Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: rust; rust-indent-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
use byteorder::{BigEndian, NativeEndian, ReadBytesExt, WriteBytesExt};
use digest::{Digest, DynDigest};
use pkcs11_bindings::*;
use rand::rngs::OsRng;
use rand::RngCore;
use std::convert::TryInto;
use std::iter::zip;
use crate::error::{Error, ErrorType};
use crate::error_here;
use crate::manager::CryptokiObject;
/// Accessing fields of packed structs is unsafe (it may be undefined behavior if the field isn't
/// aligned). Since we're implementing a PKCS#11 module, we already have to trust the caller not to
/// give us bad data, so normally we would deal with this by adding an unsafe block. If we do that,
/// though, the compiler complains that the unsafe block is unnecessary. Thus, we use this macro to
/// annotate the unsafe block to silence the compiler.
#[macro_export]
macro_rules! unsafe_packed_field_access {
($e:expr) => {{
#[allow(unused_unsafe)]
let tmp = unsafe { $e };
tmp
}};
}
// The following ENCODED_OID_BYTES_* consist of the encoded bytes of an ASN.1
// OBJECT IDENTIFIER specifying the indicated OID (in other words, the full
// tag, length, and value).
pub const ENCODED_OID_BYTES_SECP256R1: &[u8] =
&[0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07];
pub const ENCODED_OID_BYTES_SECP384R1: &[u8] = &[0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22];
pub const ENCODED_OID_BYTES_SECP521R1: &[u8] = &[0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x23];
// The following OID_BYTES_* consist of the contents of the bytes of an ASN.1
// OBJECT IDENTIFIER specifying the indicated OID (in other words, just the
// value, and not the tag or length).
#[cfg(any(target_os = "macos", target_os = "ios"))]
pub const OID_BYTES_SHA_256: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01];
#[cfg(any(target_os = "macos", target_os = "ios"))]
pub const OID_BYTES_SHA_384: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02];
#[cfg(any(target_os = "macos", target_os = "ios"))]
pub const OID_BYTES_SHA_512: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03];
#[cfg(any(target_os = "macos", target_os = "ios"))]
pub const OID_BYTES_SHA_1: &[u8] = &[0x2b, 0x0e, 0x03, 0x02, 0x1a];
// This is a helper function to take a value and lay it out in memory how
// PKCS#11 is expecting it.
pub fn serialize_uint<T: TryInto<u64>>(value: T) -> Result<Vec<u8>, Error> {
let value_size = std::mem::size_of::<T>();
let mut value_buf = Vec::with_capacity(value_size);
let value_as_u64 = value
.try_into()
.map_err(|_| error_here!(ErrorType::ValueTooLarge))?;
value_buf
.write_uint::<NativeEndian>(value_as_u64, value_size)
.map_err(|_| error_here!(ErrorType::LibraryFailure))?;
Ok(value_buf)
}
/// Given a slice of DER bytes representing an RSA public key, extracts the bytes of the modulus
/// as an unsigned integer. Also verifies that the public exponent is present (again as an
/// unsigned integer). Finally verifies that reading these values consumes the entirety of the
/// slice.
/// RSAPublicKey ::= SEQUENCE {
/// modulus INTEGER, -- n
/// publicExponent INTEGER -- e
/// }
pub fn read_rsa_modulus(public_key: &[u8]) -> Result<Vec<u8>, Error> {
let mut sequence = Sequence::new(public_key)?;
let modulus_value = sequence.read_unsigned_integer()?;
let _exponent = sequence.read_unsigned_integer()?;
if !sequence.at_end() {
return Err(error_here!(ErrorType::ExtraInput));
}
Ok(modulus_value.to_vec())
}
/// Given a slice of DER bytes representing a SubjectPublicKeyInfo, extracts
/// the bytes of the parameters of the algorithm. Does not verify that all
/// input is consumed.
/// PublicKeyInfo ::= SEQUENCE {
/// algorithm AlgorithmIdentifier,
/// PublicKey BIT STRING
/// }
///
/// AlgorithmIdentifier ::= SEQUENCE {
/// algorithm OBJECT IDENTIFIER,
/// parameters ANY DEFINED BY algorithm OPTIONAL
/// }
#[cfg(target_os = "android")]
pub fn read_spki_algorithm_parameters(spki: &[u8]) -> Result<Vec<u8>, Error> {
let mut public_key_info = Sequence::new(spki)?;
let mut algorithm_identifier = public_key_info.read_sequence()?;
let _algorithm = algorithm_identifier.read_oid()?;
Ok(algorithm_identifier.read_rest().to_vec())
}
/// Given a slice of DER bytes representing a DigestInfo, extracts the bytes of
/// the OID of the hash algorithm and the digest.
