Copy as Markdown

Other Tools

#define SWGL 1
#define __VERSION__ 150
#define WR_MAX_VERTEX_TEXTURE_WIDTH 1024U
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifdef WR_FEATURE_TEXTURE_EXTERNAL
// for this extension.
#endif
#ifdef WR_FEATURE_TEXTURE_EXTERNAL_ESSL1
// Some GLES 3 devices do not support GL_OES_EGL_image_external_essl3, so we
// must use GL_OES_EGL_image_external instead and make the shader ESSL1
// compatible.
#endif
#ifdef WR_FEATURE_TEXTURE_EXTERNAL_BT709
#endif
#ifdef WR_FEATURE_ADVANCED_BLEND
#endif
#ifdef WR_FEATURE_DUAL_SOURCE_BLENDING
#ifdef GL_ES
#else
#endif
#endif
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if defined(GL_ES)
#if GL_ES == 1
// Sampler default precision is lowp on mobile GPUs.
// This causes RGBA32F texture data to be clamped to 16 bit floats on some GPUs (e.g. Mali-T880).
// Define highp precision macro to allow lossless FLOAT texture sampling.
#define HIGHP_SAMPLER_FLOAT highp
// Default int precision in GLES 3 is highp (32 bits) in vertex shaders
// and mediump (16 bits) in fragment shaders. If an int is being used as
// a texel address in a fragment shader it, and therefore requires > 16
// bits, it must be qualified with this.
#define HIGHP_FS_ADDRESS highp
// texelFetchOffset is buggy on some Android GPUs (see issue #1694).
// Fallback to texelFetch on mobile GPUs.
#define TEXEL_FETCH(sampler, position, lod, offset) texelFetch(sampler, position + offset, lod)
#else
#define HIGHP_SAMPLER_FLOAT
#define HIGHP_FS_ADDRESS
#define TEXEL_FETCH(sampler, position, lod, offset) texelFetchOffset(sampler, position, lod, offset)
#endif
#else
#define HIGHP_SAMPLER_FLOAT
#define HIGHP_FS_ADDRESS
#if defined(PLATFORM_MACOS) && !defined(SWGL)
// texelFetchOffset introduces a variety of shader compilation bugs on macOS Intel so avoid it.
#define TEXEL_FETCH(sampler, position, lod, offset) texelFetch(sampler, position + offset, lod)
#else
#define TEXEL_FETCH(sampler, position, lod, offset) texelFetchOffset(sampler, position, lod, offset)
#endif
#endif
#ifdef SWGL
#define SWGL_DRAW_SPAN
#define SWGL_CLIP_MASK
#define SWGL_ANTIALIAS
#define SWGL_BLEND
#define SWGL_CLIP_DIST
#endif
#ifdef WR_VERTEX_SHADER
#ifdef SWGL
// Annotate a vertex attribute as being flat per each drawn primitive instance.
// SWGL can use this information to avoid redundantly loading the attribute in all SIMD lanes.
#define PER_INSTANCE flat
#else
#define PER_INSTANCE
#endif
#if __VERSION__ != 100
#define varying out
#define attribute in
#endif
#endif
#ifdef WR_FRAGMENT_SHADER
precision highp float;
#if __VERSION__ != 100
#define varying in
#endif
#endif
// Flat interpolation is not supported on ESSL 1
#if __VERSION__ == 100
#define flat
#endif
#if defined(WR_FEATURE_TEXTURE_EXTERNAL_ESSL1)
#define TEX_SAMPLE(sampler, tex_coord) texture2D(sampler, tex_coord.xy)
#elif defined(WR_FEATURE_TEXTURE_EXTERNAL_BT709)
// Force conversion from yuv to rgb using BT709 colorspace
#define TEX_SAMPLE(sampler, tex_coord) vec4(yuv_2_rgb(texture(sampler, tex_coord.xy).xyz, itu_709), 1.0)
#else
#define TEX_SAMPLE(sampler, tex_coord) texture(sampler, tex_coord.xy)
#endif
#if defined(WR_FEATURE_TEXTURE_EXTERNAL) && defined(PLATFORM_ANDROID)
// On some Mali GPUs we have encountered crashes in glDrawElements when using
// textureSize(samplerExternalOES) in a vertex shader without potentially
// sampling from the texture. This tricks the driver in to thinking the texture
// may be sampled from, avoiding the crash. See bug 1692848.
