreamBlock = UINT32_MAX;
// Time at which this block was last used. Valid only if
// mClass is METADATA_BLOCK or PLAYED_BLOCK.
TimeStamp mLastUseTime;
BlockClass mClass = READAHEAD_BLOCK;
};
struct Block {
// Free blocks have an empty mOwners array
nsTArray<BlockOwner> mOwners;
};
// Get the BlockList that the block should belong to given its
// current owner
BlockList* GetListForBlock(AutoLock&, BlockOwner* aBlock);
// Get the BlockOwner for the given block index and owning stream
// (returns null if the stream does not own the block)
BlockOwner* GetBlockOwner(AutoLock&, int32_t aBlockIndex,
MediaCacheStream* aStream);
// Returns true iff the block is free
bool IsBlockFree(int32_t aBlockIndex) {
return mIndex[aBlockIndex].mOwners.IsEmpty();
}
// Add the block to the free list and mark its streams as not having
// the block in cache
void FreeBlock(AutoLock&, int32_t aBlock);
// Mark aStream as not having the block, removing it as an owner. If
// the block has no more owners it's added to the free list.
void RemoveBlockOwner(AutoLock&, int32_t aBlockIndex,
MediaCacheStream* aStream);
// Swap all metadata associated with the two blocks. The caller
// is responsible for swapping up any cache file state.
void SwapBlocks(AutoLock&, int32_t aBlockIndex1, int32_t aBlockIndex2);
// Insert the block into the readahead block list for the stream
// at the right point in the list.
void InsertReadaheadBlock(AutoLock&, BlockOwner* aBlockOwner,
int32_t aBlockIndex);
// Guess the duration until block aBlock will be next used
TimeDuration PredictNextUse(AutoLock&, TimeStamp aNow, int32_t aBlock);
// Guess the duration until the next incoming data on aStream will be used
TimeDuration PredictNextUseForIncomingData(AutoLock&,
MediaCacheStream* aStream);
// Truncate the file and index array if there are free blocks at the
// end
void Truncate();
void FlushInternal(AutoLock&);
// There is at most one file-backed media cache.
// It is owned by all MediaCacheStreams that use it.
// This is a raw pointer set by GetMediaCache(), and reset by ~MediaCache(),
// both on the main thread; and is not accessed anywhere else.
static inline MediaCache* gMediaCache = nullptr;
// This member is main-thread only. It's used to allocate unique
// resource IDs to streams.
int64_t mNextResourceID = 0;
// The monitor protects all the data members here. Also, off-main-thread
// readers that need to block will Wait() on this monitor. When new
// data becomes available in the cache, we NotifyAll() on this monitor.
mozilla::Monitor mMonitor MOZ_UNANNOTATED;
// This must always be accessed when the monitor is held.
nsTArray<MediaCacheStream*> mStreams;
// The Blocks describing the cache entries.
nsTArray<Block> mIndex;
RefPtr<MediaBlockCacheBase> mBlockCache;
// The list of free blocks; they are not ordered.
BlockList mFreeBlocks;
// True if an event to run Update() has been queued but not processed
bool mUpdateQueued;
#ifdef DEBUG
bool mInUpdate;
#endif
// A list of resource IDs to notify about the change in suspended status.
nsTArray<int64_t> mSuspendedStatusToNotify;
// The thread on which we will run data callbacks from the channels.
// Note this thread is shared among all MediaCache instances.
static inline StaticRefPtr<nsIThread> sThread;
// True if we've tried to init sThread. Note we try once only so it is safe
// to access sThread on all threads.
static inline bool sThreadInit = false;
private:
// MediaCache thread only. True if we're on a cellular network connection.
static inline bool sOnCellular = false;
// Try to trim the cache back to its desired size, if necessary. Return the
// amount of free block counts after trimming.
int32_t TrimCacheIfNeeded(AutoLock& aLock, const TimeStamp& aNow);
struct StreamAction {
enum { NONE, SEEK, RESUME, SUSPEND } mTag = NONE;
// Members for 'SEEK' only.
bool mResume = false;
int64_t mSeekTarget = -1;
};
// In each update, media cache would determine an action for each stream,
// possible actions are: keeping the stream unchanged, seeking to the new
// position, resuming its channel or suspending its channel. The action would
// be determined by considering a lot of different factors, eg. stream's data
// offset and length, how many free or reusable blocks are avaliable, the
// predicted time for the next block...e.t.c. This function will write the
// corresponding action for each stream in `mStreams` into `aActions`.
void DetermineActionsForStreams(AutoLock& aLock, const TimeStamp& aNow,
nsTArray<StreamAction>& aActions,
int32_t aFreeBlockCount);
// Used by MediaCacheStream::GetDebugInfo() only for debugging.