/// DigestInfo ::= SEQUENCE {
/// digestAlgorithm DigestAlgorithmIdentifier,
/// digest Digest }
///
/// DigestAlgorithmIdentifier ::= AlgorithmIdentifier
///
/// AlgorithmIdentifier ::= SEQUENCE {
/// algorithm OBJECT IDENTIFIER,
/// parameters ANY DEFINED BY algorithm OPTIONAL }
///
/// Digest ::= OCTET STRING
pub fn read_digest_info(digest_info: &[u8]) -> Result<(&[u8], &[u8]), Error> {
let mut sequence = Sequence::new(digest_info)?;
let mut algorithm = sequence.read_sequence()?;
let oid = algorithm.read_oid()?;
algorithm.read_null()?;
if !algorithm.at_end() {
return Err(error_here!(ErrorType::ExtraInput));
}
let digest = sequence.read_octet_string()?;
if !sequence.at_end() {
return Err(error_here!(ErrorType::ExtraInput));
}
Ok((oid, digest))
}
/// Converts a slice of DER bytes representing an ECDSA signature to the concatenation of the bytes
/// of `r` and `s`, each 0-padded to `coordinate_width`. Also verifies that this consumes the
/// entirety of the slice.
/// Ecdsa-Sig-Value ::= SEQUENCE {
/// r INTEGER,
/// s INTEGER }
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "android"))]
pub fn der_ec_sig_to_raw(encoded: &[u8], coordinate_width: usize) -> Result<Vec<u8>, Error> {
let (r, s) = read_ec_sig_point(encoded)?;
if r.len() > coordinate_width || s.len() > coordinate_width {
return Err(error_here!(ErrorType::InvalidInput));
}
let mut raw_signature = Vec::with_capacity(2 * coordinate_width);
raw_signature.resize(coordinate_width - r.len(), 0);
raw_signature.extend_from_slice(r);
raw_signature.resize((2 * coordinate_width) - s.len(), 0);
raw_signature.extend_from_slice(s);
Ok(raw_signature)
}
/// Given a slice of DER bytes representing an ECDSA signature, extracts the bytes of `r` and `s`
/// as unsigned integers. Also verifies that this consumes the entirety of the slice.
/// Ecdsa-Sig-Value ::= SEQUENCE {
/// r INTEGER,
/// s INTEGER }
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "android"))]
fn read_ec_sig_point(signature: &[u8]) -> Result<(&[u8], &[u8]), Error> {
let mut sequence = Sequence::new(signature)?;
let r = sequence.read_unsigned_integer()?;
let s = sequence.read_unsigned_integer()?;
if !sequence.at_end() {
return Err(error_here!(ErrorType::ExtraInput));
}
Ok((r, s))
}
/// Given a slice of DER bytes representing an X.509 certificate, extracts the encoded serial
/// number, issuer, and subject. Does not verify that the remainder of the certificate is in any
/// way well-formed.
/// Certificate ::= SEQUENCE {
/// tbsCertificate TBSCertificate,
/// signatureAlgorithm AlgorithmIdentifier,
/// signatureValue BIT STRING }
///
/// TBSCertificate ::= SEQUENCE {
/// version [0] EXPLICIT Version DEFAULT v1,
/// serialNumber CertificateSerialNumber,
/// signature AlgorithmIdentifier,
/// issuer Name,
/// validity Validity,
/// subject Name,
/// ...
///
/// CertificateSerialNumber ::= INTEGER
///
/// Name ::= CHOICE { -- only one possibility for now --
/// rdnSequence RDNSequence }
///
/// RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
///
/// Validity ::= SEQUENCE {
/// notBefore Time,
/// notAfter Time }
#[allow(clippy::type_complexity)]
pub fn read_encoded_certificate_identifiers(
certificate: &[u8],
) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error> {
let mut certificate_sequence = Sequence::new(certificate)?;
let mut tbs_certificate_sequence = certificate_sequence.read_sequence()?;
let _version = tbs_certificate_sequence.read_optional_tagged_value(0)?;
let serial_number = tbs_certificate_sequence.read_encoded_sequence_component(INTEGER)?;
let _signature = tbs_certificate_sequence.read_sequence()?;
let issuer =
tbs_certificate_sequence.read_encoded_sequence_component(SEQUENCE | CONSTRUCTED)?;
let _validity = tbs_certificate_sequence.read_sequence()?;
let subject =
tbs_certificate_sequence.read_encoded_sequence_component(SEQUENCE | CONSTRUCTED)?;
Ok((serial_number, issuer, subject))
}
/// Helper macro for reading some bytes from a slice while checking the slice is long enough.
/// Returns a pair consisting of a slice of the bytes read and a slice of the rest of the bytes
/// from the original slice.
macro_rules! try_read_bytes {
($data:ident, $len:expr) => {{
if $data.len() < $len {
return Err(error_here!(ErrorType::TruncatedInput));
}
$data.split_at($len)
}};
}
/// ASN.1 tag identifying an integer.
const INTEGER: u8 = 0x02;
/// ASN.1 tag identifying an octet string.
const OCTET_STRING: u8 = 0x04;
/// ASN.1 tag identifying a null value.
const NULL: u8 = 0x05;
/// ASN.1 tag identifying an object identifier (OID).
const OBJECT_IDENTIFIER: u8 = 0x06;
/// ASN.1 tag identifying a sequence.
const SEQUENCE: u8 = 0x10;
/// ASN.1 tag modifier identifying an item as constructed.
