Revision control

Copy as Markdown

Other Tools

// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
use crate::ule::*;
use crate::varzerovec::VarZeroVecFormat;
use crate::{VarZeroSlice, VarZeroVec, ZeroSlice, ZeroVec};
use alloc::borrow::{Cow, ToOwned};
use alloc::boxed::Box;
use alloc::string::String;
use alloc::{vec, vec::Vec};
use core::mem;
/// Allows types to be encoded as VarULEs. This is highly useful for implementing VarULE on
/// custom DSTs where the type cannot be obtained as a reference to some other type.
///
/// [`Self::encode_var_ule_as_slices()`] should be implemented by providing an encoded slice for each field
/// of the VarULE type to the callback, in order. For an implementation to be safe, the slices
/// to the callback must, when concatenated, be a valid instance of the VarULE type.
///
/// See the [custom VarULEdocumentation](crate::ule::custom) for examples.
///
/// [`Self::encode_var_ule_as_slices()`] is only used to provide default implementations for [`Self::encode_var_ule_write()`]
/// and [`Self::encode_var_ule_len()`]. If you override the default implementations it is totally valid to
/// replace [`Self::encode_var_ule_as_slices()`]'s body with `unreachable!()`. This can be done for cases where
/// it is not possible to implement [`Self::encode_var_ule_as_slices()`] but the other methods still work.
///
/// A typical implementation will take each field in the order found in the [`VarULE`] type,
/// convert it to ULE, call [`ULE::as_byte_slice()`] on them, and pass the slices to `cb` in order.
/// A trailing [`ZeroVec`](crate::ZeroVec) or [`VarZeroVec`](crate::VarZeroVec) can have their underlying
/// byte representation passed through.
///
/// In case the compiler is not optimizing [`Self::encode_var_ule_len()`], it can be overridden. A typical
/// implementation will add up the sizes of each field on the [`VarULE`] type and then add in the byte length of the
/// dynamically-sized part.
///
/// # Safety
///
/// The safety invariants of [`Self::encode_var_ule_as_slices()`] are:
/// - It must call `cb` (only once)
/// - The slices passed to `cb`, if concatenated, should be a valid instance of the `T` [`VarULE`] type
/// (i.e. if fed to [`VarULE::validate_byte_slice()`] they must produce a successful result)
/// - It must return the return value of `cb` to the caller
///
/// One or more of [`Self::encode_var_ule_len()`] and [`Self::encode_var_ule_write()`] may be provided.
/// If both are, then `zerovec` code is guaranteed to not call [`Self::encode_var_ule_as_slices()`], and it may be replaced
/// with `unreachable!()`.
///
/// The safety invariants of [`Self::encode_var_ule_len()`] are:
/// - It must return the length of the corresponding VarULE type
///
/// The safety invariants of [`Self::encode_var_ule_write()`] are:
/// - The slice written to `dst` must be a valid instance of the `T` [`VarULE`] type
pub unsafe trait EncodeAsVarULE<T: VarULE + ?Sized> {
/// Calls `cb` with a piecewise list of byte slices that when concatenated
/// produce the memory pattern of the corresponding instance of `T`.
///
/// Do not call this function directly; instead use the other two. Some implementors
/// may define this function to panic.
fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R;
/// Return the length, in bytes, of the corresponding [`VarULE`] type
fn encode_var_ule_len(&self) -> usize {
self.encode_var_ule_as_slices(|slices| slices.iter().map(|s| s.len()).sum())
}
/// Write the corresponding [`VarULE`] type to the `dst` buffer. `dst` should
/// be the size of [`Self::encode_var_ule_len()`]
fn encode_var_ule_write(&self, mut dst: &mut [u8]) {
debug_assert_eq!(self.encode_var_ule_len(), dst.len());
self.encode_var_ule_as_slices(move |slices| {
#[allow(clippy::indexing_slicing)] // by debug_assert
for slice in slices {
dst[..slice.len()].copy_from_slice(slice);
dst = &mut dst[slice.len()..];
}
});
}
}
/// Given an [`EncodeAsVarULE`] type `S`, encode it into a `Box<T>`
///
/// This is primarily useful for generating `Deserialize` impls for VarULE types
pub fn encode_varule_to_box<S: EncodeAsVarULE<T>, T: VarULE + ?Sized>(x: &S) -> Box<T> {
// zero-fill the vector to avoid uninitialized data UB
let mut vec: Vec<u8> = vec![0; x.encode_var_ule_len()];
x.encode_var_ule_write(&mut vec);
let boxed = mem::ManuallyDrop::new(vec.into_boxed_slice());
unsafe {
// Safety: `ptr` is a box, and `T` is a VarULE which guarantees it has the same memory layout as `[u8]`
// and can be recouped via from_byte_slice_unchecked()
let ptr: *mut T = T::from_byte_slice_unchecked(&boxed) as *const T as *mut T;
// Safety: we can construct an owned version since we have mem::forgotten the older owner
Box::from_raw(ptr)
}
}
unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for T {
fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
cb(&[T::as_byte_slice(self)])
}
}
unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for &'_ T {
fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
cb(&[T::as_byte_slice(self)])
}
}
unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for Cow<'_, T>
where
T: ToOwned,
{
fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
cb(&[T::as_byte_slice(self.as_ref())])
}
}
unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for Box<T> {
fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
cb(&[T::as_byte_slice(self)])
}
}
unsafe impl EncodeAsVarULE<str> for String {
fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
cb(&[self.as_bytes()])
}
}
// Note: This impl could technically use `T: AsULE`, but we want users to prefer `ZeroSlice<T>`
// for cases where T is not a ULE. Therefore, we can use the more efficient `memcpy` impl here.
unsafe impl<T> EncodeAsVarULE<[T]> for Vec<T>
where
T: ULE,
{
fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
cb(&[<[T] as VarULE>::as_byte_slice(self)])
}
}
unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for &'_ [T]
where
T: AsULE + 'static,
{
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unreachable!()
}
#[inline]
fn encode_var_ule_len(&self) -> usize {
self.len() * core::mem::size_of::<T::ULE>()
}
fn encode_var_ule_write(&self, dst: &mut [u8]) {
#[allow(non_snake_case)]
let S = core::mem::size_of::<T::ULE>();
debug_assert_eq!(self.len() * S, dst.len());
for (item, ref mut chunk) in self.iter().zip(dst.chunks_mut(S)) {
let ule = item.to_unaligned();
chunk.copy_from_slice(ULE::as_byte_slice(core::slice::from_ref(&ule)));
}
}
}
unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for Vec<T>
where
T: AsULE + 'static,
{
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unreachable!()
}
#[inline]
fn encode_var_ule_len(&self) -> usize {
self.as_slice().encode_var_ule_len()
}
#[inline]
fn encode_var_ule_write(&self, dst: &mut [u8]) {
self.as_slice().encode_var_ule_write(dst)
}
}
unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for ZeroVec<'_, T>
where
T: AsULE + 'static,
{
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unreachable!()
}
#[inline]
fn encode_var_ule_len(&self) -> usize {
self.as_bytes().len()
}
fn encode_var_ule_write(&self, dst: &mut [u8]) {
debug_assert_eq!(self.as_bytes().len(), dst.len());
dst.copy_from_slice(self.as_bytes());
}
}
unsafe impl<T, E, F> EncodeAsVarULE<VarZeroSlice<T, F>> for &'_ [E]
where
T: VarULE + ?Sized,
E: EncodeAsVarULE<T>,
F: VarZeroVecFormat,
{
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unimplemented!()
}
#[allow(clippy::unwrap_used)] // TODO(#1410): Rethink length errors in VZV.
