Revision control

Copy as Markdown

Other Tools

use super::{conv, RawTlasInstance};
use arrayvec::ArrayVec;
use ash::{khr, vk};
use parking_lot::Mutex;
use crate::TlasInstance;
use std::{
borrow::Cow,
collections::{hash_map::Entry, BTreeMap},
ffi::{CStr, CString},
mem::{self, size_of, MaybeUninit},
num::NonZeroU32,
ptr, slice,
sync::Arc,
};
impl super::DeviceShared {
/// Set the name of `object` to `name`.
///
/// If `name` contains an interior null byte, then the name set will be truncated to that byte.
///
/// # Safety
///
/// It must be valid to set `object`'s debug name
pub(super) unsafe fn set_object_name(&self, object: impl vk::Handle, name: &str) {
let Some(extension) = self.extension_fns.debug_utils.as_ref() else {
return;
};
// Keep variables outside the if-else block to ensure they do not
// go out of scope while we hold a pointer to them
let mut buffer: [u8; 64] = [0u8; 64];
let buffer_vec: Vec<u8>;
// Append a null terminator to the string
let name_bytes = if name.len() < buffer.len() {
// Common case, string is very small. Allocate a copy on the stack.
buffer[..name.len()].copy_from_slice(name.as_bytes());
// Add null terminator
buffer[name.len()] = 0;
&buffer[..name.len() + 1]
} else {
// Less common case, the string is large.
// This requires a heap allocation.
buffer_vec = name
.as_bytes()
.iter()
.cloned()
.chain(std::iter::once(0))
.collect();
&buffer_vec
};
let name = CStr::from_bytes_until_nul(name_bytes).expect("We have added a null byte");
let _result = unsafe {
extension.set_debug_utils_object_name(
&vk::DebugUtilsObjectNameInfoEXT::default()
.object_handle(object)
.object_name(name),
)
};
}
pub fn make_render_pass(
&self,
key: super::RenderPassKey,
) -> Result<vk::RenderPass, crate::DeviceError> {
Ok(match self.render_passes.lock().entry(key) {
Entry::Occupied(e) => *e.get(),
Entry::Vacant(e) => {
let mut vk_attachments = Vec::new();
let mut color_refs = Vec::with_capacity(e.key().colors.len());
let mut resolve_refs = Vec::with_capacity(color_refs.capacity());
let mut ds_ref = None;
let samples = vk::SampleCountFlags::from_raw(e.key().sample_count);
let unused = vk::AttachmentReference {
attachment: vk::ATTACHMENT_UNUSED,
layout: vk::ImageLayout::UNDEFINED,
};
for cat in e.key().colors.iter() {
let (color_ref, resolve_ref) = if let Some(cat) = cat.as_ref() {
let color_ref = vk::AttachmentReference {
attachment: vk_attachments.len() as u32,
layout: cat.base.layout,
};
vk_attachments.push({
let (load_op, store_op) = conv::map_attachment_ops(cat.base.ops);
vk::AttachmentDescription::default()
.format(cat.base.format)
.samples(samples)
.load_op(load_op)
.store_op(store_op)
.initial_layout(cat.base.layout)
.final_layout(cat.base.layout)
});
let resolve_ref = if let Some(ref rat) = cat.resolve {
let (load_op, store_op) = conv::map_attachment_ops(rat.ops);
let vk_attachment = vk::AttachmentDescription::default()
.format(rat.format)
.samples(vk::SampleCountFlags::TYPE_1)
.load_op(load_op)
.store_op(store_op)
.initial_layout(rat.layout)
.final_layout(rat.layout);
vk_attachments.push(vk_attachment);
vk::AttachmentReference {
attachment: vk_attachments.len() as u32 - 1,
layout: rat.layout,
}
} else {
unused
};
(color_ref, resolve_ref)
} else {
(unused, unused)
};
color_refs.push(color_ref);
resolve_refs.push(resolve_ref);
}
if let Some(ref ds) = e.key().depth_stencil {
ds_ref = Some(vk::AttachmentReference {
attachment: vk_attachments.len() as u32,
layout: ds.base.layout,
});
let (load_op, store_op) = conv::map_attachment_ops(ds.base.ops);
let (stencil_load_op, stencil_store_op) =
conv::map_attachment_ops(ds.stencil_ops);
let vk_attachment = vk::AttachmentDescription::default()
.format(ds.base.format)
.samples(samples)
.load_op(load_op)
.store_op(store_op)
.stencil_load_op(stencil_load_op)
.stencil_store_op(stencil_store_op)
.initial_layout(ds.base.layout)
.final_layout(ds.base.layout);
vk_attachments.push(vk_attachment);
}
let vk_subpasses = [{
let mut vk_subpass = vk::SubpassDescription::default()
.pipeline_bind_point(vk::PipelineBindPoint::GRAPHICS)
.color_attachments(&color_refs)
.resolve_attachments(&resolve_refs);
if self
.workarounds
.contains(super::Workarounds::EMPTY_RESOLVE_ATTACHMENT_LISTS)
&& resolve_refs.is_empty()
{
vk_subpass.p_resolve_attachments = ptr::null();
}
if let Some(ref reference) = ds_ref {
vk_subpass = vk_subpass.depth_stencil_attachment(reference)
}
vk_subpass
}];
let mut vk_info = vk::RenderPassCreateInfo::default()
.attachments(&vk_attachments)
.subpasses(&vk_subpasses);
let mut multiview_info;
let mask;
if let Some(multiview) = e.key().multiview {
// Sanity checks, better to panic here than cause a driver crash
assert!(multiview.get() <= 8);
assert!(multiview.get() > 1);
// Right now we enable all bits on the view masks and correlation masks.
// This means we're rendering to all views in the subpass, and that all views
// can be rendered concurrently.
mask = [(1 << multiview.get()) - 1];
// On Vulkan 1.1 or later, this is an alias for core functionality
multiview_info = vk::RenderPassMultiviewCreateInfoKHR::default()
.view_masks(&mask)
.correlation_masks(&mask);
vk_info = vk_info.push_next(&mut multiview_info);
}
let raw = unsafe {
self.raw
.create_render_pass(&vk_info, None)
.map_err(super::map_host_device_oom_err)?