const CONSTRUCTED: u8 = 0x20;
/// ASN.1 tag modifier identifying an item as context-specific.
const CONTEXT_SPECIFIC: u8 = 0x80;
/// A helper struct for reading items from a DER SEQUENCE (in this case, all sequences are
/// assumed to be CONSTRUCTED).
struct Sequence<'a> {
/// The contents of the SEQUENCE.
contents: Der<'a>,
}
impl<'a> Sequence<'a> {
fn new(input: &'a [u8]) -> Result<Sequence<'a>, Error> {
let mut der = Der::new(input);
let (_, _, sequence_bytes) = der.read_tlv(SEQUENCE | CONSTRUCTED)?;
// We're assuming we want to consume the entire input for now.
if !der.at_end() {
return Err(error_here!(ErrorType::ExtraInput));
}
Ok(Sequence {
contents: Der::new(sequence_bytes),
})
}
// TODO: we're not exhaustively validating this integer
fn read_unsigned_integer(&mut self) -> Result<&'a [u8], Error> {
let (_, _, bytes) = self.contents.read_tlv(INTEGER)?;
if bytes.is_empty() {
return Err(error_here!(ErrorType::InvalidInput));
}
// There may be a leading zero (we should also check that the first bit
// of the rest of the integer is set).
if bytes[0] == 0 && bytes.len() > 1 {
let (_, integer) = bytes.split_at(1);
Ok(integer)
} else {
Ok(bytes)
}
}
fn read_octet_string(&mut self) -> Result<&'a [u8], Error> {
let (_, _, bytes) = self.contents.read_tlv(OCTET_STRING)?;
Ok(bytes)
}
fn read_oid(&mut self) -> Result<&'a [u8], Error> {
let (_, _, bytes) = self.contents.read_tlv(OBJECT_IDENTIFIER)?;
Ok(bytes)
}
fn read_null(&mut self) -> Result<(), Error> {
let (_, _, bytes) = self.contents.read_tlv(NULL)?;
if bytes.is_empty() {
Ok(())
} else {
Err(error_here!(ErrorType::InvalidInput))
}
}
fn read_sequence(&mut self) -> Result<Sequence<'a>, Error> {
let (_, _, sequence_bytes) = self.contents.read_tlv(SEQUENCE | CONSTRUCTED)?;
Ok(Sequence {
contents: Der::new(sequence_bytes),
})
}
fn read_optional_tagged_value(&mut self, tag: u8) -> Result<Option<&'a [u8]>, Error> {
let expected = CONTEXT_SPECIFIC | CONSTRUCTED | tag;
if self.contents.peek(expected) {
let (_, _, tagged_value_bytes) = self.contents.read_tlv(expected)?;
Ok(Some(tagged_value_bytes))
} else {
Ok(None)
}
}
fn read_encoded_sequence_component(&mut self, tag: u8) -> Result<Vec<u8>, Error> {
let (tag, length, value) = self.contents.read_tlv(tag)?;
let mut encoded_component_bytes = length;
encoded_component_bytes.insert(0, tag);
encoded_component_bytes.extend_from_slice(value);
Ok(encoded_component_bytes)
}
fn at_end(&self) -> bool {
self.contents.at_end()
}
#[cfg(target_os = "android")]
fn read_rest(&mut self) -> &[u8] {
self.contents.read_rest()
}
}
/// A helper struct for reading DER data. The contents are treated like a cursor, so its position
/// is updated as data is read.
struct Der<'a> {
contents: &'a [u8],
}
impl<'a> Der<'a> {
fn new(contents: &'a [u8]) -> Der<'a> {
Der { contents }
}
// In theory, a caller could encounter an error and try another operation, in which case we may
// be in an inconsistent state. As long as this implementation isn't exposed to code that would
// use it incorrectly (i.e. it stays in this module and we only expose a stateless API), it
// should be safe.
/// Given an expected tag, reads the next (tag, lengh, value) from the contents. Most
/// consumers will only be interested in the value, but some may want the entire encoded
/// contents, in which case the returned tuple can be concatenated.
