Revision control
Copy as Markdown
Other Tools
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc(
)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]
//! Securely zero memory with a simple trait ([`Zeroize`]) built on stable Rust
//! primitives which guarantee the operation will not be "optimized away".
//!
//! ## About
//!
//! [Zeroing memory securely is hard] - compilers optimize for performance, and
//! in doing so they love to "optimize away" unnecessary zeroing calls. There are
//! many documented "tricks" to attempt to avoid these optimizations and ensure
//! that a zeroing routine is performed reliably.
//!
//! This crate isn't about tricks: it uses [`core::ptr::write_volatile`]
//! and [`core::sync::atomic`] memory fences to provide easy-to-use, portable
//! zeroing behavior which works on all of Rust's core number types and slices
//! thereof, implemented in pure Rust with no usage of FFI or assembly.
//!
//! - No insecure fallbacks!
//! - No dependencies!
//! - No FFI or inline assembly! **WASM friendly** (and tested)!
//! - `#![no_std]` i.e. **embedded-friendly**!
//! - No functionality besides securely zeroing memory!
//! - (Optional) Custom derive support for zeroing complex structures
//!
//! ## Minimum Supported Rust Version
//!
//! Requires Rust **1.72** or newer.
//!
//! In the future, we reserve the right to change MSRV (i.e. MSRV is out-of-scope
//! for this crate's SemVer guarantees), however when we do it will be accompanied
//! by a minor version bump.
//!
//! ## Usage
//!
//! ```
//! use zeroize::Zeroize;
//!
//! // Protip: don't embed secrets in your source code.
//! // This is just an example.
//! let mut secret = b"Air shield password: 1,2,3,4,5".to_vec();
//! // [ ... ] open the air shield here
//!
//! // Now that we're done using the secret, zero it out.
//! secret.zeroize();
//! ```
//!
//! The [`Zeroize`] trait is impl'd on all of Rust's core scalar types including
//! integers, floats, `bool`, and `char`.
//!
//! Additionally, it's implemented on slices and `IterMut`s of the above types.
//!
//! When the `alloc` feature is enabled (which it is by default), it's also
//! impl'd for `Vec<T>` for the above types as well as `String`, where it provides
//! [`Vec::clear`] / [`String::clear`]-like behavior (truncating to zero-length)
//! but ensures the backing memory is securely zeroed with some caveats.
//!
//! With the `std` feature enabled (which it is **not** by default), [`Zeroize`]
//! is also implemented for [`CString`]. After calling `zeroize()` on a `CString`,
//! its internal buffer will contain exactly one nul byte. The backing
//! memory is zeroed by converting it to a `Vec<u8>` and back into a `CString`.
//! (NOTE: see "Stack/Heap Zeroing Notes" for important `Vec`/`String`/`CString` details)
//!
//!
//! The [`DefaultIsZeroes`] marker trait can be impl'd on types which also
//! impl [`Default`], which implements [`Zeroize`] by overwriting a value with
//! the default value.
//!
//! ## Custom Derive Support
//!
//! This crate has custom derive support for the `Zeroize` trait,
//! gated under the `zeroize` crate's `zeroize_derive` Cargo feature,
//! which automatically calls `zeroize()` on all members of a struct
//! or tuple struct.
//!
//! Attributes supported for `Zeroize`:
//!
//! On the item level:
//! - `#[zeroize(drop)]`: *deprecated* use `ZeroizeOnDrop` instead
//! - `#[zeroize(bound = "T: MyTrait")]`: this replaces any trait bounds
//! inferred by zeroize
//!
//! On the field level:
//! - `#[zeroize(skip)]`: skips this field or variant when calling `zeroize()`
//!
//! Attributes supported for `ZeroizeOnDrop`:
//!
//! On the field level:
//! - `#[zeroize(skip)]`: skips this field or variant when calling `zeroize()`
//!
//! Example which derives `Drop`:
//!
//! ```
//! # #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::{Zeroize, ZeroizeOnDrop};
//!