// Don't add new callers to this function.
friend void MediaCacheStream::GetDebugInfo(
dom::MediaCacheStreamDebugInfo& aInfo);
mozilla::Monitor& GetMonitorOnTheMainThread() {
MOZ_DIAGNOSTIC_ASSERT(NS_IsMainThread());
return mMonitor;
}
};
void MediaCache::UpdateOnCellular() {
NS_ASSERTION(NS_IsMainThread(),
"Only call on main thread"); // JNI required on Android...
bool onCellular = OnCellularConnection();
LOG("MediaCache::UpdateOnCellular() onCellular=%d", onCellular);
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCache::UpdateOnCellular", [=]() { sOnCellular = onCellular; });
sThread->Dispatch(r.forget());
}
NS_IMETHODIMP
MediaCacheFlusher::Observe(nsISupports* aSubject, char const* aTopic,
char16_t const* aData) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
if (strcmp(aTopic, "last-pb-context-exited") == 0) {
for (MediaCache* mc : mMediaCaches) {
mc->CloseStreamsForPrivateBrowsing();
}
return NS_OK;
}
if (strcmp(aTopic, "cacheservice:empty-cache") == 0) {
for (MediaCache* mc : mMediaCaches) {
mc->Flush();
}
return NS_OK;
}
if (strcmp(aTopic, "contentchild:network-link-type-changed") == 0 ||
strcmp(aTopic, NS_NETWORK_LINK_TYPE_TOPIC) == 0) {
MediaCache::UpdateOnCellular();
}
return NS_OK;
}
MediaCacheStream::MediaCacheStream(ChannelMediaResource* aClient,
bool aIsPrivateBrowsing)
: mMediaCache(nullptr),
mClient(aClient),
mIsTransportSeekable(false),
mCacheSuspended(false),
mChannelEnded(false),
mStreamOffset(0),
mPlaybackBytesPerSecond(10000),
mPinCount(0),
mNotifyDataEndedStatus(NS_ERROR_NOT_INITIALIZED),
mIsPrivateBrowsing(aIsPrivateBrowsing) {}
size_t MediaCacheStream::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
AutoLock lock(mMediaCache->Monitor());
// Looks like these are not owned:
// - mClient
size_t size = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf);
size += mReadaheadBlocks.SizeOfExcludingThis(aMallocSizeOf);
size += mMetadataBlocks.SizeOfExcludingThis(aMallocSizeOf);
size += mPlayedBlocks.SizeOfExcludingThis(aMallocSizeOf);
size += aMallocSizeOf(mPartialBlockBuffer.get());
return size;
}
size_t MediaCacheStream::BlockList::SizeOfExcludingThis(
MallocSizeOf aMallocSizeOf) const {
return mEntries.ShallowSizeOfExcludingThis(aMallocSizeOf);
}
void MediaCacheStream::BlockList::AddFirstBlock(int32_t aBlock) {
NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
Entry* entry = mEntries.PutEntry(aBlock);
if (mFirstBlock < 0) {
entry->mNextBlock = entry->mPrevBlock = aBlock;
} else {
entry->mNextBlock = mFirstBlock;
entry->mPrevBlock = mEntries.GetEntry(mFirstBlock)->mPrevBlock;
mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
}
mFirstBlock = aBlock;
++mCount;
}
void MediaCacheStream::BlockList::AddAfter(int32_t aBlock, int32_t aBefore) {
NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
Entry* entry = mEntries.PutEntry(aBlock);
Entry* addAfter = mEntries.GetEntry(aBefore);
NS_ASSERTION(addAfter, "aBefore not in list");
entry->mNextBlock = addAfter->mNextBlock;
entry->mPrevBlock = aBefore;
mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