fn read_tlv(&mut self, tag: u8) -> Result<(u8, Vec<u8>, &'a [u8]), Error> {
let contents = self.contents;
let (tag_read, rest) = try_read_bytes!(contents, 1);
if tag_read[0] != tag {
return Err(error_here!(ErrorType::InvalidInput));
}
let mut accumulated_length_bytes = Vec::with_capacity(4);
let (length1, rest) = try_read_bytes!(rest, 1);
accumulated_length_bytes.extend_from_slice(length1);
let (length, to_read_from) = if length1[0] < 0x80 {
(length1[0] as usize, rest)
} else if length1[0] == 0x81 {
let (length, rest) = try_read_bytes!(rest, 1);
accumulated_length_bytes.extend_from_slice(length);
if length[0] < 0x80 {
return Err(error_here!(ErrorType::InvalidInput));
}
(length[0] as usize, rest)
} else if length1[0] == 0x82 {
let (mut lengths, rest) = try_read_bytes!(rest, 2);
accumulated_length_bytes.extend_from_slice(lengths);
let length = lengths
.read_u16::<BigEndian>()
.map_err(|_| error_here!(ErrorType::LibraryFailure))?;
if length < 256 {
return Err(error_here!(ErrorType::InvalidInput));
}
(length as usize, rest)
} else {
return Err(error_here!(ErrorType::UnsupportedInput));
};
let (contents, rest) = try_read_bytes!(to_read_from, length);
self.contents = rest;
Ok((tag, accumulated_length_bytes, contents))
}
fn at_end(&self) -> bool {
self.contents.is_empty()
}
fn peek(&self, expected: u8) -> bool {
Some(&expected) == self.contents.first()
}
#[cfg(target_os = "android")]
fn read_rest(&mut self) -> &'a [u8] {
let contents = self.contents;
self.contents = &[];
contents
}
}
fn make_hasher(params: &CK_RSA_PKCS_PSS_PARAMS) -> Result<Box<dyn DynDigest>, Error> {
match params.hashAlg {
CKM_SHA256 => Ok(Box::new(sha2::Sha256::new())),
CKM_SHA384 => Ok(Box::new(sha2::Sha384::new())),
CKM_SHA512 => Ok(Box::new(sha2::Sha512::new())),
_ => Err(error_here!(ErrorType::LibraryFailure)),
}
}
// Implements MGF1 as per RFC 8017 appendix B.2.1.
fn mgf(
mgf_seed: &[u8],
mask_len: usize,
h_len: usize,
params: &CK_RSA_PKCS_PSS_PARAMS,
) -> Result<Vec<u8>, Error> {
// 1. If maskLen > 2^32 hLen, output "mask too long" and stop.
// (in practice, `mask_len` is going to be much smaller than this, so use a
// smaller, fixed limit to avoid problems on systems where usize is 32
// bits)
if mask_len > 1 << 30 {
return Err(error_here!(ErrorType::LibraryFailure));
}
// 2. Let T be the empty octet string.
let mut t = Vec::with_capacity(mask_len);
// 3. For counter from 0 to \ceil (maskLen / hLen) - 1, do the
// following:
for counter in 0..mask_len.div_ceil(h_len) {
// A. Convert counter to an octet string C of length 4 octets:
// C = I2OSP (counter, 4)
// (counter fits in u32 due to the length check earlier)
let c = u32::to_be_bytes(counter.try_into().unwrap());
// B. Concatenate the hash of the seed mgfSeed and C to the octet
// string T: T = T || Hash(mgfSeed || C)
let mut hasher = make_hasher(params)?;
hasher.update(mgf_seed);
hasher.update(&c);
t.extend_from_slice(&mut hasher.finalize());
}
// 4. Output the leading maskLen octets of T as the octet string mask.
t.truncate(mask_len);
Ok(t)
}
pub fn modulus_bit_length(modulus: &[u8]) -> usize {
let mut bit_length = modulus.len() * 8;
for byte in modulus {
if *byte != 0 {
// `byte` is a u8, so `leading_zeros()` will be at most 7.
let leading_zeros: usize = byte.leading_zeros().try_into().unwrap();
bit_length -= leading_zeros;
return bit_length;
}
bit_length -= 8;
}
bit_length
}
// Implements EMSA-PSS-ENCODE as per RFC 8017 section 9.1.1.
// This is necessary because while Android does support RSA-PSS, it expects to
// be given the entire message to be signed, not just the hash of the message,
// which is what NSS gives us.
// Additionally, this is useful for tokens that do not support RSA-PSS.
pub fn emsa_pss_encode(
m_hash: &[u8],
em_bits: usize,
params: &CK_RSA_PKCS_PSS_PARAMS,
) -> Result<Vec<u8>, Error> {
let em_len = em_bits.div_ceil(8);
let s_len: usize = params
.sLen
.try_into()
.map_err(|_| error_here!(ErrorType::LibraryFailure))?;
// 1. If the length of M is greater than the input limitation for
// the hash function (2^61 - 1 octets for SHA-1), output
// "message too long" and stop.
// 2. Let mHash = Hash(M), an octet string of length hLen.
// 1 and 2 can be skipped because the message is already hashed as m_hash.
// 3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
if em_len < m_hash.len() + s_len + 2 {
return Err(error_here!(ErrorType::LibraryFailure));
}
// 4. Generate a random octet string salt of length sLen; if sLen =
// 0, then salt is the empty string.
let salt = {
let mut salt = vec![0u8; s_len];
OsRng.fill_bytes(&mut salt);
salt
};
// 5. Let M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
// M' is an octet string of length 8 + hLen + sLen with eight
// initial zero octets.
// 6. Let H = Hash(M'), an octet string of length hLen.
let mut hasher = make_hasher(params)?;
let h_len = hasher.output_size();
hasher.update(&[0, 0, 0, 0, 0, 0, 0, 0]);
hasher.update(m_hash);
hasher.update(&salt);
let h = hasher.finalize().to_vec();
// 7. Generate an octet string PS consisting of emLen - sLen - hLen
// - 2 zero octets. The length of PS may be 0.
// 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
// emLen - hLen - 1.