//! // This struct will be zeroized on drop
//! #[derive(Zeroize, ZeroizeOnDrop)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! Example which does not derive `Drop` (useful for e.g. `Copy` types)
//!
//! ```
//! #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::Zeroize;
//!
//! // This struct will *NOT* be zeroized on drop
//! #[derive(Copy, Clone, Zeroize)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! Example which only derives `Drop`:
//!
//! ```
//! # #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::ZeroizeOnDrop;
//!
//! // This struct will be zeroized on drop
//! #[derive(ZeroizeOnDrop)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! ## `Zeroizing<Z>`: wrapper for zeroizing arbitrary values on drop
//!
//! `Zeroizing<Z: Zeroize>` is a generic wrapper type that impls `Deref`
//! and `DerefMut`, allowing access to an inner value of type `Z`, and also
//! impls a `Drop` handler which calls `zeroize()` on its contents:
//!
//! ```
//! use zeroize::Zeroizing;
//!
//! fn use_secret() {
//! let mut secret = Zeroizing::new([0u8; 5]);
//!
//! // Set the air shield password
//! // Protip (again): don't embed secrets in your source code.
//! secret.copy_from_slice(&[1, 2, 3, 4, 5]);
//! assert_eq!(secret.as_ref(), &[1, 2, 3, 4, 5]);
//!
//! // The contents of `secret` will be automatically zeroized on drop
//! }
//!
//! # use_secret()
//! ```
//!
//! ## What guarantees does this crate provide?
//!
//! This crate guarantees the following:
//!
//! 1. The zeroing operation can't be "optimized away" by the compiler.
//! 2. All subsequent reads to memory will see "zeroized" values.
//!
//! LLVM's volatile semantics ensure #1 is true.
//!
//! Additionally, thanks to work by the [Unsafe Code Guidelines Working Group],
//! we can now fairly confidently say #2 is true as well. Previously there were
//! worries that the approach used by this crate (mixing volatile and
//! non-volatile accesses) was undefined behavior due to language contained
//! in the documentation for `write_volatile`, however after some discussion
//! [these remarks have been removed] and the specific usage pattern in this
//! crate is considered to be well-defined.
//!
//! Additionally this crate leverages [`core::sync::atomic::compiler_fence`]
//! with the strictest ordering
//! ([`Ordering::SeqCst`]) as a
//! precaution to help ensure reads are not reordered before memory has been
//! zeroed.
//!
//! All of that said, there is still potential for microarchitectural attacks
//! (ala Spectre/Meltdown) to leak "zeroized" secrets through covert channels.
//! This crate makes no guarantees that zeroized values cannot be leaked
//! through such channels, as they represent flaws in the underlying hardware.
//!
//! ## Stack/Heap Zeroing Notes
//!
//! This crate can be used to zero values from either the stack or the heap.
//!
//! However, be aware several operations in Rust can unintentionally leave
//! copies of data in memory. This includes but is not limited to:
//!
//! - Moves and [`Copy`]
//! - Heap reallocation when using [`Vec`] and [`String`]
//! - Borrowers of a reference making copies of the data
//!
//! [`Pin`][`core::pin::Pin`] can be leveraged in conjunction with this crate
//! to ensure data kept on the stack isn't moved.
//!
//! The `Zeroize` impls for `Vec`, `String` and `CString` zeroize the entire
//! capacity of their backing buffer, but cannot guarantee copies of the data
//! were not previously made by buffer reallocation. It's therefore important
//! when attempting to zeroize such buffers to initialize them to the correct
//! capacity, and take care to prevent subsequent reallocation.
//!
//! The `secrecy` crate provides higher-level abstractions for eliminating
//! usage patterns which can cause reallocations:
//!
//!
//! ## What about: clearing registers, mlock, mprotect, etc?
//!
//! This crate is focused on providing simple, unobtrusive support for reliably
//! zeroing memory using the best approach possible on stable Rust.
//!