};
*e.insert(raw)
}
})
}
pub fn make_framebuffer(
&self,
key: super::FramebufferKey,
raw_pass: vk::RenderPass,
pass_label: crate::Label,
) -> Result<vk::Framebuffer, crate::DeviceError> {
Ok(match self.framebuffers.lock().entry(key) {
Entry::Occupied(e) => *e.get(),
Entry::Vacant(e) => {
let vk_views = e
.key()
.attachments
.iter()
.map(|at| at.raw)
.collect::<ArrayVec<_, { super::MAX_TOTAL_ATTACHMENTS }>>();
let vk_view_formats = e
.key()
.attachments
.iter()
.map(|at| self.private_caps.map_texture_format(at.view_format))
.collect::<ArrayVec<_, { super::MAX_TOTAL_ATTACHMENTS }>>();
let vk_view_formats_list = e
.key()
.attachments
.iter()
.map(|at| at.raw_view_formats.clone())
.collect::<ArrayVec<_, { super::MAX_TOTAL_ATTACHMENTS }>>();
let vk_image_infos = e
.key()
.attachments
.iter()
.enumerate()
.map(|(i, at)| {
let mut info = vk::FramebufferAttachmentImageInfo::default()
.usage(conv::map_texture_usage(at.view_usage))
.flags(at.raw_image_flags)
.width(e.key().extent.width)
.height(e.key().extent.height)
.layer_count(e.key().extent.depth_or_array_layers);
if vk_view_formats_list[i].is_empty() {
info = info.view_formats(&vk_view_formats[i..i + 1]);
} else {
info = info.view_formats(&vk_view_formats_list[i]);
};
info
})
.collect::<ArrayVec<_, { super::MAX_TOTAL_ATTACHMENTS }>>();
let mut vk_attachment_info = vk::FramebufferAttachmentsCreateInfo::default()
.attachment_image_infos(&vk_image_infos);
let mut vk_info = vk::FramebufferCreateInfo::default()
.render_pass(raw_pass)
.width(e.key().extent.width)
.height(e.key().extent.height)
.layers(e.key().extent.depth_or_array_layers);
if self.private_caps.imageless_framebuffers {
vk_info = vk_info
.flags(vk::FramebufferCreateFlags::IMAGELESS_KHR)
.push_next(&mut vk_attachment_info);
vk_info.attachment_count = e.key().attachments.len() as u32;
} else {
vk_info = vk_info.attachments(&vk_views);
}
*e.insert(unsafe {
let raw = self.raw.create_framebuffer(&vk_info, None).unwrap();
if let Some(label) = pass_label {
self.set_object_name(raw, label);
}
raw
})
}
})
}
fn make_memory_ranges<'a, I: 'a + Iterator<Item = crate::MemoryRange>>(
&self,
buffer: &'a super::Buffer,
ranges: I,
) -> Option<impl 'a + Iterator<Item = vk::MappedMemoryRange>> {
let block = buffer.block.as_ref()?.lock();
let mask = self.private_caps.non_coherent_map_mask;
Some(ranges.map(move |range| {
vk::MappedMemoryRange::default()
.memory(*block.memory())
.offset((block.offset() + range.start) & !mask)
.size((range.end - range.start + mask) & !mask)
}))
}
}
impl gpu_alloc::MemoryDevice<vk::DeviceMemory> for super::DeviceShared {
unsafe fn allocate_memory(
&self,
size: u64,
memory_type: u32,
flags: gpu_alloc::AllocationFlags,
) -> Result<vk::DeviceMemory, gpu_alloc::OutOfMemory> {
let mut info = vk::MemoryAllocateInfo::default()
.allocation_size(size)
.memory_type_index(memory_type);
let mut info_flags;
if flags.contains(gpu_alloc::AllocationFlags::DEVICE_ADDRESS) {
info_flags = vk::MemoryAllocateFlagsInfo::default()
.flags(vk::MemoryAllocateFlags::DEVICE_ADDRESS);
info = info.push_next(&mut info_flags);
}
match unsafe { self.raw.allocate_memory(&info, None) } {
Ok(memory) => {
self.memory_allocations_counter.add(1);
Ok(memory)
}
Err(vk::Result::ERROR_OUT_OF_DEVICE_MEMORY) => {
Err(gpu_alloc::OutOfMemory::OutOfDeviceMemory)
}
Err(vk::Result::ERROR_OUT_OF_HOST_MEMORY) => {
Err(gpu_alloc::OutOfMemory::OutOfHostMemory)
}
// We don't use VK_KHR_external_memory
// VK_ERROR_INVALID_EXTERNAL_HANDLE
// We don't use VK_KHR_buffer_device_address
// VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS_KHR
Err(err) => handle_unexpected(err),
}
}
unsafe fn deallocate_memory(&self, memory: vk::DeviceMemory) {
self.memory_allocations_counter.sub(1);
unsafe { self.raw.free_memory(memory, None) };
}
unsafe fn map_memory(
&self,
memory: &mut vk::DeviceMemory,
offset: u64,
size: u64,
) -> Result<ptr::NonNull<u8>, gpu_alloc::DeviceMapError> {
match unsafe {
self.raw
.map_memory(*memory, offset, size, vk::MemoryMapFlags::empty())
} {
Ok(ptr) => Ok(ptr::NonNull::new(ptr.cast::<u8>())
.expect("Pointer to memory mapping must not be null")),
Err(vk::Result::ERROR_OUT_OF_DEVICE_MEMORY) => {
Err(gpu_alloc::DeviceMapError::OutOfDeviceMemory)
}
Err(vk::Result::ERROR_OUT_OF_HOST_MEMORY) => {
Err(gpu_alloc::DeviceMapError::OutOfHostMemory)
}
Err(vk::Result::ERROR_MEMORY_MAP_FAILED) => Err(gpu_alloc::DeviceMapError::MapFailed),
Err(err) => handle_unexpected(err),
}
}
unsafe fn unmap_memory(&self, memory: &mut vk::DeviceMemory) {
unsafe { self.raw.unmap_memory(*memory) };
}
unsafe fn invalidate_memory_ranges(
&self,
_ranges: &[gpu_alloc::MappedMemoryRange<'_, vk::DeviceMemory>],
) -> Result<(), gpu_alloc::OutOfMemory> {
// should never be called
unimplemented!()
}
unsafe fn flush_memory_ranges(
&self,
_ranges: &[gpu_alloc::MappedMemoryRange<'_, vk::DeviceMemory>],
) -> Result<(), gpu_alloc::OutOfMemory> {
// should never be called
unimplemented!()
}
}
impl
gpu_descriptor::DescriptorDevice<vk::DescriptorSetLayout, vk::DescriptorPool, vk::DescriptorSet>
for super::DeviceShared
{
unsafe fn create_descriptor_pool(
&self,
descriptor_count: &gpu_descriptor::DescriptorTotalCount,
max_sets: u32,
flags: gpu_descriptor::DescriptorPoolCreateFlags,
) -> Result<vk::DescriptorPool, gpu_descriptor::CreatePoolError> {
//Note: ignoring other types, since they can't appear here
let unfiltered_counts = [
(vk::DescriptorType::SAMPLER, descriptor_count.sampler),
(
vk::DescriptorType::SAMPLED_IMAGE,
descriptor_count.sampled_image,
),
(
vk::DescriptorType::STORAGE_IMAGE,
descriptor_count.storage_image,
),
(
vk::DescriptorType::UNIFORM_BUFFER,
descriptor_count.uniform_buffer,
),
(
vk::DescriptorType::UNIFORM_BUFFER_DYNAMIC,
descriptor_count.uniform_buffer_dynamic,
),
(
vk::DescriptorType::STORAGE_BUFFER,
descriptor_count.storage_buffer,
),
(
vk::DescriptorType::STORAGE_BUFFER_DYNAMIC,
descriptor_count.storage_buffer_dynamic,
),
];
let filtered_counts = unfiltered_counts
.iter()
.cloned()
.filter(|&(_, count)| count != 0)
.map(|(ty, count)| vk::DescriptorPoolSize {
ty,
descriptor_count: count,
})
.collect::<ArrayVec<_, 8>>();
let mut vk_flags =
if flags.contains(gpu_descriptor::DescriptorPoolCreateFlags::UPDATE_AFTER_BIND) {
vk::DescriptorPoolCreateFlags::UPDATE_AFTER_BIND
} else {
vk::DescriptorPoolCreateFlags::empty()
};
if flags.contains(gpu_descriptor::DescriptorPoolCreateFlags::FREE_DESCRIPTOR_SET) {
vk_flags |= vk::DescriptorPoolCreateFlags::FREE_DESCRIPTOR_SET;
}
let vk_info = vk::DescriptorPoolCreateInfo::default()
.max_sets(max_sets)
.flags(vk_flags)
.pool_sizes(&filtered_counts);
match unsafe { self.raw.create_descriptor_pool(&vk_info, None) } {
Ok(pool) => Ok(pool),
Err(vk::Result::ERROR_OUT_OF_HOST_MEMORY) => {
Err(gpu_descriptor::CreatePoolError::OutOfHostMemory)
}
Err(vk::Result::ERROR_OUT_OF_DEVICE_MEMORY) => {
Err(gpu_descriptor::CreatePoolError::OutOfDeviceMemory)
}
Err(vk::Result::ERROR_FRAGMENTATION) => {
Err(gpu_descriptor::CreatePoolError::Fragmentation)
}
Err(err) => handle_unexpected(err),
}
}
unsafe fn destroy_descriptor_pool(&self, pool: vk::DescriptorPool) {
unsafe { self.raw.destroy_descriptor_pool(pool, None) }
}
unsafe fn alloc_descriptor_sets<'a>(
&self,
pool: &mut vk::DescriptorPool,
layouts: impl ExactSizeIterator<Item = &'a vk::DescriptorSetLayout>,
sets: &mut impl Extend<vk::DescriptorSet>,