// (7 and 8 are unnecessary as separate steps - see step 10)
// 9. Let dbMask = MGF(H, emLen - hLen - 1).
let mut db_mask = mgf(&h, em_len - h_len - 1, h_len, params)?;
// 10. Let maskedDB = DB \xor dbMask.
// (in practice, this means xoring `0x01 || salt` with the last `s_len + 1`
// bytes of `db_mask`)
let salt_index = db_mask.len() - s_len;
db_mask[salt_index - 1] ^= 1;
for (db_mask_byte, salt_byte) in zip(&mut db_mask[salt_index..], &salt) {
*db_mask_byte ^= salt_byte;
}
let mut masked_db = db_mask;
// 11. Set the leftmost 8emLen - emBits bits of the leftmost octet
// in maskedDB to zero.
// (bit_diff can only be 0 through 7, so it fits in u32)
let bit_diff: u32 = ((8 * em_len) - em_bits).try_into().unwrap();
// (again, bit_diff can only b 0 through 7, so the shift is sound)
masked_db[0] &= 0xffu8.checked_shr(bit_diff).unwrap();
// 12. Let EM = maskedDB || H || 0xbc.
let mut em = masked_db;
em.extend_from_slice(&h);
em.push(0xbc);
Ok(em)
}
/// A `CryptokiCert` holds all relevant information for a `CryptokiObject` with class
/// `CKO_CERTIFICATE`.
pub struct CryptokiCert {
/// PKCS #11 object class. Will be `CKO_CERTIFICATE`.
class: Vec<u8>,
/// Whether or not this is on a token. Will be `CK_TRUE`.
token: Vec<u8>,
/// An identifier unique to this certificate. This must be the same as the ID for the private
/// key, so for simplicity, this will be the sha256 hash of the bytes of the certificate.
id: Vec<u8>,
/// The bytes of a human-readable label for this certificate.
label: Vec<u8>,
/// The DER bytes of the certificate.
value: Vec<u8>,
/// The DER bytes of the issuer distinguished name of the certificate.
issuer: Vec<u8>,
/// The DER bytes of the serial number of the certificate.
serial_number: Vec<u8>,
/// The DER bytes of the subject distinguished name of the certificate.
subject: Vec<u8>,
}
impl CryptokiCert {
pub fn new(der: Vec<u8>, label: Vec<u8>) -> Result<CryptokiCert, Error> {
let id = sha2::Sha256::digest(&der).to_vec();
let (serial_number, issuer, subject) = read_encoded_certificate_identifiers(&der)?;
Ok(CryptokiCert {
class: serialize_uint(CKO_CERTIFICATE)?,
token: serialize_uint(CK_TRUE)?,
id,
label,
value: der,
issuer,
serial_number,
subject,
})
}
}
impl CryptokiObject for CryptokiCert {
fn matches(&self, attrs: &[(CK_ATTRIBUTE_TYPE, Vec<u8>)]) -> bool {
for (attr_type, attr_value) in attrs {
let comparison = match *attr_type {
CKA_CLASS => &self.class,
CKA_TOKEN => &self.token,
CKA_LABEL => &self.label,
CKA_ID => &self.id,
CKA_VALUE => &self.value,
CKA_ISSUER => &self.issuer,
CKA_SERIAL_NUMBER => &self.serial_number,
CKA_SUBJECT => &self.subject,
_ => return false,
};
if attr_value.as_slice() != comparison {
return false;
}
}
true
}
fn get_attribute(&self, attribute: CK_ATTRIBUTE_TYPE) -> Option<&[u8]> {
let result = match attribute {
CKA_CLASS => &self.class,
CKA_TOKEN => &self.token,
CKA_LABEL => &self.label,
CKA_ID => &self.id,
CKA_VALUE => &self.value,
CKA_ISSUER => &self.issuer,
CKA_SERIAL_NUMBER => &self.serial_number,
CKA_SUBJECT => &self.subject,
_ => return None,
};
Some(result)
}
}
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone, Copy, Debug)]
pub enum KeyType {
EC(usize),
RSA,
}
/// A `CryptokiKey` holds all relevant information for a `CryptokiObject` with class
/// `CKO_PRIVATE_KEY`.
pub struct CryptokiKey {
/// PKCS #11 object class. Will be `CKO_PRIVATE_KEY`.
class: Vec<u8>,
/// Whether or not this is on a token. Will be `CK_TRUE`.
token: Vec<u8>,
/// An identifier unique to this key. This must be the same as the ID for a corresponding
/// certificate, so for simplicity, this will be the sha256 hash of the bytes of the
/// certificate.
id: Vec<u8>,
/// Whether or not this key is "private" (can it be exported?). Will be CK_TRUE (it can't be
/// exported).
private: Vec<u8>,
/// PKCS #11 key type. Will be `CKK_EC` for EC, and `CKK_RSA` for RSA.
key_type_attribute: Vec<u8>,
/// If this is an RSA key, this is the value of the modulus as an unsigned integer.
modulus: Option<Vec<u8>>,
/// If this is an EC key, this is the DER bytes of the OID identifying the curve the key is on.