//! Clearing registers is a difficult problem that can't easily be solved by
//! something like a crate, and requires either inline ASM or rustc support.
//! this particular problem.
//!
//! Other memory protection mechanisms are interesting and useful, but often
//! overkill (e.g. defending against RAM scraping or attackers with swap access).
//! In as much as there may be merit to these approaches, there are also many
//! other crates that already implement more sophisticated memory protections.
//! Such protections are explicitly out-of-scope for this crate.
//!
//! Zeroing memory is [good cryptographic hygiene] and this crate seeks to promote
//! it in the most unobtrusive manner possible. This includes omitting complex
//! `unsafe` memory protection systems and just trying to make the best memory
//! zeroing crate available.
//!
//! [Zeroing memory securely is hard]: http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
//! [`Ordering::SeqCst`]: core::sync::atomic::Ordering::SeqCst
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "zeroize_derive")]
pub use zeroize_derive::{Zeroize, ZeroizeOnDrop};
#[cfg(target_arch = "aarch64")]
mod aarch64;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod x86;
use core::{
marker::{PhantomData, PhantomPinned},
mem::{self, MaybeUninit},
num::{
self, NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize,
NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize,
},
ops, ptr,
slice::IterMut,
sync::atomic,
};
#[cfg(feature = "alloc")]
use alloc::{boxed::Box, string::String, vec::Vec};
#[cfg(feature = "std")]
use std::ffi::CString;
/// Trait for securely erasing values from memory.
pub trait Zeroize {
/// Zero out this object from memory using Rust intrinsics which ensure the
/// zeroization operation is not "optimized away" by the compiler.
fn zeroize(&mut self);
}
/// Marker trait signifying that this type will [`Zeroize::zeroize`] itself on [`Drop`].
pub trait ZeroizeOnDrop {}
/// Marker trait for types whose [`Default`] is the desired zeroization result
pub trait DefaultIsZeroes: Copy + Default + Sized {}
/// Fallible trait for representing cases where zeroization may or may not be
/// possible.
///
/// This is primarily useful for scenarios like reference counted data, where
/// zeroization is only possible when the last reference is dropped.
pub trait TryZeroize {
/// Try to zero out this object from memory using Rust intrinsics which
/// ensure the zeroization operation is not "optimized away" by the
/// compiler.
#[must_use]
fn try_zeroize(&mut self) -> bool;
}
impl<Z> Zeroize for Z
where
Z: DefaultIsZeroes,
{
fn zeroize(&mut self) {
volatile_write(self, Z::default());
atomic_fence();
}
}
macro_rules! impl_zeroize_with_default {
($($type:ty),+) => {
$(impl DefaultIsZeroes for $type {})+
};
}
#[rustfmt::skip]
impl_zeroize_with_default! {
PhantomPinned, (), bool, char,
f32, f64,
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize
}
/// `PhantomPinned` is zero sized so provide a ZeroizeOnDrop implementation.
impl ZeroizeOnDrop for PhantomPinned {}
/// `()` is zero sized so provide a ZeroizeOnDrop implementation.
impl ZeroizeOnDrop for () {}
macro_rules! impl_zeroize_for_non_zero {
($($type:ty),+) => {
$(
impl Zeroize for $type {
fn zeroize(&mut self) {
const ONE: $type = match <$type>::new(1) {
Some(one) => one,
None => unreachable!(),
};
volatile_write(self, ONE);
atomic_fence();
}
}
)+
};
}
impl_zeroize_for_non_zero!(
NonZeroI8,
NonZeroI16,
NonZeroI32,
NonZeroI64,
NonZeroI128,
NonZeroIsize,
NonZeroU8,
NonZeroU16,
NonZeroU32,
NonZeroU64,
NonZeroU128,
NonZeroUsize
);
impl<Z> Zeroize for num::Wrapping<Z>
where
Z: Zeroize,
{
fn zeroize(&mut self) {
self.0.zeroize();
}
}
/// Impl [`Zeroize`] on arrays of types that impl [`Zeroize`].