++mCount;
}
void MediaCacheStream::BlockList::RemoveBlock(int32_t aBlock) {
Entry* entry = mEntries.GetEntry(aBlock);
MOZ_DIAGNOSTIC_ASSERT(entry, "Block not in list");
if (entry->mNextBlock == aBlock) {
MOZ_DIAGNOSTIC_ASSERT(entry->mPrevBlock == aBlock,
"Linked list inconsistency");
MOZ_DIAGNOSTIC_ASSERT(mFirstBlock == aBlock, "Linked list inconsistency");
mFirstBlock = -1;
} else {
if (mFirstBlock == aBlock) {
mFirstBlock = entry->mNextBlock;
}
mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = entry->mPrevBlock;
mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = entry->mNextBlock;
}
mEntries.RemoveEntry(entry);
--mCount;
}
int32_t MediaCacheStream::BlockList::GetLastBlock() const {
if (mFirstBlock < 0) return -1;
return mEntries.GetEntry(mFirstBlock)->mPrevBlock;
}
int32_t MediaCacheStream::BlockList::GetNextBlock(int32_t aBlock) const {
int32_t block = mEntries.GetEntry(aBlock)->mNextBlock;
if (block == mFirstBlock) return -1;
return block;
}
int32_t MediaCacheStream::BlockList::GetPrevBlock(int32_t aBlock) const {
if (aBlock == mFirstBlock) return -1;
return mEntries.GetEntry(aBlock)->mPrevBlock;
}
#ifdef DEBUG
void MediaCacheStream::BlockList::Verify() {
int32_t count = 0;
if (mFirstBlock >= 0) {
int32_t block = mFirstBlock;
do {
Entry* entry = mEntries.GetEntry(block);
NS_ASSERTION(mEntries.GetEntry(entry->mNextBlock)->mPrevBlock == block,
"Bad prev link");
NS_ASSERTION(mEntries.GetEntry(entry->mPrevBlock)->mNextBlock == block,
"Bad next link");
block = entry->mNextBlock;
++count;
} while (block != mFirstBlock);
}
NS_ASSERTION(count == mCount, "Bad count");
}
#endif
static void UpdateSwappedBlockIndex(int32_t* aBlockIndex, int32_t aBlock1Index,
int32_t aBlock2Index) {
int32_t index = *aBlockIndex;
if (index == aBlock1Index) {
*aBlockIndex = aBlock2Index;
} else if (index == aBlock2Index) {
*aBlockIndex = aBlock1Index;
}
}
void MediaCacheStream::BlockList::NotifyBlockSwapped(int32_t aBlockIndex1,
int32_t aBlockIndex2) {
Entry* e1 = mEntries.GetEntry(aBlockIndex1);
Entry* e2 = mEntries.GetEntry(aBlockIndex2);
int32_t e1Prev = -1, e1Next = -1, e2Prev = -1, e2Next = -1;
// Fix mFirstBlock
UpdateSwappedBlockIndex(&mFirstBlock, aBlockIndex1, aBlockIndex2);
// Fix mNextBlock/mPrevBlock links. First capture previous/next links
// so we don't get confused due to aliasing.
if (e1) {
e1Prev = e1->mPrevBlock;
e1Next = e1->mNextBlock;
}
if (e2) {
e2Prev = e2->mPrevBlock;
e2Next = e2->mNextBlock;
}
// Update the entries.
if (e1) {
mEntries.GetEntry(e1Prev)->mNextBlock = aBlockIndex2;
mEntries.GetEntry(e1Next)->mPrevBlock = aBlockIndex2;
}
if (e2) {
mEntries.GetEntry(e2Prev)->mNextBlock = aBlockIndex1;
mEntries.GetEntry(e2Next)->mPrevBlock = aBlockIndex1;
}
// Fix hashtable keys. First remove stale entries.
if (e1) {
e1Prev = e1->mPrevBlock;
e1Next = e1->mNextBlock;
mEntries.RemoveEntry(e1);
// Refresh pointer after hashtable mutation.
e2 = mEntries.GetEntry(aBlockIndex2);
}
if (e2) {
e2Prev = e2->mPrevBlock;
e2Next = e2->mNextBlock;
mEntries.RemoveEntry(e2);
}
// Put new entries back.