ec_params: Option<Vec<u8>>,
/// An enum identifying this key's type.
key_type: KeyType,
}
impl CryptokiKey {
pub fn new(
modulus: Option<Vec<u8>>,
ec_params: Option<Vec<u8>>,
cert: &[u8],
) -> Result<CryptokiKey, Error> {
let (key_type, key_type_attribute) = if modulus.is_some() {
(KeyType::RSA, CKK_RSA)
} else if let Some(ec_params) = ec_params.as_ref() {
// Only secp256r1, secp384r1, and secp521r1 are supported.
let coordinate_width = match ec_params.as_slice() {
ENCODED_OID_BYTES_SECP256R1 => 32,
ENCODED_OID_BYTES_SECP384R1 => 48,
ENCODED_OID_BYTES_SECP521R1 => 66,
_ => return Err(error_here!(ErrorType::UnsupportedInput)),
};
(KeyType::EC(coordinate_width), CKK_EC)
} else {
return Err(error_here!(ErrorType::LibraryFailure));
};
let id = sha2::Sha256::digest(cert).to_vec();
Ok(CryptokiKey {
class: serialize_uint(CKO_PRIVATE_KEY)?,
token: serialize_uint(CK_TRUE)?,
id,
private: serialize_uint(CK_TRUE)?,
key_type_attribute: serialize_uint(key_type_attribute)?,
modulus,
ec_params,
key_type,
})
}
pub fn modulus(&self) -> &Option<Vec<u8>> {
&self.modulus
}
pub fn ec_params(&self) -> &Option<Vec<u8>> {
&self.ec_params
}
pub fn key_type(&self) -> KeyType {
self.key_type
}
}
impl CryptokiObject for CryptokiKey {
fn matches(&self, attrs: &[(CK_ATTRIBUTE_TYPE, Vec<u8>)]) -> bool {
for (attr_type, attr_value) in attrs {
let comparison = match *attr_type {
CKA_CLASS => &self.class,
CKA_TOKEN => &self.token,
CKA_ID => &self.id,
CKA_PRIVATE => &self.private,
CKA_KEY_TYPE => &self.key_type_attribute,
CKA_MODULUS => {
if let Some(modulus) = &self.modulus {
modulus
} else {
return false;
}
}
CKA_EC_PARAMS => {
if let Some(ec_params) = &self.ec_params {
ec_params
} else {
return false;
}
}
_ => return false,
};
if attr_value.as_slice() != comparison {
return false;
}
}
true
}
fn get_attribute(&self, attribute: CK_ATTRIBUTE_TYPE) -> Option<&[u8]> {
match attribute {
CKA_CLASS => Some(&self.class),
CKA_TOKEN => Some(&self.token),
CKA_ID => Some(&self.id),
CKA_PRIVATE => Some(&self.private),
CKA_KEY_TYPE => Some(&self.key_type_attribute),
CKA_MODULUS => match &self.modulus {
Some(modulus) => Some(modulus.as_slice()),
None => None,
},
CKA_EC_PARAMS => match &self.ec_params {
Some(ec_params) => Some(ec_params.as_slice()),
None => None,
},
_ => None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn der_test_empty_input() {
let input = Vec::new();
let mut der = Der::new(&input);
assert!(der.read_tlv(INTEGER).is_err());
}
#[test]
fn der_test_no_length() {
let input = vec![INTEGER];
let mut der = Der::new(&input);
assert!(der.read_tlv(INTEGER).is_err());
}
#[test]
fn der_test_empty_sequence() {
let input = vec![SEQUENCE, 0];
let mut der = Der::new(&input);
let read_result = der.read_tlv(SEQUENCE);
assert!(read_result.is_ok());
let (tag, length, sequence_bytes) = read_result.unwrap();
assert_eq!(tag, SEQUENCE);
assert_eq!(length, vec![0]);
assert_eq!(sequence_bytes.len(), 0);
assert!(der.at_end());
}
#[test]
fn der_test_not_at_end() {
let input = vec![SEQUENCE, 0, 1];
let mut der = Der::new(&input);
let read_result = der.read_tlv(SEQUENCE);
assert!(read_result.is_ok());
let (tag, length, sequence_bytes) = read_result.unwrap();
assert_eq!(tag, SEQUENCE);
assert_eq!(length, vec![0]);
assert_eq!(sequence_bytes.len(), 0);
assert!(!der.at_end());
}
#[test]
fn der_test_wrong_tag() {
let input = vec![SEQUENCE, 0];
let mut der = Der::new(&input);
assert!(der.read_tlv(INTEGER).is_err());
}
#[test]
fn der_test_truncated_two_byte_length() {
let input = vec![SEQUENCE, 0x81];
let mut der = Der::new(&input);
assert!(der.read_tlv(SEQUENCE).is_err());
}
#[test]
fn der_test_truncated_three_byte_length() {
let input = vec![SEQUENCE, 0x82, 1];
let mut der = Der::new(&input);
assert!(der.read_tlv(SEQUENCE).is_err());
}
#[test]
fn der_test_truncated_data() {
let input = vec![SEQUENCE, 20, 1];
let mut der = Der::new(&input);
assert!(der.read_tlv(SEQUENCE).is_err());
}
#[test]
fn der_test_sequence() {
let input = vec![
SEQUENCE, 20, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 0, 0,