impl<Z, const N: usize> Zeroize for [Z; N]
where
Z: Zeroize,
{
fn zeroize(&mut self) {
self.iter_mut().zeroize();
}
}
/// Impl [`ZeroizeOnDrop`] on arrays of types that impl [`ZeroizeOnDrop`].
impl<Z, const N: usize> ZeroizeOnDrop for [Z; N] where Z: ZeroizeOnDrop {}
impl<Z> Zeroize for IterMut<'_, Z>
where
Z: Zeroize,
{
fn zeroize(&mut self) {
for elem in self {
elem.zeroize();
}
}
}
impl<Z> Zeroize for Option<Z>
where
Z: Zeroize,
{
fn zeroize(&mut self) {
if let Some(value) = self {
value.zeroize();
// Ensures self is None and that the value was dropped. Without the take, the drop
// of the (zeroized) value isn't called, which might lead to a leak or other
// unexpected behavior. For example, if this were Option<Vec<T>>, the above call to
// zeroize would not free the allocated memory, but the the `take` call will.
self.take();
}
// Ensure that if the `Option` were previously `Some` but a value was copied/moved out
// that the remaining space in the `Option` is zeroized.
//
// Safety:
//
// The memory pointed to by `self` is valid for `mem::size_of::<Self>()` bytes.
// It is also properly aligned, because `u8` has an alignment of `1`.
unsafe {
volatile_set((self as *mut Self).cast::<u8>(), 0, mem::size_of::<Self>());
}
// Ensures self is overwritten with the `None` bit pattern. volatile_write can't be
// used because Option<Z> is not copy.
//
// Safety:
//
// self is safe to replace with `None`, which the take() call above should have
// already done semantically. Any value which needed to be dropped will have been
// done so by take().
unsafe { ptr::write_volatile(self, None) }
atomic_fence();
}
}
impl<Z> ZeroizeOnDrop for Option<Z> where Z: ZeroizeOnDrop {}
/// Impl [`Zeroize`] on [`MaybeUninit`] types.
///
/// This fills the memory with zeroes.
/// Note that this ignore invariants that `Z` might have, because
/// [`MaybeUninit`] removes all invariants.
impl<Z> Zeroize for MaybeUninit<Z> {
fn zeroize(&mut self) {
// Safety:
// `MaybeUninit` is valid for any byte pattern, including zeros.
unsafe { ptr::write_volatile(self, MaybeUninit::zeroed()) }
atomic_fence();
}
}
/// Impl [`Zeroize`] on slices of [`MaybeUninit`] types.
///
/// This impl can eventually be optimized using an memset intrinsic,
/// such as [`core::intrinsics::volatile_set_memory`].
///
/// This fills the slice with zeroes.
///
/// Note that this ignore invariants that `Z` might have, because
/// [`MaybeUninit`] removes all invariants.
impl<Z> Zeroize for [MaybeUninit<Z>] {
fn zeroize(&mut self) {
let ptr = self.as_mut_ptr().cast::<MaybeUninit<u8>>();
let size = self.len().checked_mul(mem::size_of::<Z>()).unwrap();
assert!(size <= isize::MAX as usize);
// Safety:
//
// This is safe, because every valid pointer is well aligned for u8
// and it is backed by a single allocated object for at least `self.len() * size_pf::<Z>()` bytes.
// and 0 is a valid value for `MaybeUninit<Z>`
// The memory of the slice should not wrap around the address space.
unsafe { volatile_set(ptr, MaybeUninit::zeroed(), size) }
atomic_fence();
}
}
/// Impl [`Zeroize`] on slices of types that can be zeroized with [`Default`].
///
/// This impl can eventually be optimized using an memset intrinsic,
/// such as [`core::intrinsics::volatile_set_memory`]. For that reason the
/// blanket impl on slices is bounded by [`DefaultIsZeroes`].