if (e1) {
e1 = mEntries.PutEntry(aBlockIndex2);
e1->mNextBlock = e1Next;
e1->mPrevBlock = e1Prev;
}
if (e2) {
e2 = mEntries.PutEntry(aBlockIndex1);
e2->mNextBlock = e2Next;
e2->mPrevBlock = e2Prev;
}
}
void MediaCache::FlushInternal(AutoLock& aLock) {
for (uint32_t blockIndex = 0; blockIndex < mIndex.Length(); ++blockIndex) {
FreeBlock(aLock, blockIndex);
}
// Truncate index array.
Truncate();
NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
// Reset block cache to its pristine state.
mBlockCache->Flush();
}
void MediaCache::Flush() {
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCache::Flush", [self = RefPtr<MediaCache>(this)]() mutable {
AutoLock lock(self->mMonitor);
self->FlushInternal(lock);
// Ensure MediaCache is deleted on the main thread.
NS_ReleaseOnMainThread("MediaCache::Flush", self.forget());
});
sThread->Dispatch(r.forget());
}
void MediaCache::CloseStreamsForPrivateBrowsing() {
MOZ_ASSERT(NS_IsMainThread());
sThread->Dispatch(NS_NewRunnableFunction(
"MediaCache::CloseStreamsForPrivateBrowsing",
[self = RefPtr<MediaCache>(this)]() mutable {
AutoLock lock(self->mMonitor);
// Copy mStreams since CloseInternal() will change the array.
for (MediaCacheStream* s : self->mStreams.Clone()) {
if (s->mIsPrivateBrowsing) {
s->CloseInternal(lock);
}
}
// Ensure MediaCache is deleted on the main thread.
NS_ReleaseOnMainThread("MediaCache::CloseStreamsForPrivateBrowsing",
self.forget());
}));
}
/* static */
RefPtr<MediaCache> MediaCache::GetMediaCache(int64_t aContentLength,
bool aIsPrivateBrowsing) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
if (!sThreadInit) {
sThreadInit = true;
nsCOMPtr<nsIThread> thread;
nsresult rv = NS_NewNamedThread("MediaCache", getter_AddRefs(thread));
if (NS_FAILED(rv)) {
NS_WARNING("Failed to create a thread for MediaCache.");
return nullptr;
}
sThread = ToRefPtr(std::move(thread));
static struct ClearThread {
// Called during shutdown to clear sThread.
void operator=(std::nullptr_t) {
MOZ_ASSERT(sThread, "We should only clear sThread once.");
sThread->Shutdown();
sThread = nullptr;
}
} sClearThread;
ClearOnShutdown(&sClearThread, ShutdownPhase::XPCOMShutdownThreads);
}
if (!sThread) {
return nullptr;
}
const int64_t mediaMemoryCacheMaxSize =
static_cast<int64_t>(StaticPrefs::media_memory_cache_max_size()) * 1024;
// Force usage of in-memory cache if we are in private browsing mode
// and the forceMediaMemoryCache pref is set
// We will not attempt to create an on-disk cache if this is the case
const bool forceMediaMemoryCache =
aIsPrivateBrowsing &&
StaticPrefs::browser_privatebrowsing_forceMediaMemoryCache();
// Alternatively, use an in-memory cache if the media will fit entirely
// in memory
// aContentLength < 0 indicates we do not know content's actual size
const bool contentFitsInMediaMemoryCache =
(aContentLength > 0) && (aContentLength <= mediaMemoryCacheMaxSize);
// Try to allocate a memory cache for our content
if (contentFitsInMediaMemoryCache || forceMediaMemoryCache) {
// Figure out how large our cache should be
int64_t cacheSize = 0;
if (contentFitsInMediaMemoryCache) {
cacheSize = aContentLength;
} else if (forceMediaMemoryCache) {
// Unknown content length, we'll give the maximum allowed cache size
// just to be sure.
if (aContentLength < 0) {
cacheSize = mediaMemoryCacheMaxSize;
} else {
// If the content length is less than the maximum allowed cache size,
// use that, otherwise we cap it to max size.
cacheSize = std::min(aContentLength, mediaMemoryCacheMaxSize);
}
}
RefPtr<MediaBlockCacheBase> bc = new MemoryBlockCache(cacheSize);
nsresult rv = bc->Init();
if (NS_SUCCEEDED(rv)) {
RefPtr<MediaCache> mc = new MediaCache(bc);
LOG("GetMediaCache(%" PRIi64 ") -> Memory MediaCache %p", aContentLength,
mc.get());
return mc;
}
// MemoryBlockCache initialization failed.