) -> Result<(), gpu_descriptor::DeviceAllocationError> {
let result = unsafe {
self.raw.allocate_descriptor_sets(
&vk::DescriptorSetAllocateInfo::default()
.descriptor_pool(*pool)
.set_layouts(
&smallvec::SmallVec::<[vk::DescriptorSetLayout; 32]>::from_iter(
layouts.cloned(),
),
),
)
};
match result {
Ok(vk_sets) => {
sets.extend(vk_sets);
Ok(())
}
Err(vk::Result::ERROR_OUT_OF_HOST_MEMORY)
| Err(vk::Result::ERROR_OUT_OF_POOL_MEMORY) => {
Err(gpu_descriptor::DeviceAllocationError::OutOfHostMemory)
}
Err(vk::Result::ERROR_OUT_OF_DEVICE_MEMORY) => {
Err(gpu_descriptor::DeviceAllocationError::OutOfDeviceMemory)
}
Err(vk::Result::ERROR_FRAGMENTED_POOL) => {
Err(gpu_descriptor::DeviceAllocationError::FragmentedPool)
}
Err(err) => handle_unexpected(err),
}
}
unsafe fn dealloc_descriptor_sets<'a>(
&self,
pool: &mut vk::DescriptorPool,
sets: impl Iterator<Item = vk::DescriptorSet>,
) {
let result = unsafe {
self.raw.free_descriptor_sets(
*pool,
&smallvec::SmallVec::<[vk::DescriptorSet; 32]>::from_iter(sets),
)
};
match result {
Ok(()) => {}
Err(err) => handle_unexpected(err),
}
}
}
struct CompiledStage {
create_info: vk::PipelineShaderStageCreateInfo<'static>,
_entry_point: CString,
temp_raw_module: Option<vk::ShaderModule>,
}
impl super::Device {
pub(super) unsafe fn create_swapchain(
&self,
surface: &super::Surface,
config: &crate::SurfaceConfiguration,
provided_old_swapchain: Option<super::Swapchain>,
) -> Result<super::Swapchain, crate::SurfaceError> {
profiling::scope!("Device::create_swapchain");
let functor = khr::swapchain::Device::new(&surface.instance.raw, &self.shared.raw);
let old_swapchain = match provided_old_swapchain {
Some(osc) => osc.raw,
None => vk::SwapchainKHR::null(),
};
let color_space = if config.format == wgt::TextureFormat::Rgba16Float {
// Enable wide color gamut mode
// Vulkan swapchain for Android only supports DISPLAY_P3_NONLINEAR_EXT and EXTENDED_SRGB_LINEAR_EXT
vk::ColorSpaceKHR::EXTENDED_SRGB_LINEAR_EXT
} else {
vk::ColorSpaceKHR::SRGB_NONLINEAR
};
let original_format = self.shared.private_caps.map_texture_format(config.format);
let mut raw_flags = vk::SwapchainCreateFlagsKHR::empty();
let mut raw_view_formats: Vec<vk::Format> = vec![];
let mut wgt_view_formats = vec![];
if !config.view_formats.is_empty() {
raw_flags |= vk::SwapchainCreateFlagsKHR::MUTABLE_FORMAT;
raw_view_formats = config
.view_formats
.iter()
.map(|f| self.shared.private_caps.map_texture_format(*f))
.collect();
raw_view_formats.push(original_format);
wgt_view_formats.clone_from(&config.view_formats);
wgt_view_formats.push(config.format);
}
let mut info = vk::SwapchainCreateInfoKHR::default()
.flags(raw_flags)
.surface(surface.raw)
.min_image_count(config.maximum_frame_latency + 1) // TODO: https://github.com/gfx-rs/wgpu/issues/2869
.image_format(original_format)
.image_color_space(color_space)
.image_extent(vk::Extent2D {
width: config.extent.width,
height: config.extent.height,
})
.image_array_layers(config.extent.depth_or_array_layers)
.image_usage(conv::map_texture_usage(config.usage))
.image_sharing_mode(vk::SharingMode::EXCLUSIVE)
.pre_transform(vk::SurfaceTransformFlagsKHR::IDENTITY)
.composite_alpha(conv::map_composite_alpha_mode(config.composite_alpha_mode))
.present_mode(conv::map_present_mode(config.present_mode))
.clipped(true)
.old_swapchain(old_swapchain);
let mut format_list_info = vk::ImageFormatListCreateInfo::default();
if !raw_view_formats.is_empty() {
format_list_info = format_list_info.view_formats(&raw_view_formats);
info = info.push_next(&mut format_list_info);
}
let result = {
profiling::scope!("vkCreateSwapchainKHR");
unsafe { functor.create_swapchain(&info, None) }
};
// doing this before bailing out with error
if old_swapchain != vk::SwapchainKHR::null() {
unsafe { functor.destroy_swapchain(old_swapchain, None) }
}
let raw = match result {
Ok(swapchain) => swapchain,
Err(error) => {
return Err(match error {
vk::Result::ERROR_SURFACE_LOST_KHR
| vk::Result::ERROR_INITIALIZATION_FAILED => crate::SurfaceError::Lost,
vk::Result::ERROR_NATIVE_WINDOW_IN_USE_KHR => {
crate::SurfaceError::Other("Native window is in use")
}
// We don't use VK_EXT_image_compression_control
// VK_ERROR_COMPRESSION_EXHAUSTED_EXT
other => super::map_host_device_oom_and_lost_err(other).into(),
});
}
};
let images =
unsafe { functor.get_swapchain_images(raw) }.map_err(super::map_host_device_oom_err)?;
// NOTE: It's important that we define at least images.len() wait
// semaphores, since we prospectively need to provide the call to
// acquire the next image with an unsignaled semaphore.
let surface_semaphores = (0..=images.len())
.map(|_| {
super::SwapchainImageSemaphores::new(&self.shared)
.map(Mutex::new)
.map(Arc::new)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(super::Swapchain {
raw,
raw_flags,
functor,
device: Arc::clone(&self.shared),
images,
config: config.clone(),
view_formats: wgt_view_formats,
surface_semaphores,
next_semaphore_index: 0,
next_present_time: None,
})
}
/// # Safety
///
/// - `vk_image` must be created respecting `desc`
/// - If `drop_callback` is [`None`], wgpu-hal will take ownership of `vk_image`. If
/// `drop_callback` is [`Some`], `vk_image` must be valid until the callback is called.
/// - If the `ImageCreateFlags` does not contain `MUTABLE_FORMAT`, the `view_formats` of `desc` must be empty.
pub unsafe fn texture_from_raw(
vk_image: vk::Image,
desc: &crate::TextureDescriptor,
drop_callback: Option<crate::DropCallback>,
) -> super::Texture {
let mut raw_flags = vk::ImageCreateFlags::empty();
let mut view_formats = vec![];
for tf in desc.view_formats.iter() {
if *tf == desc.format {
continue;
}
view_formats.push(*tf);
}
if !view_formats.is_empty() {
raw_flags |=
vk::ImageCreateFlags::MUTABLE_FORMAT | vk::ImageCreateFlags::EXTENDED_USAGE;
view_formats.push(desc.format)
}
if desc.format.is_multi_planar_format() {
raw_flags |= vk::ImageCreateFlags::MUTABLE_FORMAT;
}
let drop_guard = crate::DropGuard::from_option(drop_callback);
super::Texture {
raw: vk_image,
drop_guard,
external_memory: None,
block: None,
usage: desc.usage,
format: desc.format,
raw_flags: vk::ImageCreateFlags::empty(),
copy_size: desc.copy_extent(),
view_formats,
}
}
#[cfg(windows)]
fn find_memory_type_index(
&self,
type_bits_req: u32,
flags_req: vk::MemoryPropertyFlags,
) -> Option<usize> {
let mem_properties = unsafe {
self.shared
.instance
.raw
.get_physical_device_memory_properties(self.shared.physical_device)
};
for (i, mem_ty) in mem_properties.memory_types_as_slice().iter().enumerate() {
let types_bits = 1 << i;
let is_required_memory_type = type_bits_req & types_bits != 0;
let has_required_properties = mem_ty.property_flags & flags_req == flags_req;
if is_required_memory_type && has_required_properties {
return Some(i);
}
}
None
}
fn create_image_without_memory(
&self,
desc: &crate::TextureDescriptor,
external_memory_image_create_info: Option<&mut vk::ExternalMemoryImageCreateInfo>,
) -> Result<ImageWithoutMemory, crate::DeviceError> {
let copy_size = desc.copy_extent();
let mut raw_flags = vk::ImageCreateFlags::empty();
if desc.is_cube_compatible() {
raw_flags |= vk::ImageCreateFlags::CUBE_COMPATIBLE;
}
let original_format = self.shared.private_caps.map_texture_format(desc.format);
let mut vk_view_formats = vec![];
let mut wgt_view_formats = vec![];
if !desc.view_formats.is_empty() {
raw_flags |= vk::ImageCreateFlags::MUTABLE_FORMAT;