///
/// To zeroize a mut slice of `Z: Zeroize` which does not impl
/// [`DefaultIsZeroes`], call `iter_mut().zeroize()`.
impl<Z> Zeroize for [Z]
where
Z: DefaultIsZeroes,
{
fn zeroize(&mut self) {
assert!(self.len() <= isize::MAX as usize);
// Safety:
//
// This is safe, because the slice is well aligned and is backed by a single allocated
// object for at least `self.len()` elements of type `Z`.
// `self.len()` is also not larger than an `isize`, because of the assertion above.
// The memory of the slice should not wrap around the address space.
unsafe { volatile_set(self.as_mut_ptr(), Z::default(), self.len()) };
atomic_fence();
}
}
impl Zeroize for str {
fn zeroize(&mut self) {
// Safety:
// A zeroized byte slice is a valid UTF-8 string.
unsafe { self.as_bytes_mut().zeroize() }
}
}
/// [`PhantomData`] is always zero sized so provide a [`Zeroize`] implementation.
impl<Z> Zeroize for PhantomData<Z> {
fn zeroize(&mut self) {}
}
/// [`PhantomData` is always zero sized so provide a ZeroizeOnDrop implementation.
impl<Z> ZeroizeOnDrop for PhantomData<Z> {}
macro_rules! impl_zeroize_tuple {
( $( $type_name:ident ),+ ) => {
impl<$($type_name: Zeroize),+> Zeroize for ($($type_name,)+) {
fn zeroize(&mut self) {
#[allow(non_snake_case)]
let ($($type_name,)+) = self;
$($type_name.zeroize());+
}
}
impl<$($type_name: ZeroizeOnDrop),+> ZeroizeOnDrop for ($($type_name,)+) { }
}
}
// Generic implementations for tuples up to 10 parameters.
impl_zeroize_tuple!(A);
impl_zeroize_tuple!(A, B);
impl_zeroize_tuple!(A, B, C);
impl_zeroize_tuple!(A, B, C, D);
impl_zeroize_tuple!(A, B, C, D, E);
impl_zeroize_tuple!(A, B, C, D, E, F);
impl_zeroize_tuple!(A, B, C, D, E, F, G);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H, I);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H, I, J);
#[cfg(feature = "alloc")]
impl<Z> Zeroize for Vec<Z>
where
Z: Zeroize,
{
/// "Best effort" zeroization for `Vec`.
///
/// Ensures the entire capacity of the `Vec` is zeroed. Cannot ensure that
/// previous reallocations did not leave values on the heap.
fn zeroize(&mut self) {
// Zeroize all the initialized elements.
self.iter_mut().zeroize();
// Set the Vec's length to 0 and drop all the elements.
self.clear();
// Zero the full capacity of `Vec`.
self.spare_capacity_mut().zeroize();
}
}
#[cfg(feature = "alloc")]
impl<Z> ZeroizeOnDrop for Vec<Z> where Z: ZeroizeOnDrop {}
#[cfg(feature = "alloc")]
impl<Z> Zeroize for Box<[Z]>
where
Z: Zeroize,
{
/// Unlike `Vec`, `Box<[Z]>` cannot reallocate, so we can be sure that we are not leaving
/// values on the heap.
fn zeroize(&mut self) {
self.iter_mut().zeroize();
}
}
#[cfg(feature = "alloc")]
impl<Z> ZeroizeOnDrop for Box<[Z]> where Z: ZeroizeOnDrop {}
#[cfg(feature = "alloc")]
impl Zeroize for Box<str> {
fn zeroize(&mut self) {
self.as_mut().zeroize();
}
}
#[cfg(feature = "alloc")]
impl Zeroize for String {
fn zeroize(&mut self) {
unsafe { self.as_mut_vec() }.zeroize();
}
}
#[cfg(feature = "std")]
impl Zeroize for CString {
fn zeroize(&mut self) {
// mem::take uses replace internally to swap the pointer
// Unfortunately this results in an allocation for a Box::new(&[0]) as CString must
// contain a trailing zero byte
let this = mem::take(self);
// - CString::into_bytes_with_nul calls ::into_vec which takes ownership of the heap pointer
// as a Vec<u8>
// - Calling .zeroize() on the resulting vector clears out the bytes
let mut buf = this.into_bytes_with_nul();
buf.zeroize();
// expect() should never fail, because zeroize() truncates the Vec
let zeroed = CString::new(buf).expect("buf not truncated");
// Replace self by the zeroed CString to maintain the original ptr of the buffer
let _ = mem::replace(self, zeroed);
}
}
/// `Zeroizing` is a a wrapper for any `Z: Zeroize` type which implements a
/// `Drop` handler which zeroizes dropped values.
