Name Description Size Coverage
BUILD.gn 3050 -
DEPS 69 -
neural_feature_extractor.cc 4402 -
neural_feature_extractor.h 2619 -
neural_feature_extractor_unittest.cc Python script used to generate the test data: import numpy as np from typing import List def python_feature_extractor(time_frame: np.ndarray) -> np.ndarray: frame_length: int = 256 sqrt_hann: np.ndarray = np.sqrt(np.hanning(frame_length)) magnitude_spectrum: np.ndarray = np.abs(np.fft.rfft(time_frame * sqrt_hann)) return np.power(magnitude_spectrum + 1e-8, 0.3) def format_as_cpp_array(data: np.ndarray, name: str) -> str: elements_per_line = 6 s = f"constexpr float {name}[] = {{\n " for i, x in enumerate(data): s += f"{x:.8f}, " if (i + 1) % elements_per_line == 0 and i < len(data) - 1: s += "\n " s = s.rstrip(", ") + "\n};" return s # Generate two frames of white noise np.random.seed(0) # for reproducibility noise1: np.ndarray = np.random.uniform(-1.0, 1.0, 256) noise2: np.ndarray = np.random.uniform(-1.0, 1.0, 256) # Scale to match the C++ implementation's expected input range noise1_scaled: np.ndarray = noise1 * 32768.0 noise2_scaled: np.ndarray = noise2 * 32768.0 # Python equivalent expected_output1: np.ndarray = python_feature_extractor(noise1) expected_output2: np.ndarray = python_feature_extractor(noise2) print(format_as_cpp_array(noise1_scaled, "noise1_scaled")) print(format_as_cpp_array(noise2_scaled, "noise2_scaled")) print(format_as_cpp_array(expected_output1, "expected_output1")) print(format_as_cpp_array(expected_output2, "expected_output2")) 14414 -
neural_residual_echo_estimator.proto 555 -
neural_residual_echo_estimator_impl.cc 16533 -
neural_residual_echo_estimator_impl.h 4591 -
neural_residual_echo_estimator_impl_unittest.cc frame_size= 13261 -