// If we require use of a memory media cache, we will bail here.
// Otherwise use a file-backed MediaCache below.
if (forceMediaMemoryCache) {
return nullptr;
}
}
if (gMediaCache) {
LOG("GetMediaCache(%" PRIi64 ") -> Existing file-backed MediaCache",
aContentLength);
return gMediaCache;
}
RefPtr<MediaBlockCacheBase> bc = new FileBlockCache();
nsresult rv = bc->Init();
if (NS_SUCCEEDED(rv)) {
gMediaCache = new MediaCache(bc);
LOG("GetMediaCache(%" PRIi64 ") -> Created file-backed MediaCache",
aContentLength);
} else {
LOG("GetMediaCache(%" PRIi64 ") -> Failed to create file-backed MediaCache",
aContentLength);
}
return gMediaCache;
}
nsresult MediaCache::ReadCacheFile(AutoLock&, int64_t aOffset, void* aData,
int32_t aLength, int32_t* aBytes) {
if (!mBlockCache) {
return NS_ERROR_FAILURE;
}
return mBlockCache->Read(aOffset, reinterpret_cast<uint8_t*>(aData), aLength,
aBytes);
}
// Allowed range is whatever can be accessed with an int32_t block index.
static bool IsOffsetAllowed(int64_t aOffset) {
return aOffset < (int64_t(INT32_MAX) + 1) * MediaCache::BLOCK_SIZE &&
aOffset >= 0;
}
// Convert 64-bit offset to 32-bit block index.
// Assumes offset range-check was already done.
static int32_t OffsetToBlockIndexUnchecked(int64_t aOffset) {
// Still check for allowed range in debug builds, to catch out-of-range
// issues early during development.
MOZ_ASSERT(IsOffsetAllowed(aOffset));
return int32_t(aOffset / MediaCache::BLOCK_SIZE);
}
// Convert 64-bit offset to 32-bit block index. -1 if out of allowed range.
static int32_t OffsetToBlockIndex(int64_t aOffset) {
return IsOffsetAllowed(aOffset) ? OffsetToBlockIndexUnchecked(aOffset) : -1;
}
// Convert 64-bit offset to 32-bit offset inside a block.
// Will not fail (even if offset is outside allowed range), so there is no
// need to check for errors.
static int32_t OffsetInBlock(int64_t aOffset) {
// Still check for allowed range in debug builds, to catch out-of-range
// issues early during development.
MOZ_ASSERT(IsOffsetAllowed(aOffset));
return int32_t(aOffset % MediaCache::BLOCK_SIZE);
}
int32_t MediaCache::FindBlockForIncomingData(AutoLock& aLock, TimeStamp aNow,
MediaCacheStream* aStream,
int32_t aStreamBlockIndex) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
int32_t blockIndex =
FindReusableBlock(aLock, aNow, aStream, aStreamBlockIndex, INT32_MAX);
if (blockIndex < 0 || !IsBlockFree(blockIndex)) {
// The block returned is already allocated.
// Don't reuse it if a) there's room to expand the cache or
// b) the data we're going to store in the free block is not higher
// priority than the data already stored in the free block.