wgt_view_formats.clone_from(&desc.view_formats);
wgt_view_formats.push(desc.format);
if self.shared.private_caps.image_format_list {
vk_view_formats = desc
.view_formats
.iter()
.map(|f| self.shared.private_caps.map_texture_format(*f))
.collect();
vk_view_formats.push(original_format)
}
}
if desc.format.is_multi_planar_format() {
raw_flags |= vk::ImageCreateFlags::MUTABLE_FORMAT;
}
let mut vk_info = vk::ImageCreateInfo::default()
.flags(raw_flags)
.image_type(conv::map_texture_dimension(desc.dimension))
.format(original_format)
.extent(conv::map_copy_extent(&copy_size))
.mip_levels(desc.mip_level_count)
.array_layers(desc.array_layer_count())
.samples(vk::SampleCountFlags::from_raw(desc.sample_count))
.tiling(vk::ImageTiling::OPTIMAL)
.usage(conv::map_texture_usage(desc.usage))
.sharing_mode(vk::SharingMode::EXCLUSIVE)
.initial_layout(vk::ImageLayout::UNDEFINED);
let mut format_list_info = vk::ImageFormatListCreateInfo::default();
if !vk_view_formats.is_empty() {
format_list_info = format_list_info.view_formats(&vk_view_formats);
vk_info = vk_info.push_next(&mut format_list_info);
}
if let Some(ext_info) = external_memory_image_create_info {
vk_info = vk_info.push_next(ext_info);
}
let raw = unsafe { self.shared.raw.create_image(&vk_info, None) }.map_err(map_err)?;
fn map_err(err: vk::Result) -> crate::DeviceError {
// We don't use VK_EXT_image_compression_control
// VK_ERROR_COMPRESSION_EXHAUSTED_EXT
super::map_host_device_oom_and_ioca_err(err)
}
let req = unsafe { self.shared.raw.get_image_memory_requirements(raw) };
Ok(ImageWithoutMemory {
raw,
requirements: req,
copy_size,
view_formats: wgt_view_formats,
raw_flags,
})
}
/// # Safety
///
/// - Vulkan 1.1+ (or VK_KHR_external_memory)
/// - The `d3d11_shared_handle` must be valid and respecting `desc`
/// - `VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT` flag is used because we need to hold a reference to the handle
#[cfg(windows)]
pub unsafe fn texture_from_d3d11_shared_handle(
&self,
d3d11_shared_handle: windows::Win32::Foundation::HANDLE,
desc: &crate::TextureDescriptor,
) -> Result<super::Texture, crate::DeviceError> {
if !self.shared.private_caps.external_memory_win32 {
log::error!("VK_KHR_external_memory extension is required");
return Err(crate::DeviceError::ResourceCreationFailed);
}
let mut external_memory_image_info = vk::ExternalMemoryImageCreateInfo::default()
.handle_types(vk::ExternalMemoryHandleTypeFlags::D3D11_TEXTURE);
let image =
self.create_image_without_memory(desc, Some(&mut external_memory_image_info))?;
let mut import_memory_info = vk::ImportMemoryWin32HandleInfoKHR::default()
.handle_type(vk::ExternalMemoryHandleTypeFlags::D3D11_TEXTURE)
.handle(d3d11_shared_handle.0 as _);
let mem_type_index = self
.find_memory_type_index(
image.requirements.memory_type_bits,
vk::MemoryPropertyFlags::DEVICE_LOCAL,
)
.ok_or(crate::DeviceError::ResourceCreationFailed)?;
let memory_allocate_info = vk::MemoryAllocateInfo::default()
.allocation_size(image.requirements.size)
.memory_type_index(mem_type_index as _)
.push_next(&mut import_memory_info);
let memory = unsafe { self.shared.raw.allocate_memory(&memory_allocate_info, None) }
.map_err(super::map_host_device_oom_err)?;
unsafe { self.shared.raw.bind_image_memory(image.raw, memory, 0) }
.map_err(super::map_host_device_oom_err)?;
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(image.raw, label) };
}
self.counters.textures.add(1);
Ok(super::Texture {
raw: image.raw,
drop_guard: None,
external_memory: Some(memory),
block: None,
usage: desc.usage,
format: desc.format,
raw_flags: image.raw_flags,
copy_size: image.copy_size,
view_formats: image.view_formats,
})
}
/// # Safety
///
/// - `vk_buffer`'s memory must be managed by the caller
/// - Externally imported buffers can't be mapped by `wgpu`
pub unsafe fn buffer_from_raw(vk_buffer: vk::Buffer) -> super::Buffer {
super::Buffer {
raw: vk_buffer,
block: None,
}
}
fn create_shader_module_impl(
&self,
spv: &[u32],
) -> Result<vk::ShaderModule, crate::DeviceError> {
let vk_info = vk::ShaderModuleCreateInfo::default()
.flags(vk::ShaderModuleCreateFlags::empty())
.code(spv);
let raw = unsafe {
profiling::scope!("vkCreateShaderModule");
self.shared
.raw
.create_shader_module(&vk_info, None)
.map_err(map_err)?
};
fn map_err(err: vk::Result) -> crate::DeviceError {
// We don't use VK_NV_glsl_shader
// VK_ERROR_INVALID_SHADER_NV
super::map_host_device_oom_err(err)
}
Ok(raw)
}
fn compile_stage(
&self,
stage: &crate::ProgrammableStage<super::ShaderModule>,
naga_stage: naga::ShaderStage,
binding_map: &naga::back::spv::BindingMap,
) -> Result<CompiledStage, crate::PipelineError> {
let stage_flags = crate::auxil::map_naga_stage(naga_stage);
let vk_module = match *stage.module {
super::ShaderModule::Raw(raw) => raw,
super::ShaderModule::Intermediate {
ref naga_shader,
runtime_checks,
} => {
let pipeline_options = naga::back::spv::PipelineOptions {
entry_point: stage.entry_point.to_string(),
shader_stage: naga_stage,
};
let needs_temp_options = !runtime_checks
|| !binding_map.is_empty()
|| naga_shader.debug_source.is_some()
|| !stage.zero_initialize_workgroup_memory;
let mut temp_options;
let options = if needs_temp_options {
temp_options = self.naga_options.clone();
if !runtime_checks {
temp_options.bounds_check_policies = naga::proc::BoundsCheckPolicies {
index: naga::proc::BoundsCheckPolicy::Unchecked,
buffer: naga::proc::BoundsCheckPolicy::Unchecked,
image_load: naga::proc::BoundsCheckPolicy::Unchecked,
binding_array: naga::proc::BoundsCheckPolicy::Unchecked,
};
}
if !binding_map.is_empty() {
temp_options.binding_map = binding_map.clone();
}
if let Some(ref debug) = naga_shader.debug_source {
temp_options.debug_info = Some(naga::back::spv::DebugInfo {
source_code: &debug.source_code,
file_name: debug.file_name.as_ref().as_ref(),
language: naga::back::spv::SourceLanguage::WGSL,
})
}
if !stage.zero_initialize_workgroup_memory {
temp_options.zero_initialize_workgroup_memory =
naga::back::spv::ZeroInitializeWorkgroupMemoryMode::None;
}
&temp_options
} else {
&self.naga_options
};
let (module, info) = naga::back::pipeline_constants::process_overrides(
&naga_shader.module,
&naga_shader.info,
stage.constants,
)
.map_err(|e| {
crate::PipelineError::PipelineConstants(stage_flags, format!("{e}"))
})?;
let spv = {
profiling::scope!("naga::spv::write_vec");
naga::back::spv::write_vec(&module, &info, options, Some(&pipeline_options))
}
.map_err(|e| crate::PipelineError::Linkage(stage_flags, format!("{e}")))?;
self.create_shader_module_impl(&spv)?
}
};
let mut flags = vk::PipelineShaderStageCreateFlags::empty();
if self.shared.features.contains(wgt::Features::SUBGROUP) {
flags |= vk::PipelineShaderStageCreateFlags::ALLOW_VARYING_SUBGROUP_SIZE
}
let entry_point = CString::new(stage.entry_point).unwrap();
let mut create_info = vk::PipelineShaderStageCreateInfo::default()
.flags(flags)
.stage(conv::map_shader_stage(stage_flags))
.module(vk_module);
// Circumvent struct lifetime check because of a self-reference inside CompiledStage
create_info.p_name = entry_point.as_ptr();
Ok(CompiledStage {
create_info,
_entry_point: entry_point,
temp_raw_module: match *stage.module {
super::ShaderModule::Raw(_) => None,
super::ShaderModule::Intermediate { .. } => Some(vk_module),
},
})
}
/// Returns the queue family index of the device's internal queue.