#[derive(Debug, Default, Eq, PartialEq)]
pub struct Zeroizing<Z: Zeroize>(Z);
impl<Z> Zeroizing<Z>
where
Z: Zeroize,
{
/// Move value inside a `Zeroizing` wrapper which ensures it will be
/// zeroized when it's dropped.
#[inline(always)]
pub fn new(value: Z) -> Self {
Self(value)
}
}
impl<Z: Zeroize + Clone> Clone for Zeroizing<Z> {
#[inline(always)]
fn clone(&self) -> Self {
Self(self.0.clone())
}
#[inline(always)]
fn clone_from(&mut self, source: &Self) {
self.0.zeroize();
self.0.clone_from(&source.0);
}
}
impl<Z> From<Z> for Zeroizing<Z>
where
Z: Zeroize,
{
#[inline(always)]
fn from(value: Z) -> Zeroizing<Z> {
Zeroizing(value)
}
}
impl<Z> ops::Deref for Zeroizing<Z>
where
Z: Zeroize,
{
type Target = Z;
#[inline(always)]
fn deref(&self) -> &Z {
&self.0
}
}
impl<Z> ops::DerefMut for Zeroizing<Z>
where
Z: Zeroize,
{
#[inline(always)]
fn deref_mut(&mut self) -> &mut Z {
&mut self.0
}
}
impl<T, Z> AsRef<T> for Zeroizing<Z>
where
T: ?Sized,
Z: AsRef<T> + Zeroize,
{
#[inline(always)]
fn as_ref(&self) -> &T {
self.0.as_ref()
}
}
impl<T, Z> AsMut<T> for Zeroizing<Z>
where
T: ?Sized,
Z: AsMut<T> + Zeroize,
{
#[inline(always)]
fn as_mut(&mut self) -> &mut T {
self.0.as_mut()
}
}
impl<Z> Zeroize for Zeroizing<Z>
where
Z: Zeroize,
{
fn zeroize(&mut self) {
self.0.zeroize();
}
}
impl<Z> ZeroizeOnDrop for Zeroizing<Z> where Z: Zeroize {}
impl<Z> Drop for Zeroizing<Z>
where
Z: Zeroize,
{
fn drop(&mut self) {
self.0.zeroize()
}
}
#[cfg(feature = "serde")]
impl<Z> serde::Serialize for Zeroizing<Z>
where
Z: Zeroize + serde::Serialize,
{
#[inline(always)]
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
self.0.serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl<'de, Z> serde::Deserialize<'de> for Zeroizing<Z>
where
Z: Zeroize + serde::Deserialize<'de>,
{
#[inline(always)]
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
Ok(Self(Z::deserialize(deserializer)?))
}
}
/// Use fences to prevent accesses from being reordered before this
/// point, which should hopefully help ensure that all accessors
/// see zeroes after this point.
#[inline(always)]
fn atomic_fence() {
atomic::compiler_fence(atomic::Ordering::SeqCst);
}
/// Perform a volatile write to the destination
#[inline(always)]
fn volatile_write<T: Copy + Sized>(dst: &mut T, src: T) {
unsafe { ptr::write_volatile(dst, src) }
}
/// Perform a volatile `memset` operation which fills a slice with a value
///
/// Safety:
/// The memory pointed to by `dst` must be a single allocated object that is valid for `count`
/// contiguous elements of `T`.