fn encode_var_ule_len(&self) -> usize {
crate::varzerovec::components::compute_serializable_len::<T, E, F>(self).unwrap() as usize
}
fn encode_var_ule_write(&self, dst: &mut [u8]) {
crate::varzerovec::components::write_serializable_bytes::<T, E, F>(self, dst)
}
}
unsafe impl<T, E, F> EncodeAsVarULE<VarZeroSlice<T, F>> for Vec<E>
where
T: VarULE + ?Sized,
E: EncodeAsVarULE<T>,
F: VarZeroVecFormat,
{
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unreachable!()
}
#[inline]
fn encode_var_ule_len(&self) -> usize {
<_ as EncodeAsVarULE<VarZeroSlice<T, F>>>::encode_var_ule_len(&self.as_slice())
}
#[inline]
fn encode_var_ule_write(&self, dst: &mut [u8]) {
<_ as EncodeAsVarULE<VarZeroSlice<T, F>>>::encode_var_ule_write(&self.as_slice(), dst)
}
}
unsafe impl<T, F> EncodeAsVarULE<VarZeroSlice<T, F>> for VarZeroVec<'_, T, F>
where
T: VarULE + ?Sized,
F: VarZeroVecFormat,
{
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unreachable!()
}
#[inline]
fn encode_var_ule_len(&self) -> usize {
self.as_bytes().len()
}
#[inline]
fn encode_var_ule_write(&self, dst: &mut [u8]) {
debug_assert_eq!(self.as_bytes().len(), dst.len());
dst.copy_from_slice(self.as_bytes());
}
}
#[cfg(test)]
mod test {
use super::*;
const STRING_ARRAY: [&str; 2] = ["hello", "world"];
const STRING_SLICE: &[&str] = &STRING_ARRAY;
const U8_ARRAY: [u8; 8] = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07];
const U8_2D_ARRAY: [&[u8]; 2] = [&U8_ARRAY, &U8_ARRAY];
const U8_2D_SLICE: &[&[u8]] = &[&U8_ARRAY, &U8_ARRAY];
const U8_3D_ARRAY: [&[&[u8]]; 2] = [U8_2D_SLICE, U8_2D_SLICE];
const U8_3D_SLICE: &[&[&[u8]]] = &[U8_2D_SLICE, U8_2D_SLICE];
const U32_ARRAY: [u32; 4] = [0x00010203, 0x04050607, 0x08090A0B, 0x0C0D0E0F];
const U32_2D_ARRAY: [&[u32]; 2] = [&U32_ARRAY, &U32_ARRAY];
const U32_2D_SLICE: &[&[u32]] = &[&U32_ARRAY, &U32_ARRAY];
const U32_3D_ARRAY: [&[&[u32]]; 2] = [U32_2D_SLICE, U32_2D_SLICE];
const U32_3D_SLICE: &[&[&[u32]]] = &[U32_2D_SLICE, U32_2D_SLICE];
#[test]
fn test_vzv_from() {
type VZV<'a, T> = VarZeroVec<'a, T>;
type ZS<T> = ZeroSlice<T>;
type VZS<T> = VarZeroSlice<T>;
let u8_zerovec: ZeroVec<u8> = ZeroVec::from_slice_or_alloc(&U8_ARRAY);
let u8_2d_zerovec: [ZeroVec<u8>; 2] = [u8_zerovec.clone(), u8_zerovec.clone()];
let u8_2d_vec: Vec<Vec<u8>> = vec![U8_ARRAY.into(), U8_ARRAY.into()];
let u8_3d_vec: Vec<Vec<Vec<u8>>> = vec![u8_2d_vec.clone(), u8_2d_vec.clone()];
let u32_zerovec: ZeroVec<u32> = ZeroVec::from_slice_or_alloc(&U32_ARRAY);
let u32_2d_zerovec: [ZeroVec<u32>; 2] = [u32_zerovec.clone(), u32_zerovec.clone()];
let u32_2d_vec: Vec<Vec<u32>> = vec![U32_ARRAY.into(), U32_ARRAY.into()];