///
/// This is useful for constructing memory barriers needed for queue family ownership transfer when
/// external memory is involved (from/to `VK_QUEUE_FAMILY_EXTERNAL_KHR` and `VK_QUEUE_FAMILY_FOREIGN_EXT`
/// for example).
pub fn queue_family_index(&self) -> u32 {
self.shared.family_index
}
pub fn queue_index(&self) -> u32 {
self.shared.queue_index
}
pub fn raw_device(&self) -> &ash::Device {
&self.shared.raw
}
pub fn raw_physical_device(&self) -> vk::PhysicalDevice {
self.shared.physical_device
}
pub fn raw_queue(&self) -> vk::Queue {
self.shared.raw_queue
}
pub fn enabled_device_extensions(&self) -> &[&'static CStr] {
&self.shared.enabled_extensions
}
pub fn shared_instance(&self) -> &super::InstanceShared {
&self.shared.instance
}
}
impl crate::Device for super::Device {
type A = super::Api;
unsafe fn create_buffer(
&self,
desc: &crate::BufferDescriptor,
) -> Result<super::Buffer, crate::DeviceError> {
let vk_info = vk::BufferCreateInfo::default()
.size(desc.size)
.usage(conv::map_buffer_usage(desc.usage))
.sharing_mode(vk::SharingMode::EXCLUSIVE);
let raw = unsafe {
self.shared
.raw
.create_buffer(&vk_info, None)
.map_err(super::map_host_device_oom_and_ioca_err)?
};
let req = unsafe { self.shared.raw.get_buffer_memory_requirements(raw) };
let mut alloc_usage = if desc
.usage
.intersects(crate::BufferUses::MAP_READ | crate::BufferUses::MAP_WRITE)
{
let mut flags = gpu_alloc::UsageFlags::HOST_ACCESS;
//TODO: find a way to use `crate::MemoryFlags::PREFER_COHERENT`
flags.set(
gpu_alloc::UsageFlags::DOWNLOAD,
desc.usage.contains(crate::BufferUses::MAP_READ),
);
flags.set(
gpu_alloc::UsageFlags::UPLOAD,
desc.usage.contains(crate::BufferUses::MAP_WRITE),
);
flags
} else {
gpu_alloc::UsageFlags::FAST_DEVICE_ACCESS
};
alloc_usage.set(
gpu_alloc::UsageFlags::TRANSIENT,
desc.memory_flags.contains(crate::MemoryFlags::TRANSIENT),
);
let alignment_mask = req.alignment - 1;
let block = unsafe {
self.mem_allocator.lock().alloc(
&*self.shared,
gpu_alloc::Request {
size: req.size,
align_mask: alignment_mask,
usage: alloc_usage,
memory_types: req.memory_type_bits & self.valid_ash_memory_types,
},
)?
};
unsafe {
self.shared
.raw
.bind_buffer_memory(raw, *block.memory(), block.offset())
.map_err(super::map_host_device_oom_and_ioca_err)?
};
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
self.counters.buffer_memory.add(block.size() as isize);
self.counters.buffers.add(1);
Ok(super::Buffer {
raw,
block: Some(Mutex::new(block)),
})
}
unsafe fn destroy_buffer(&self, buffer: super::Buffer) {
unsafe { self.shared.raw.destroy_buffer(buffer.raw, None) };
if let Some(block) = buffer.block {
let block = block.into_inner();
self.counters.buffer_memory.sub(block.size() as isize);
unsafe { self.mem_allocator.lock().dealloc(&*self.shared, block) };
}
self.counters.buffers.sub(1);
}
unsafe fn add_raw_buffer(&self, _buffer: &super::Buffer) {
self.counters.buffers.add(1);
}
unsafe fn map_buffer(
&self,
buffer: &super::Buffer,
range: crate::MemoryRange,
) -> Result<crate::BufferMapping, crate::DeviceError> {
if let Some(ref block) = buffer.block {
let size = range.end - range.start;
let mut block = block.lock();
let ptr = unsafe { block.map(&*self.shared, range.start, size as usize)? };
let is_coherent = block
.props()
.contains(gpu_alloc::MemoryPropertyFlags::HOST_COHERENT);
Ok(crate::BufferMapping { ptr, is_coherent })
} else {
crate::hal_usage_error("tried to map external buffer")
}
}
unsafe fn unmap_buffer(&self, buffer: &super::Buffer) {
if let Some(ref block) = buffer.block {
unsafe { block.lock().unmap(&*self.shared) };
} else {
crate::hal_usage_error("tried to unmap external buffer")
}
}
unsafe fn flush_mapped_ranges<I>(&self, buffer: &super::Buffer, ranges: I)
where
I: Iterator<Item = crate::MemoryRange>,
{
if let Some(vk_ranges) = self.shared.make_memory_ranges(buffer, ranges) {
unsafe {
self.shared
.raw
.flush_mapped_memory_ranges(
&smallvec::SmallVec::<[vk::MappedMemoryRange; 32]>::from_iter(vk_ranges),
)
}
.unwrap();
}
}
unsafe fn invalidate_mapped_ranges<I>(&self, buffer: &super::Buffer, ranges: I)
where
I: Iterator<Item = crate::MemoryRange>,
{
if let Some(vk_ranges) = self.shared.make_memory_ranges(buffer, ranges) {
unsafe {
self.shared
.raw
.invalidate_mapped_memory_ranges(&smallvec::SmallVec::<
[vk::MappedMemoryRange; 32],
>::from_iter(vk_ranges))
}
.unwrap();
}
}
unsafe fn create_texture(
&self,
desc: &crate::TextureDescriptor,
) -> Result<super::Texture, crate::DeviceError> {
let image = self.create_image_without_memory(desc, None)?;
let block = unsafe {
self.mem_allocator.lock().alloc(
&*self.shared,
gpu_alloc::Request {
size: image.requirements.size,
align_mask: image.requirements.alignment - 1,
usage: gpu_alloc::UsageFlags::FAST_DEVICE_ACCESS,
memory_types: image.requirements.memory_type_bits & self.valid_ash_memory_types,
},
)?
};
self.counters.texture_memory.add(block.size() as isize);
unsafe {
self.shared
.raw
.bind_image_memory(image.raw, *block.memory(), block.offset())
.map_err(super::map_host_device_oom_err)?
};
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(image.raw, label) };
}
self.counters.textures.add(1);
Ok(super::Texture {
raw: image.raw,
drop_guard: None,
external_memory: None,
block: Some(block),
usage: desc.usage,
format: desc.format,
raw_flags: image.raw_flags,
copy_size: image.copy_size,
view_formats: image.view_formats,
})
}
unsafe fn destroy_texture(&self, texture: super::Texture) {
if texture.drop_guard.is_none() {
unsafe { self.shared.raw.destroy_image(texture.raw, None) };
}
if let Some(memory) = texture.external_memory {
unsafe { self.shared.raw.free_memory(memory, None) };
}
if let Some(block) = texture.block {
self.counters.texture_memory.sub(block.size() as isize);
unsafe { self.mem_allocator.lock().dealloc(&*self.shared, block) };
}
self.counters.textures.sub(1);
}
unsafe fn add_raw_texture(&self, _texture: &super::Texture) {
self.counters.textures.add(1);
}
unsafe fn create_texture_view(
&self,
texture: &super::Texture,
desc: &crate::TextureViewDescriptor,
) -> Result<super::TextureView, crate::DeviceError> {
let subresource_range = conv::map_subresource_range(&desc.range, texture.format);
let mut vk_info = vk::ImageViewCreateInfo::default()
.flags(vk::ImageViewCreateFlags::empty())
.image(texture.raw)
.view_type(conv::map_view_dimension(desc.dimension))
.format(self.shared.private_caps.map_texture_format(desc.format))
.subresource_range(subresource_range);
let layers =
NonZeroU32::new(subresource_range.layer_count).expect("Unexpected zero layer count");
let mut image_view_info;
let view_usage = if self.shared.private_caps.image_view_usage && !desc.usage.is_empty() {
image_view_info =
vk::ImageViewUsageCreateInfo::default().usage(conv::map_texture_usage(desc.usage));
vk_info = vk_info.push_next(&mut image_view_info);
desc.usage
} else {
texture.usage
};
let raw = unsafe { self.shared.raw.create_image_view(&vk_info, None) }
.map_err(super::map_host_device_oom_and_ioca_err)?;
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
let attachment = super::FramebufferAttachment {
raw: if self.shared.private_caps.imageless_framebuffers {
vk::ImageView::null()
} else {
raw
},
raw_image_flags: texture.raw_flags,
view_usage,
view_format: desc.format,
raw_view_formats: texture
.view_formats
.iter()
.map(|tf| self.shared.private_caps.map_texture_format(*tf))
.collect(),
};
self.counters.texture_views.add(1);
Ok(super::TextureView {
raw,
layers,
attachment,
})
}
unsafe fn destroy_texture_view(&self, view: super::TextureView) {
if !self.shared.private_caps.imageless_framebuffers {
let mut fbuf_lock = self.shared.framebuffers.lock();
for (key, &raw_fbuf) in fbuf_lock.iter() {
if key.attachments.iter().any(|at| at.raw == view.raw) {
unsafe { self.shared.raw.destroy_framebuffer(raw_fbuf, None) };
}
}
fbuf_lock.retain(|key, _| !key.attachments.iter().any(|at| at.raw == view.raw));
}
unsafe { self.shared.raw.destroy_image_view(view.raw, None) };
self.counters.texture_views.sub(1);
}
unsafe fn create_sampler(
&self,
desc: &crate::SamplerDescriptor,
) -> Result<super::Sampler, crate::DeviceError> {
let mut vk_info = vk::SamplerCreateInfo::default()
.flags(vk::SamplerCreateFlags::empty())
.mag_filter(conv::map_filter_mode(desc.mag_filter))
.min_filter(conv::map_filter_mode(desc.min_filter))
.mipmap_mode(conv::map_mip_filter_mode(desc.mipmap_filter))
.address_mode_u(conv::map_address_mode(desc.address_modes[0]))
.address_mode_v(conv::map_address_mode(desc.address_modes[1]))
.address_mode_w(conv::map_address_mode(desc.address_modes[2]))
.min_lod(desc.lod_clamp.start)
.max_lod(desc.lod_clamp.end);
if let Some(fun) = desc.compare {
vk_info = vk_info
.compare_enable(true)
.compare_op(conv::map_comparison(fun));
}
if desc.anisotropy_clamp != 1 {
// We only enable anisotropy if it is supported, and wgpu-hal interface guarantees
// the clamp is in the range [1, 16] which is always supported if anisotropy is.