// The latter can lead us to go over the cache limit a bit.
if ((mIndex.Length() <
uint32_t(mBlockCache->GetMaxBlocks(MediaCache::CacheSize())) ||
blockIndex < 0 ||
PredictNextUseForIncomingData(aLock, aStream) >=
PredictNextUse(aLock, aNow, blockIndex))) {
blockIndex = mIndex.Length();
// XXX(Bug 1631371) Check if this should use a fallible operation as it
// pretended earlier.
mIndex.AppendElement();
mFreeBlocks.AddFirstBlock(blockIndex);
return blockIndex;
}
}
return blockIndex;
}
bool MediaCache::BlockIsReusable(AutoLock&, int32_t aBlockIndex) {
Block* block = &mIndex[aBlockIndex];
for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
MediaCacheStream* stream = block->mOwners[i].mStream;
if (stream->mPinCount > 0 ||
uint32_t(OffsetToBlockIndex(stream->mStreamOffset)) ==
block->mOwners[i].mStreamBlock) {
return false;
}
}
return true;
}
void MediaCache::AppendMostReusableBlock(AutoLock& aLock, BlockList* aBlockList,
nsTArray<uint32_t>* aResult,
int32_t aBlockIndexLimit) {
int32_t blockIndex = aBlockList->GetLastBlock();
if (blockIndex < 0) return;
do {
// Don't consider blocks for pinned streams, or blocks that are
// beyond the specified limit, or a block that contains a stream's
// current read position (such a block contains both played data
// and readahead data)
if (blockIndex < aBlockIndexLimit && BlockIsReusable(aLock, blockIndex)) {
aResult->AppendElement(blockIndex);
return;
}
blockIndex = aBlockList->GetPrevBlock(blockIndex);
} while (blockIndex >= 0);
}
int32_t MediaCache::FindReusableBlock(AutoLock& aLock, TimeStamp aNow,
MediaCacheStream* aForStream,
int32_t aForStreamBlock,
int32_t aMaxSearchBlockIndex) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
uint32_t length =
std::min(uint32_t(aMaxSearchBlockIndex), uint32_t(mIndex.Length()));
if (aForStream && aForStreamBlock > 0 &&
uint32_t(aForStreamBlock) <= aForStream->mBlocks.Length()) {
int32_t prevCacheBlock = aForStream->mBlocks[aForStreamBlock - 1];
if (prevCacheBlock >= 0) {
uint32_t freeBlockScanEnd =
std::min(length, prevCacheBlock + FREE_BLOCK_SCAN_LIMIT);
for (uint32_t i = prevCacheBlock; i < freeBlockScanEnd; ++i) {
if (IsBlockFree(i)) return i;
}
}
}
if (!mFreeBlocks.IsEmpty()) {
int32_t blockIndex = mFreeBlocks.GetFirstBlock();
do {
if (blockIndex < aMaxSearchBlockIndex) return blockIndex;
blockIndex = mFreeBlocks.GetNextBlock(blockIndex);
} while (blockIndex >= 0);
}
// Build a list of the blocks we should consider for the "latest
// predicted time of next use". We can exploit the fact that the block
// linked lists are ordered by increasing time of next use. This is
// actually the whole point of having the linked lists.
AutoTArray<uint32_t, 8> candidates;
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaCacheStream* stream = mStreams[i];
if (stream->mPinCount > 0) {
// No point in even looking at this stream's blocks
continue;
}
AppendMostReusableBlock(aLock, &stream->mMetadataBlocks, &candidates,
length);
AppendMostReusableBlock(aLock, &stream->mPlayedBlocks, &candidates, length);
// Don't consider readahead blocks in non-seekable streams. If we
// remove the block we won't be able to seek back to read it later.
if (stream->mIsTransportSeekable) {
AppendMostReusableBlock(aLock, &stream->mReadaheadBlocks, &candidates,
length);
}
}
TimeDuration latestUse;
int32_t latestUseBlock = -1;
for (uint32_t i = 0; i < candidates.Length(); ++i) {
TimeDuration nextUse = PredictNextUse(aLock, aNow, candidates[i]);
if (nextUse > latestUse) {
latestUse = nextUse;
latestUseBlock = candidates[i];
}
}
return latestUseBlock;
}
MediaCache::BlockList* MediaCache::GetListForBlock(AutoLock&,
BlockOwner* aBlock) {
switch (aBlock->mClass) {
case METADATA_BLOCK:
NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
return &aBlock->mStream->mMetadataBlocks;
case PLAYED_BLOCK:
NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
return &aBlock->mStream->mPlayedBlocks;
case READAHEAD_BLOCK:
NS_ASSERTION(aBlock->mStream, "Readahead block has no stream?");
return &aBlock->mStream->