uniform bool u_mali_workaround_dummy;
#define TEX_SIZE(sampler) (u_mali_workaround_dummy ? ivec2(texture(sampler, vec2(0.0, 0.0)).rr) : textureSize(sampler, 0))
#else
#define TEX_SIZE(sampler) textureSize(sampler, 0)
#endif
//======================================================================================
// Vertex shader attributes and uniforms
//======================================================================================
#ifdef WR_VERTEX_SHADER
// Uniform inputs
uniform mat4 uTransform; // Orthographic projection
// Attribute inputs
attribute vec2 aPosition;
// get_fetch_uv is a macro to work around a macOS Intel driver parsing bug.
// TODO: convert back to a function once the driver issues are resolved, if ever.
// Do the division with unsigned ints because that's more efficient with D3D
#define get_fetch_uv(i, vpi) ivec2(int(vpi * (uint(i) % (WR_MAX_VERTEX_TEXTURE_WIDTH/vpi))), int(uint(i) / (WR_MAX_VERTEX_TEXTURE_WIDTH/vpi)))
#endif
//======================================================================================
// Fragment shader attributes and uniforms
//======================================================================================
#ifdef WR_FRAGMENT_SHADER
// Uniform inputs
// Fragment shader outputs
#ifdef WR_FEATURE_ADVANCED_BLEND
layout(blend_support_all_equations) out;
#endif
#if __VERSION__ == 100
#define oFragColor gl_FragColor
#elif defined(WR_FEATURE_DUAL_SOURCE_BLENDING)
layout(location = 0, index = 0) out vec4 oFragColor;
layout(location = 0, index = 1) out vec4 oFragBlend;
#else
out vec4 oFragColor;
#endif
// Write an output color in normal shaders.
void write_output(vec4 color) {
oFragColor = color;
}
#define EPSILON 0.0001
// "Show Overdraw" color. Premultiplied.
#define WR_DEBUG_OVERDRAW_COLOR vec4(0.110, 0.077, 0.027, 0.125)
float distance_to_line(vec2 p0, vec2 perp_dir, vec2 p) {
vec2 dir_to_p0 = p0 - p;
return dot(normalize(perp_dir), dir_to_p0);
}
// fwidth is not defined in ESSL 1, but that's okay because we don't need
// it for any ESSL 1 shader variants.
#if __VERSION__ != 100
/// Find the appropriate half range to apply the AA approximation over.
/// This range represents a coefficient to go from one CSS pixel to half a device pixel.
vec2 compute_aa_range_xy(vec2 position) {
return fwidth(position);
}
float compute_aa_range(vec2 position) {
// The constant factor is chosen to compensate for the fact that length(fw) is equal
// to sqrt(2) times the device pixel ratio in the typical case.
//
// This coefficient is chosen to ensure that any sample 0.5 pixels or more inside of
// the shape has no anti-aliasing applied to it (since pixels are sampled at their center,
// such a pixel (axis aligned) is fully inside the border). We need this so that antialiased
// curves properly connect with non-antialiased vertical or horizontal lines, among other things.
//
// Lines over a half-pixel away from the pixel center *can* intersect with the pixel square;
// indeed, unless they are horizontal or vertical, they are guaranteed to. However, choosing
// a nonzero area for such pixels causes noticeable artifacts at the junction between an anti-
// aliased corner and a straight edge.
//
// We may want to adjust this constant in specific scenarios (for example keep the principled
// value for straight edges where we want pixel-perfect equivalence with non antialiased lines
// when axis aligned, while selecting a larger and smoother aa range on curves).
//
// As a further optimization, we compute the reciprocal of this range, such that we
// can then use the cheaper inversesqrt() instead of length(). This also elides a
// division that would otherwise be necessary inside distance_aa.
#ifdef SWGL
// SWGL uses an approximation for fwidth() such that it returns equal x and y.
// Thus, sqrt(2)/length(w) = sqrt(2)/sqrt(x*x + x*x) = recip(x).
return recip(fwidth(position).x);
#else
// sqrt(2)/length(w) = inversesqrt(0.5 * dot(w, w))
vec2 w = fwidth(position);
return inversesqrt(0.5 * dot(w, w));
#endif
}
#endif
/// Return the blending coefficient for distance antialiasing.