vk_info = vk_info
.anisotropy_enable(true)
.max_anisotropy(desc.anisotropy_clamp as f32);
}
if let Some(color) = desc.border_color {
vk_info = vk_info.border_color(conv::map_border_color(color));
}
let raw = unsafe {
self.shared
.raw
.create_sampler(&vk_info, None)
.map_err(super::map_host_device_oom_and_ioca_err)?
};
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
self.counters.samplers.add(1);
Ok(super::Sampler { raw })
}
unsafe fn destroy_sampler(&self, sampler: super::Sampler) {
unsafe { self.shared.raw.destroy_sampler(sampler.raw, None) };
self.counters.samplers.sub(1);
}
unsafe fn create_command_encoder(
&self,
desc: &crate::CommandEncoderDescriptor<super::Queue>,
) -> Result<super::CommandEncoder, crate::DeviceError> {
let vk_info = vk::CommandPoolCreateInfo::default()
.queue_family_index(desc.queue.family_index)
.flags(vk::CommandPoolCreateFlags::TRANSIENT);
let raw = unsafe {
self.shared
.raw
.create_command_pool(&vk_info, None)
.map_err(super::map_host_device_oom_err)?
};
self.counters.command_encoders.add(1);
Ok(super::CommandEncoder {
raw,
device: Arc::clone(&self.shared),
active: vk::CommandBuffer::null(),
bind_point: vk::PipelineBindPoint::default(),
temp: super::Temp::default(),
free: Vec::new(),
discarded: Vec::new(),
rpass_debug_marker_active: false,
end_of_pass_timer_query: None,
counters: Arc::clone(&self.counters),
})
}
unsafe fn create_bind_group_layout(
&self,
desc: &crate::BindGroupLayoutDescriptor,
) -> Result<super::BindGroupLayout, crate::DeviceError> {
let mut desc_count = gpu_descriptor::DescriptorTotalCount::default();
let mut types = Vec::new();
for entry in desc.entries {
let count = entry.count.map_or(1, |c| c.get());
if entry.binding as usize >= types.len() {
types.resize(
entry.binding as usize + 1,
(vk::DescriptorType::INPUT_ATTACHMENT, 0),
);
}
types[entry.binding as usize] = (
conv::map_binding_type(entry.ty),
entry.count.map_or(1, |c| c.get()),
);
match entry.ty {
wgt::BindingType::Buffer {
ty,
has_dynamic_offset,
..
} => match ty {
wgt::BufferBindingType::Uniform => {
if has_dynamic_offset {
desc_count.uniform_buffer_dynamic += count;
} else {
desc_count.uniform_buffer += count;
}
}
wgt::BufferBindingType::Storage { .. } => {
if has_dynamic_offset {
desc_count.storage_buffer_dynamic += count;
} else {
desc_count.storage_buffer += count;
}
}
},
wgt::BindingType::Sampler { .. } => {
desc_count.sampler += count;
}
wgt::BindingType::Texture { .. } => {
desc_count.sampled_image += count;
}
wgt::BindingType::StorageTexture { .. } => {
desc_count.storage_image += count;
}
wgt::BindingType::AccelerationStructure => {
desc_count.acceleration_structure += count;
}
}
}
//Note: not bothering with on stack array here as it's low frequency
let vk_bindings = desc
.entries
.iter()
.map(|entry| vk::DescriptorSetLayoutBinding {
binding: entry.binding,
descriptor_type: types[entry.binding as usize].0,
descriptor_count: types[entry.binding as usize].1,
stage_flags: conv::map_shader_stage(entry.visibility),
p_immutable_samplers: ptr::null(),
_marker: Default::default(),
})
.collect::<Vec<_>>();
let vk_info = vk::DescriptorSetLayoutCreateInfo::default().bindings(&vk_bindings);
let binding_arrays = desc
.entries
.iter()
.enumerate()
.filter_map(|(idx, entry)| entry.count.map(|count| (idx as u32, count)))
.collect();
let mut binding_flag_info;
let binding_flag_vec;
let partially_bound = desc
.flags
.contains(crate::BindGroupLayoutFlags::PARTIALLY_BOUND);
let vk_info = if partially_bound {
binding_flag_vec = desc
.entries
.iter()
.map(|entry| {
let mut flags = vk::DescriptorBindingFlags::empty();
if partially_bound && entry.count.is_some() {
flags |= vk::DescriptorBindingFlags::PARTIALLY_BOUND;
}
flags
})
.collect::<Vec<_>>();
binding_flag_info = vk::DescriptorSetLayoutBindingFlagsCreateInfo::default()
.binding_flags(&binding_flag_vec);
vk_info.push_next(&mut binding_flag_info)
} else {
vk_info
};
let raw = unsafe {
self.shared
.raw
.create_descriptor_set_layout(&vk_info, None)
.map_err(super::map_host_device_oom_err)?
};
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
self.counters.bind_group_layouts.add(1);
Ok(super::BindGroupLayout {
raw,
desc_count,
types: types.into_boxed_slice(),
binding_arrays,
})
}
unsafe fn destroy_bind_group_layout(&self, bg_layout: super::BindGroupLayout) {
unsafe {
self.shared
.raw
.destroy_descriptor_set_layout(bg_layout.raw, None)
};
self.counters.bind_group_layouts.sub(1);
}
unsafe fn create_pipeline_layout(
&self,
desc: &crate::PipelineLayoutDescriptor<super::BindGroupLayout>,
) -> Result<super::PipelineLayout, crate::DeviceError> {
//Note: not bothering with on stack array here as it's low frequency
let vk_set_layouts = desc
.bind_group_layouts
.iter()
.map(|bgl| bgl.raw)
.collect::<Vec<_>>();
let vk_push_constant_ranges = desc
.push_constant_ranges
.iter()
.map(|pcr| vk::PushConstantRange {
stage_flags: conv::map_shader_stage(pcr.stages),
offset: pcr.range.start,
size: pcr.range.end - pcr.range.start,
})
.collect::<Vec<_>>();
let vk_info = vk::PipelineLayoutCreateInfo::default()
.flags(vk::PipelineLayoutCreateFlags::empty())
.set_layouts(&vk_set_layouts)
.push_constant_ranges(&vk_push_constant_ranges);
let raw = {
profiling::scope!("vkCreatePipelineLayout");
unsafe {
self.shared
.raw
.create_pipeline_layout(&vk_info, None)
.map_err(super::map_host_device_oom_err)?