];
let mut der = Der::new(&input);
let result = der.read_tlv(SEQUENCE);
assert!(result.is_ok());
let (tag, length, value) = result.unwrap();
assert_eq!(tag, SEQUENCE);
assert_eq!(length, vec![20]);
assert_eq!(
value,
[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 0, 0]
);
assert!(der.at_end());
}
#[test]
fn der_test_not_shortest_two_byte_length_encoding() {
let input = vec![SEQUENCE, 0x81, 1, 1];
let mut der = Der::new(&input);
assert!(der.read_tlv(SEQUENCE).is_err());
}
#[test]
fn der_test_not_shortest_three_byte_length_encoding() {
let input = vec![SEQUENCE, 0x82, 0, 1, 1];
let mut der = Der::new(&input);
assert!(der.read_tlv(SEQUENCE).is_err());
}
#[test]
fn der_test_indefinite_length_unsupported() {
let input = vec![SEQUENCE, 0x80, 1, 2, 3, 0x00, 0x00];
let mut der = Der::new(&input);
assert!(der.read_tlv(SEQUENCE).is_err());
}
#[test]
fn der_test_input_too_long() {
// This isn't valid DER (the contents of the SEQUENCE are truncated), but it demonstrates
// that we don't try to read too much if we're given a long length (and also that we don't
// support lengths 2^16 and up).
let input = vec![SEQUENCE, 0x83, 0x01, 0x00, 0x01, 1, 1, 1, 1];
let mut der = Der::new(&input);
assert!(der.read_tlv(SEQUENCE).is_err());
}
#[test]
fn empty_input_fails() {
let empty = Vec::new();
assert!(read_rsa_modulus(&empty).is_err());
#[cfg(any(target_os = "macos", target_os = "ios"))]
assert!(read_ec_sig_point(&empty).is_err());
assert!(read_encoded_certificate_identifiers(&empty).is_err());
}
#[test]
fn empty_sequence_fails() {
let empty = vec![SEQUENCE | CONSTRUCTED];
assert!(read_rsa_modulus(&empty).is_err());
#[cfg(any(target_os = "macos", target_os = "ios"))]
assert!(read_ec_sig_point(&empty).is_err());
assert!(read_encoded_certificate_identifiers(&empty).is_err());
}
#[test]
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "android"))]
fn test_der_ec_sig_to_raw() {
let ec_sig_point = vec![
0x30, 0x45, 0x02, 0x20, 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a,
0xde, 0x20, 0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64,
0xec, 0xfd, 0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x02, 0x21, 0x00, 0x85, 0xfb, 0xb4,
0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67,
0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f,
0xf2,
];
let result = der_ec_sig_to_raw(&ec_sig_point, 32);
assert!(result.is_ok());
let expected = vec![
0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a, 0xde, 0x20, 0xa3, 0xbc,
0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64, 0xec, 0xfd, 0xcb, 0x42,
0x80, 0x0a, 0x70, 0xe6, 0x85, 0xfb, 0xb4, 0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52,
0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67, 0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78,
0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f, 0xf2,
];
assert_eq!(result.unwrap(), expected);
}
#[test]
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "android"))]
fn test_der_ec_sig_to_raw_long() {
let ec_sig = vec![
0x30, 0x45, 0x02, 0x20, 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a,
0xde, 0x20, 0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64,
0xec, 0xfd, 0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x02, 0x21, 0x00, 0x85, 0xfb, 0xb4,
0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67,
0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f,
0xf2,
];
let result = der_ec_sig_to_raw(&ec_sig, 16);
assert!(result.is_err());
}
#[test]
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "android"))]
fn test_der_ec_sig_to_raw_short() {
let ec_sig_point = vec![
0x30, 0x45, 0x02, 0x20, 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a,
0xde, 0x20, 0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64,
0xec, 0xfd, 0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x02, 0x21, 0x00, 0x85, 0xfb, 0xb4,
0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67,
0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f,
0xf2,
];
let result = der_ec_sig_to_raw(&ec_sig_point, 48);