///
/// 0.0 means inside the shape, 1.0 means outside.
///
/// This makes the simplifying assumption that the area of a 1x1 pixel square
/// under a line is reasonably similar to just the signed Euclidian distance
/// from the center of the square to that line. This diverges slightly from
/// better approximations of the exact area, but the difference between the
/// methods is not perceptibly noticeable, while this approximation is much
/// faster to compute.
///
/// See the comments in `compute_aa_range()` for more information on the
/// cutoff values of -0.5 and 0.5.
float distance_aa_xy(vec2 aa_range, vec2 signed_distance) {
// The aa_range is the raw per-axis filter width, so we need to divide
// the local signed distance by the filter width to get an approximation
// of screen distance.
#ifdef SWGL
// The SWGL fwidth() approximation returns uniform X and Y ranges.
vec2 dist = signed_distance * recip(aa_range.x);
#else
vec2 dist = signed_distance / aa_range;
#endif
// Choose whichever axis is further outside the rectangle for AA.
return clamp(0.5 - max(dist.x, dist.y), 0.0, 1.0);
}
float distance_aa(float aa_range, float signed_distance) {
// The aa_range is already stored as a reciprocal with uniform scale,
// so just multiply it, then use that for AA.
float dist = signed_distance * aa_range;
return clamp(0.5 - dist, 0.0, 1.0);
}
/// Component-wise selection.
///
/// The idea of using this is to ensure both potential branches are executed before
/// selecting the result, to avoid observable timing differences based on the condition.
///
/// Example usage: color = if_then_else(LessThanEqual(color, vec3(0.5)), vec3(0.0), vec3(1.0));
///
/// The above example sets each component to 0.0 or 1.0 independently depending on whether
/// their values are below or above 0.5.
///
/// This is written as a macro in order to work with vectors of any dimension.
///
/// Note: Some older android devices don't support mix with bvec. If we ever run into them
/// the only option we have is to polyfill it with a branch per component.
#define if_then_else(cond, then_branch, else_branch) mix(else_branch, then_branch, cond)
#endif
//======================================================================================
// Shared shader uniforms
//======================================================================================
#ifdef WR_FEATURE_TEXTURE_2D
uniform sampler2D sColor0;
uniform sampler2D sColor1;
uniform sampler2D sColor2;
#elif defined WR_FEATURE_TEXTURE_RECT
uniform sampler2DRect sColor0;
uniform sampler2DRect sColor1;
uniform sampler2DRect sColor2;
#elif defined(WR_FEATURE_TEXTURE_EXTERNAL) || defined(WR_FEATURE_TEXTURE_EXTERNAL_ESSL1)
uniform samplerExternalOES sColor0;
uniform samplerExternalOES sColor1;
uniform samplerExternalOES sColor2;
#elif defined(WR_FEATURE_TEXTURE_EXTERNAL_BT709)
uniform __samplerExternal2DY2YEXT sColor0;
uniform __samplerExternal2DY2YEXT sColor1;
uniform __samplerExternal2DY2YEXT sColor2;
#endif
#ifdef WR_FEATURE_DITHERING
uniform sampler2D sDither;
#endif
//======================================================================================
// Interpolator definitions
//======================================================================================
//======================================================================================
// VS only types and UBOs
//======================================================================================
//======================================================================================
// VS only functions
//======================================================================================
#define LINE_STYLE_SOLID 0
#define LINE_STYLE_DOTTED 1
#define LINE_STYLE_DASHED 2
#define LINE_STYLE_WAVY 3
// Fragment position in the coordinate system used for positioning decorations.
// To keep the code independent of whether the line is horizontal or vertical,
// vLocalPos.x is always parallel, and .y always perpendicular, to the line
// being decorated.
varying highp vec2 vLocalPos;
// Line style. Packed in to a vector to work around bug 1630356.
flat varying mediump ivec2 vStyle;
flat varying mediump vec4 vParams;
#ifdef WR_VERTEX_SHADER
// The size of the mask tile we're rendering, in pixels.
PER_INSTANCE in vec4 aTaskRect;
// The size of the mask tile. aLocalSize.x is always horizontal and .y vertical,
// regardless of the line's orientation. The size is chosen by
// prim_store::line_dec::get_line_decoration_sizes.