}
};
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
let mut binding_arrays = BTreeMap::new();
for (group, &layout) in desc.bind_group_layouts.iter().enumerate() {
for &(binding, binding_array_size) in &layout.binding_arrays {
binding_arrays.insert(
naga::ResourceBinding {
group: group as u32,
binding,
},
naga::back::spv::BindingInfo {
binding_array_size: Some(binding_array_size.get()),
},
);
}
}
self.counters.pipeline_layouts.add(1);
Ok(super::PipelineLayout {
raw,
binding_arrays,
})
}
unsafe fn destroy_pipeline_layout(&self, pipeline_layout: super::PipelineLayout) {
unsafe {
self.shared
.raw
.destroy_pipeline_layout(pipeline_layout.raw, None)
};
self.counters.pipeline_layouts.sub(1);
}
unsafe fn create_bind_group(
&self,
desc: &crate::BindGroupDescriptor<
super::BindGroupLayout,
super::Buffer,
super::Sampler,
super::TextureView,
super::AccelerationStructure,
>,
) -> Result<super::BindGroup, crate::DeviceError> {
let mut vk_sets = unsafe {
self.desc_allocator.lock().allocate(
&*self.shared,
&desc.layout.raw,
gpu_descriptor::DescriptorSetLayoutCreateFlags::empty(),
&desc.layout.desc_count,
1,
)?
};
let set = vk_sets.pop().unwrap();
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(*set.raw(), label) };
}
/// Helper for splitting off and initializing a given number of elements on a pre-allocated
/// stack, based on items returned from an [`ExactSizeIterator`]. Typically created from a
/// [`MaybeUninit`] slice (see [`Vec::spare_capacity_mut()`]).
/// The updated [`ExtensionStack`] of remaining uninitialized elements is returned, safely
/// representing that the initialized and remaining elements are two independent mutable
/// borrows.
struct ExtendStack<'a, T> {
remainder: &'a mut [MaybeUninit<T>],
}
impl<'a, T> ExtendStack<'a, T> {
fn from_vec_capacity(vec: &'a mut Vec<T>) -> Self {
Self {
remainder: vec.spare_capacity_mut(),
}
}
fn extend_one(self, value: T) -> (Self, &'a mut T) {
let (to_init, remainder) = self.remainder.split_first_mut().unwrap();
let init = to_init.write(value);
(Self { remainder }, init)
}
fn extend(
self,
iter: impl IntoIterator<Item = T> + ExactSizeIterator,
) -> (Self, &'a mut [T]) {
let (to_init, remainder) = self.remainder.split_at_mut(iter.len());
for (value, to_init) in iter.into_iter().zip(to_init.iter_mut()) {
to_init.write(value);
}
// we can't use the safe (yet unstable) MaybeUninit::write_slice() here because of having an iterator to write
let init = {
// SAFETY: The loop above has initialized exactly as many items as to_init is
// long, so it is safe to cast away the MaybeUninit<T> wrapper into T.
// Additional safety docs from unstable slice_assume_init_mut
// SAFETY: similar to safety notes for `slice_get_ref`, but we have a
// mutable reference which is also guaranteed to be valid for writes.
unsafe { mem::transmute::<&mut [MaybeUninit<T>], &mut [T]>(to_init) }
};
(Self { remainder }, init)
}
}
let mut writes = Vec::with_capacity(desc.entries.len());
let mut buffer_infos = Vec::with_capacity(desc.buffers.len());
let mut buffer_infos = ExtendStack::from_vec_capacity(&mut buffer_infos);
let mut image_infos = Vec::with_capacity(desc.samplers.len() + desc.textures.len());
let mut image_infos = ExtendStack::from_vec_capacity(&mut image_infos);
// TODO: This length could be reduced to just the number of top-level acceleration
// structure bindings, where multiple consecutive TLAS bindings that are set via
// one `WriteDescriptorSet` count towards one "info" struct, not the total number of
// acceleration structure bindings to write:
let mut acceleration_structure_infos =
Vec::with_capacity(desc.acceleration_structures.len());
let mut acceleration_structure_infos =
ExtendStack::from_vec_capacity(&mut acceleration_structure_infos);
let mut raw_acceleration_structures =
Vec::with_capacity(desc.acceleration_structures.len());
let mut raw_acceleration_structures =
ExtendStack::from_vec_capacity(&mut raw_acceleration_structures);
for entry in desc.entries {
let (ty, size) = desc.layout.types[entry.binding as usize];
if size == 0 {
continue; // empty slot
}
let mut write = vk::WriteDescriptorSet::default()
.dst_set(*set.raw())
.dst_binding(entry.binding)
.descriptor_type(ty);
write = match ty {
vk::DescriptorType::SAMPLER => {
let start = entry.resource_index;
let end = start + entry.count;
let local_image_infos;
(image_infos, local_image_infos) =
image_infos.extend(desc.samplers[start as usize..end as usize].iter().map(
|sampler| vk::DescriptorImageInfo::default().sampler(sampler.raw),
));
write.image_info(local_image_infos)
}
vk::DescriptorType::SAMPLED_IMAGE | vk::DescriptorType::STORAGE_IMAGE => {
let start = entry.resource_index;
let end = start + entry.count;
let local_image_infos;
(image_infos, local_image_infos) =
image_infos.extend(desc.textures[start as usize..end as usize].iter().map(
|binding| {
let layout = conv::derive_image_layout(
binding.usage,
binding.view.attachment.view_format,
);
vk::DescriptorImageInfo::default()
.image_view(binding.view.raw)
.image_layout(layout)
},
));
write.image_info(local_image_infos)
}
vk::DescriptorType::UNIFORM_BUFFER
| vk::DescriptorType::UNIFORM_BUFFER_DYNAMIC
| vk::DescriptorType::STORAGE_BUFFER
| vk::DescriptorType::STORAGE_BUFFER_DYNAMIC => {
let start = entry.resource_index;
let end = start + entry.count;
let local_buffer_infos;
(buffer_infos, local_buffer_infos) =
buffer_infos.extend(desc.buffers[start as usize..end as usize].iter().map(
|binding| {
vk::DescriptorBufferInfo::default()
.buffer(binding.buffer.raw)
.offset(binding.offset)
.range(
binding.size.map_or(vk::WHOLE_SIZE, wgt::BufferSize::get),
)
},
));
write.buffer_info(local_buffer_infos)
}
vk::DescriptorType::ACCELERATION_STRUCTURE_KHR => {
let start = entry.resource_index;
let end = start + entry.count;
let local_raw_acceleration_structures;
(
raw_acceleration_structures,
local_raw_acceleration_structures,
) = raw_acceleration_structures.extend(
desc.acceleration_structures[start as usize..end as usize]
.iter()
.map(|acceleration_structure| acceleration_structure.raw),
);
let local_acceleration_structure_infos;
(
acceleration_structure_infos,
local_acceleration_structure_infos,
) = acceleration_structure_infos.extend_one(
vk::WriteDescriptorSetAccelerationStructureKHR::default()
.acceleration_structures(local_raw_acceleration_structures),
);
write
.descriptor_count(entry.count)
.push_next(local_acceleration_structure_infos)
}
_ => unreachable!(),
};
writes.push(write);
}
unsafe { self.shared.raw.update_descriptor_sets(&writes, &[]) };
self.counters.bind_groups.add(1);
Ok(super::BindGroup { set })
}
unsafe fn destroy_bind_group(&self, group: super::BindGroup) {
unsafe {
self.desc_allocator
.lock()
.free(&*self.shared, Some(group.set))
};
self.counters.bind_groups.sub(1);
}
unsafe fn create_shader_module(
&self,
desc: &crate::ShaderModuleDescriptor,
shader: crate::ShaderInput,
) -> Result<super::ShaderModule, crate::ShaderError> {
let spv = match shader {
crate::ShaderInput::Naga(naga_shader) => {
if self
.shared
.workarounds
.contains(super::Workarounds::SEPARATE_ENTRY_POINTS)
|| !naga_shader.module.overrides.is_empty()
{
return Ok(super::ShaderModule::Intermediate {
naga_shader,
runtime_checks: desc.runtime_checks,
});
}