assert!(result.is_ok());
let expected = vec![
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a, 0xde, 0x20,
0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64, 0xec, 0xfd,
0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x85, 0xfb, 0xb4, 0x75, 0x5d, 0xb5,
0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67, 0x10, 0x4f, 0x72,
0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f, 0xf2,
];
assert_eq!(result.unwrap(), expected);
}
#[test]
fn test_read_rsa_modulus() {
let rsa_key = include_bytes!("../test/rsa.bin");
let result = read_rsa_modulus(rsa_key);
assert!(result.is_ok());
let modulus = result.unwrap();
assert_eq!(modulus, include_bytes!("../test/modulus.bin").to_vec());
}
#[test]
fn test_read_certificate_identifiers() {
let certificate = include_bytes!("../test/certificate.bin");
let result = read_encoded_certificate_identifiers(certificate);
assert!(result.is_ok());
let (serial_number, issuer, subject) = result.unwrap();
assert_eq!(
serial_number,
&[
0x02, 0x14, 0x3f, 0xed, 0x7b, 0x43, 0x47, 0x8a, 0x53, 0x42, 0x5b, 0x0d, 0x50, 0xe1,
0x37, 0x88, 0x2a, 0x20, 0x3f, 0x31, 0x17, 0x20
]
);
assert_eq!(
issuer,
&[
0x30, 0x12, 0x31, 0x10, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x07, 0x54,
0x65, 0x73, 0x74, 0x20, 0x43, 0x41
]
);
assert_eq!(
subject,
&[
0x30, 0x1a, 0x31, 0x18, 0x30, 0x16, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x0f, 0x54,
0x65, 0x73, 0x74, 0x20, 0x45, 0x6e, 0x64, 0x2d, 0x65, 0x6e, 0x74, 0x69, 0x74, 0x79
]
);
}
#[test]
fn test_read_v1_certificate_identifiers() {
let certificate = include_bytes!("../test/v1certificate.bin");
let result = read_encoded_certificate_identifiers(certificate);
assert!(result.is_ok());
let (serial_number, issuer, subject) = result.unwrap();
assert_eq!(
serial_number,
&[
0x02, 0x14, 0x51, 0x6b, 0x24, 0xaa, 0xf2, 0x7f, 0x56, 0x13, 0x5f, 0xc3, 0x8b, 0x5c,
0xa7, 0x00, 0x83, 0xa8, 0xee, 0xca, 0xad, 0xa0
]
);
assert_eq!(
issuer,
&[
0x30, 0x12, 0x31, 0x10, 0x30, 0x0E, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0C, 0x07, 0x54,
0x65, 0x73, 0x74, 0x20, 0x43, 0x41
]
);
assert_eq!(
subject,
&[
0x30, 0x12, 0x31, 0x10, 0x30, 0x0E, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0C, 0x07, 0x56,
0x31, 0x20, 0x43, 0x65, 0x72, 0x74
]
);
}
#[test]
#[cfg(target_os = "windows")]
fn test_read_digest() {
// SEQUENCE
// SEQUENCE
// OBJECT IDENTIFIER 2.16.840.1.101.3.4.2.1 sha-256
// NULL
// OCTET STRING 1A7FCDB9A5F649F954885CFE145F3E93F0D1FA72BE980CC6EC82C70E1407C7D2
let digest_info = [
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x1, 0x65, 0x03, 0x04, 0x02,
0x01, 0x05, 0x00, 0x04, 0x20, 0x1a, 0x7f, 0xcd, 0xb9, 0xa5, 0xf6, 0x49, 0xf9, 0x54,
0x88, 0x5c, 0xfe, 0x14, 0x5f, 0x3e, 0x93, 0xf0, 0xd1, 0xfa, 0x72, 0xbe, 0x98, 0x0c,
0xc6, 0xec, 0x82, 0xc7, 0x0e, 0x14, 0x07, 0xc7, 0xd2,
];
let result = read_digest_info(&digest_info);
assert!(result.is_ok());
let (oid, digest) = result.unwrap();
assert_eq!(oid, &[0x60, 0x86, 0x48, 0x1, 0x65, 0x03, 0x04, 0x02, 0x01]);
assert_eq!(
digest,
&[
0x1a, 0x7f, 0xcd, 0xb9, 0xa5, 0xf6, 0x49, 0xf9, 0x54, 0x88, 0x5c, 0xfe, 0x14, 0x5f,
0x3e, 0x93, 0xf0, 0xd1, 0xfa, 0x72, 0xbe, 0x98, 0x0c, 0xc6, 0xec, 0x82, 0xc7, 0x0e,
0x14, 0x07, 0xc7, 0xd2
]
);
}
#[test]
#[cfg(target_os = "android")]
fn test_read_spki_algorithm_parameters() {
let spki = [
0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, 0x06,
0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0x03, 0x42, 0x00, 0x04, 0x4f,
0xbf, 0xbb, 0xbb, 0x61, 0xe0, 0xf8, 0xf9, 0xb1, 0xa6, 0x0a, 0x59, 0xac, 0x87, 0x04,
0xe2, 0xec, 0x05, 0x0b, 0x42, 0x3e, 0x3c, 0xf7, 0x2e, 0x92, 0x3f, 0x2c, 0x4f, 0x79,
0x4b, 0x45, 0x5c, 0x2a, 0x69, 0xd2, 0x33, 0x45, 0x6c, 0x36, 0xc4, 0x11, 0x9d, 0x07,
0x06, 0xe0, 0x0e, 0xed, 0xc8, 0xd1, 0x93, 0x90, 0xd7, 0x99, 0x1b, 0x7b, 0x2d, 0x07,
0xa3, 0x04, 0xea, 0xa0, 0x4a, 0xa6, 0xc0,
];
let result = read_spki_algorithm_parameters(&spki);
assert!(result.is_ok());
let parameters = result.unwrap();
assert_eq!(¶meters, ENCODED_OID_BYTES_SECP256R1);
}
}