PER_INSTANCE in vec2 aLocalSize;
// A LINE_STYLE_* value, indicating what sort of line to draw.
PER_INSTANCE in int aStyle;
// 0.0 for a horizontal line, 1.0 for a vertical line.
PER_INSTANCE in float aAxisSelect;
// The thickness of the wavy line itself, not the amplitude of the waves (i.e.,
// the thickness of the final decorated line).
PER_INSTANCE in float aWavyLineThickness;
void main(void) {
vec2 size = mix(aLocalSize, aLocalSize.yx, aAxisSelect);
vStyle.x = aStyle;
switch (vStyle.x) {
case LINE_STYLE_SOLID: {
break;
}
case LINE_STYLE_DASHED: {
vParams = vec4(size.x, // period
0.5 * size.x, // dash length
0.0,
0.0);
break;
}
case LINE_STYLE_DOTTED: {
float diameter = size.y;
float period = diameter * 2.0;
float center_line = 0.5 * size.y;
vParams = vec4(period,
diameter / 2.0, // radius
center_line,
0.0);
break;
}
case LINE_STYLE_WAVY: {
// This logic copied from gecko to get the same results
float line_thickness = max(aWavyLineThickness, 1.0);
// Difference in height between peaks and troughs
// (and since slopes are 45 degrees, the length of each slope)
float slope_length = size.y - line_thickness;
// Length of flat runs
float flat_length = max((line_thickness - 1.0) * 2.0, 1.0);
vParams = vec4(line_thickness / 2.0,
slope_length,
flat_length,
size.y);
break;
}
default:
vParams = vec4(0.0);
}
vLocalPos = mix(aPosition.xy, aPosition.yx, aAxisSelect) * size;
gl_Position = uTransform * vec4(mix(aTaskRect.xy, aTaskRect.zw, aPosition.xy), 0.0, 1.0);
}
#endif
#ifdef WR_FRAGMENT_SHADER
#define MAGIC_WAVY_LINE_AA_SNAP 0.5
void main(void) {
// Find the appropriate distance to apply the step over.
vec2 pos = vLocalPos;
float aa_range = compute_aa_range(pos);
float alpha = 1.0;
switch (vStyle.x) {
case LINE_STYLE_SOLID: {
break;
}
case LINE_STYLE_DASHED: {
// Calculate dash alpha (on/off) based on dash length
alpha = step(floor(pos.x + 0.5), vParams.y);
break;
}
case LINE_STYLE_DOTTED: {
// Get the dot alpha
vec2 dot_relative_pos = pos - vParams.yz;
float dot_distance = length(dot_relative_pos) - vParams.y;
alpha = distance_aa(aa_range, dot_distance);
break;
}
case LINE_STYLE_WAVY: {
float half_line_thickness = vParams.x;
float slope_length = vParams.y;
float flat_length = vParams.z;
float vertical_bounds = vParams.w;
// Our pattern is just two slopes and two flats
float half_period = slope_length + flat_length;
float mid_height = vertical_bounds / 2.0;
float peak_offset = mid_height - half_line_thickness;
// Flip the wave every half period
float flip = -2.0 * (step(mod(pos.x, 2.0 * half_period), half_period) - 0.5);
// float flip = -1.0;
peak_offset *= flip;
float peak_height = mid_height + peak_offset;
// Convert pos to a local position within one half period
pos.x = mod(pos.x, half_period);
// Compute signed distance to the 3 lines that make up an arc
float dist1 = distance_to_line(vec2(0.0, peak_height),
vec2(1.0, -flip),
pos);
float dist2 = distance_to_line(vec2(0.0, peak_height),
vec2(0, -flip),
pos);
float dist3 = distance_to_line(vec2(flat_length, peak_height),
vec2(-1.0, -flip),
pos);
float dist = abs(max(max(dist1, dist2), dist3));
// Apply AA based on the thickness of the wave
alpha = distance_aa(aa_range, dist - half_line_thickness);
// Disable AA for thin lines
if (half_line_thickness <= 1.0) {
alpha = 1.0 - step(alpha, MAGIC_WAVY_LINE_AA_SNAP);
}
break;
}
default: break;
}
oFragColor = vec4(alpha);
}
#endif