let u32_3d_vec: Vec<Vec<Vec<u32>>> = vec![u32_2d_vec.clone(), u32_2d_vec.clone()];
let a: VZV<str> = VarZeroVec::from(&STRING_ARRAY);
let b: VZV<str> = VarZeroVec::from(STRING_SLICE);
let c: VZV<str> = VarZeroVec::from(&Vec::from(STRING_SLICE));
assert_eq!(a, STRING_SLICE);
assert_eq!(a, b);
assert_eq!(a, c);
let a: VZV<[u8]> = VarZeroVec::from(&U8_2D_ARRAY);
let b: VZV<[u8]> = VarZeroVec::from(U8_2D_SLICE);
let c: VZV<[u8]> = VarZeroVec::from(&u8_2d_vec);
assert_eq!(a, U8_2D_SLICE);
assert_eq!(a, b);
assert_eq!(a, c);
let u8_3d_vzv_brackets = &[a.clone(), a.clone()];
let a: VZV<ZS<u8>> = VarZeroVec::from(&U8_2D_ARRAY);
let b: VZV<ZS<u8>> = VarZeroVec::from(U8_2D_SLICE);
let c: VZV<ZS<u8>> = VarZeroVec::from(&u8_2d_vec);
let d: VZV<ZS<u8>> = VarZeroVec::from(&u8_2d_zerovec);
assert_eq!(a, U8_2D_SLICE);
assert_eq!(a, b);
assert_eq!(a, c);
assert_eq!(a, d);
let u8_3d_vzv_zeroslice = &[a.clone(), a.clone()];
let a: VZV<VZS<[u8]>> = VarZeroVec::from(&U8_3D_ARRAY);
let b: VZV<VZS<[u8]>> = VarZeroVec::from(U8_3D_SLICE);
let c: VZV<VZS<[u8]>> = VarZeroVec::from(&u8_3d_vec);
let d: VZV<VZS<[u8]>> = VarZeroVec::from(u8_3d_vzv_brackets);
assert_eq!(
a.iter()
.map(|x| x.iter().map(|y| y.to_vec()).collect::<Vec<Vec<u8>>>())
.collect::<Vec<Vec<Vec<u8>>>>(),
u8_3d_vec
);
assert_eq!(a, b);
assert_eq!(a, c);
assert_eq!(a, d);
let a: VZV<VZS<ZS<u8>>> = VarZeroVec::from(&U8_3D_ARRAY);
let b: VZV<VZS<ZS<u8>>> = VarZeroVec::from(U8_3D_SLICE);
let c: VZV<VZS<ZS<u8>>> = VarZeroVec::from(&u8_3d_vec);
let d: VZV<VZS<ZS<u8>>> = VarZeroVec::from(u8_3d_vzv_zeroslice);
assert_eq!(
a.iter()
.map(|x| x
.iter()
.map(|y| y.iter().collect::<Vec<u8>>())
.collect::<Vec<Vec<u8>>>())
.collect::<Vec<Vec<Vec<u8>>>>(),
u8_3d_vec
);
assert_eq!(a, b);
assert_eq!(a, c);
assert_eq!(a, d);
let a: VZV<ZS<u32>> = VarZeroVec::from(&U32_2D_ARRAY);
let b: VZV<ZS<u32>> = VarZeroVec::from(U32_2D_SLICE);
let c: VZV<ZS<u32>> = VarZeroVec::from(&u32_2d_vec);
let d: VZV<ZS<u32>> = VarZeroVec::from(&u32_2d_zerovec);
assert_eq!(a, u32_2d_zerovec);
assert_eq!(a, b);
assert_eq!(a, c);
assert_eq!(a, d);
let u32_3d_vzv = &[a.clone(), a.clone()];
let a: VZV<VZS<ZS<u32>>> = VarZeroVec::from(&U32_3D_ARRAY);
let b: VZV<VZS<ZS<u32>>> = VarZeroVec::from(U32_3D_SLICE);
let c: VZV<VZS<ZS<u32>>> = VarZeroVec::from(&u32_3d_vec);
let d: VZV<VZS<ZS<u32>>> = VarZeroVec::from(u32_3d_vzv);
assert_eq!(
a.iter()
.map(|x| x
.iter()
.map(|y| y.iter().collect::<Vec<u32>>())
.collect::<Vec<Vec<u32>>>())
.collect::<Vec<Vec<Vec<u32>>>>(),
u32_3d_vec
);
assert_eq!(a, b);
assert_eq!(a, c);
assert_eq!(a, d);
}
}