/// `count` must not be larger than an `isize`.
/// `dst` being offset by `mem::size_of::<T> * count` bytes must not wrap around the address space.
/// Also `dst` must be properly aligned.
#[inline(always)]
unsafe fn volatile_set<T: Copy + Sized>(dst: *mut T, src: T, count: usize) {
// TODO(tarcieri): use `volatile_set_memory` when stabilized
for i in 0..count {
// Safety:
//
// This is safe because there is room for at least `count` objects of type `T` in the
// allocation pointed to by `dst`, because `count <= isize::MAX` and because
// `dst.add(count)` must not wrap around the address space.
let ptr = dst.add(i);
// Safety:
//
// This is safe, because the pointer is valid and because `dst` is well aligned for `T` and
// `ptr` is an offset of `dst` by a multiple of `mem::size_of::<T>()` bytes.
ptr::write_volatile(ptr, src);
}
}
/// Zeroizes a flat type/struct. Only zeroizes the values that it owns, and it does not work on
/// dynamically sized values or trait objects. It would be inefficient to use this function on a
/// type that already implements `ZeroizeOnDrop`.
///
/// # Safety
/// - The type must not contain references to outside data or dynamically sized data, such as
/// `Vec<T>` or `String`.
/// - Values stored in the type must not have `Drop` impls.
/// - This function can invalidate the type if it is used after this function is called on it.
/// It is advisable to call this function only in `impl Drop`.
/// - The bit pattern of all zeroes must be valid for the data being zeroized. This may not be
/// true for enums and pointers.
///
/// # Incompatible data types
/// Some data types that cannot be safely zeroized using `zeroize_flat_type` include,
/// but are not limited to:
/// - References: `&T` and `&mut T`
/// - Non-nullable types: `NonNull<T>`, `NonZeroU32`, etc.
/// - Enums with explicit non-zero tags.
/// - Smart pointers and collections: `Arc<T>`, `Box<T>`, `Vec<T>`, `HashMap<K, V>`, `String`, etc.
///
/// # Examples
/// Safe usage for a struct containing strictly flat data:
/// ```
/// use zeroize::{ZeroizeOnDrop, zeroize_flat_type};
///
/// struct DataToZeroize {
/// flat_data_1: [u8; 32],
/// flat_data_2: SomeMoreFlatData,
/// }
///
/// struct SomeMoreFlatData(u64);
///
/// impl Drop for DataToZeroize {
/// fn drop(&mut self) {
/// unsafe { zeroize_flat_type(self as *mut Self) }
/// }
/// }
/// impl ZeroizeOnDrop for DataToZeroize {}
///
/// let mut data = DataToZeroize {
/// flat_data_1: [3u8; 32],
/// flat_data_2: SomeMoreFlatData(123u64)
/// };
///
/// // data gets zeroized when dropped
/// ```
#[inline(always)]
pub unsafe fn zeroize_flat_type<F: Sized>(data: *mut F) {
let size = mem::size_of::<F>();
// Safety:
//
// This is safe because `mem::size_of<T>()` returns the exact size of the object in memory, and
// `data_ptr` points directly to the first byte of the data.
volatile_set(data as *mut u8, 0, size);
atomic_fence()
}
/// Internal module used as support for `AssertZeroizeOnDrop`.
#[doc(hidden)]
pub mod __internal {
use super::*;
/// Auto-deref workaround for deriving `ZeroizeOnDrop`.
pub trait AssertZeroizeOnDrop {
fn zeroize_or_on_drop(self);
}
impl<T: ZeroizeOnDrop + ?Sized> AssertZeroizeOnDrop for &&mut T {
fn zeroize_or_on_drop(self) {}
}
/// Auto-deref workaround for deriving `ZeroizeOnDrop`.
pub trait AssertZeroize {
fn zeroize_or_on_drop(&mut self);
}
impl<T: Zeroize + ?Sized> AssertZeroize for T {
fn zeroize_or_on_drop(&mut self) {
self.zeroize()
}
}
}