let mut naga_options = self.naga_options.clone();
naga_options.debug_info =
naga_shader
.debug_source
.as_ref()
.map(|d| naga::back::spv::DebugInfo {
source_code: d.source_code.as_ref(),
file_name: d.file_name.as_ref().as_ref(),
language: naga::back::spv::SourceLanguage::WGSL,
});
if !desc.runtime_checks {
naga_options.bounds_check_policies = naga::proc::BoundsCheckPolicies {
index: naga::proc::BoundsCheckPolicy::Unchecked,
buffer: naga::proc::BoundsCheckPolicy::Unchecked,
image_load: naga::proc::BoundsCheckPolicy::Unchecked,
binding_array: naga::proc::BoundsCheckPolicy::Unchecked,
};
}
Cow::Owned(
naga::back::spv::write_vec(
&naga_shader.module,
&naga_shader.info,
&naga_options,
None,
)
.map_err(|e| crate::ShaderError::Compilation(format!("{e}")))?,
)
}
crate::ShaderInput::SpirV(spv) => Cow::Borrowed(spv),
};
let raw = self.create_shader_module_impl(&spv)?;
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
self.counters.shader_modules.add(1);
Ok(super::ShaderModule::Raw(raw))
}
unsafe fn destroy_shader_module(&self, module: super::ShaderModule) {
match module {
super::ShaderModule::Raw(raw) => {
unsafe { self.shared.raw.destroy_shader_module(raw, None) };
}
super::ShaderModule::Intermediate { .. } => {}
}
self.counters.shader_modules.sub(1);
}
unsafe fn create_render_pipeline(
&self,
desc: &crate::RenderPipelineDescriptor<
super::PipelineLayout,
super::ShaderModule,
super::PipelineCache,
>,
) -> Result<super::RenderPipeline, crate::PipelineError> {
let dynamic_states = [
vk::DynamicState::VIEWPORT,
vk::DynamicState::SCISSOR,
vk::DynamicState::BLEND_CONSTANTS,
vk::DynamicState::STENCIL_REFERENCE,
];
let mut compatible_rp_key = super::RenderPassKey {
sample_count: desc.multisample.count,
multiview: desc.multiview,
..Default::default()
};
let mut stages = ArrayVec::<_, { crate::MAX_CONCURRENT_SHADER_STAGES }>::new();
let mut vertex_buffers = Vec::with_capacity(desc.vertex_buffers.len());
let mut vertex_attributes = Vec::new();
for (i, vb) in desc.vertex_buffers.iter().enumerate() {
vertex_buffers.push(vk::VertexInputBindingDescription {
binding: i as u32,
stride: vb.array_stride as u32,
input_rate: match vb.step_mode {
wgt::VertexStepMode::Vertex => vk::VertexInputRate::VERTEX,
wgt::VertexStepMode::Instance => vk::VertexInputRate::INSTANCE,
},
});
for at in vb.attributes {
vertex_attributes.push(vk::VertexInputAttributeDescription {
location: at.shader_location,
binding: i as u32,
format: conv::map_vertex_format(at.format),
offset: at.offset as u32,
});
}
}
let vk_vertex_input = vk::PipelineVertexInputStateCreateInfo::default()
.vertex_binding_descriptions(&vertex_buffers)
.vertex_attribute_descriptions(&vertex_attributes);
let vk_input_assembly = vk::PipelineInputAssemblyStateCreateInfo::default()
.topology(conv::map_topology(desc.primitive.topology))
.primitive_restart_enable(desc.primitive.strip_index_format.is_some());
let compiled_vs = self.compile_stage(
&desc.vertex_stage,
naga::ShaderStage::Vertex,
&desc.layout.binding_arrays,
)?;
stages.push(compiled_vs.create_info);
let compiled_fs = match desc.fragment_stage {
Some(ref stage) => {
let compiled = self.compile_stage(
stage,
naga::ShaderStage::Fragment,
&desc.layout.binding_arrays,
)?;
stages.push(compiled.create_info);
Some(compiled)
}
None => None,
};
let mut vk_rasterization = vk::PipelineRasterizationStateCreateInfo::default()
.polygon_mode(conv::map_polygon_mode(desc.primitive.polygon_mode))
.front_face(conv::map_front_face(desc.primitive.front_face))
.line_width(1.0)
.depth_clamp_enable(desc.primitive.unclipped_depth);
if let Some(face) = desc.primitive.cull_mode {
vk_rasterization = vk_rasterization.cull_mode(conv::map_cull_face(face))
}
let mut vk_rasterization_conservative_state =
vk::PipelineRasterizationConservativeStateCreateInfoEXT::default()
.conservative_rasterization_mode(
vk::ConservativeRasterizationModeEXT::OVERESTIMATE,
);
if desc.primitive.conservative {
vk_rasterization = vk_rasterization.push_next(&mut vk_rasterization_conservative_state);
}
let mut vk_depth_stencil = vk::PipelineDepthStencilStateCreateInfo::default();
if let Some(ref ds) = desc.depth_stencil {
let vk_format = self.shared.private_caps.map_texture_format(ds.format);
let vk_layout = if ds.is_read_only(desc.primitive.cull_mode) {
vk::ImageLayout::DEPTH_STENCIL_READ_ONLY_OPTIMAL
} else {
vk::ImageLayout::DEPTH_STENCIL_ATTACHMENT_OPTIMAL
};
compatible_rp_key.depth_stencil = Some(super::DepthStencilAttachmentKey {
base: super::AttachmentKey::compatible(vk_format, vk_layout),
stencil_ops: crate::AttachmentOps::all(),
});
if ds.is_depth_enabled() {
vk_depth_stencil = vk_depth_stencil
.depth_test_enable(true)
.depth_write_enable(ds.depth_write_enabled)
.depth_compare_op(conv::map_comparison(ds.depth_compare));
}
if ds.stencil.is_enabled() {
let s = &ds.stencil;
let front = conv::map_stencil_face(&s.front, s.read_mask, s.write_mask);
let back = conv::map_stencil_face(&s.back, s.read_mask, s.write_mask);
vk_depth_stencil = vk_depth_stencil
.stencil_test_enable(true)
.front(front)
.back(back);
}
if ds.bias.is_enabled() {
vk_rasterization = vk_rasterization
.depth_bias_enable(true)
.depth_bias_constant_factor(ds.bias.constant as f32)
.depth_bias_clamp(ds.bias.clamp)
.depth_bias_slope_factor(ds.bias.slope_scale);
}
}
let vk_viewport = vk::PipelineViewportStateCreateInfo::default()
.flags(vk::PipelineViewportStateCreateFlags::empty())
.scissor_count(1)
.viewport_count(1);
let vk_sample_mask = [
desc.multisample.mask as u32,
(desc.multisample.mask >> 32) as u32,
];
let vk_multisample = vk::PipelineMultisampleStateCreateInfo::default()
.rasterization_samples(vk::SampleCountFlags::from_raw(desc.multisample.count))
.alpha_to_coverage_enable(desc.multisample.alpha_to_coverage_enabled)
.sample_mask(&vk_sample_mask);
let mut vk_attachments = Vec::with_capacity(desc.color_targets.len());
for cat in desc.color_targets {
let (key, attarchment) = if let Some(cat) = cat.as_ref() {
let mut vk_attachment = vk::PipelineColorBlendAttachmentState::default()
.color_write_mask(vk::ColorComponentFlags::from_raw(cat.write_mask.bits()));
if let Some(ref blend) = cat.blend {
let (color_op, color_src, color_dst) = conv::map_blend_component(&blend.color);
let (alpha_op, alpha_src, alpha_dst) = conv::map_blend_component(&blend.alpha);
vk_attachment = vk_attachment
.blend_enable(true)
.color_blend_op(color_op)
.src_color_blend_factor(color_src)
.dst_color_blend_factor(color_dst)
.alpha_blend_op(alpha_op)
.src_alpha_blend_factor(alpha_src)
.dst_alpha_blend_factor(alpha_dst);
}
let vk_format = self.shared.private_caps.map_texture_format(cat.format);
(
Some(super::ColorAttachmentKey {
base: super::AttachmentKey::compatible(
vk_format,
vk::ImageLayout::COLOR_ATTACHMENT_OPTIMAL,
),
resolve: None,
}),
vk_attachment,
)
} else {
(None, vk::PipelineColorBlendAttachmentState::default())
};
compatible_rp_key.colors.push(key);
vk_attachments.push(attarchment);
}
let vk_color_blend =
vk::PipelineColorBlendStateCreateInfo::default().attachments(&vk_attachments);
let vk_dynamic_state =
vk::PipelineDynamicStateCreateInfo::default().dynamic_states(&dynamic_states);
let raw_pass = self
.shared
.make_render_pass(compatible_rp_key)
.map_err(crate::DeviceError::from)?;
let vk_infos = [{
vk::GraphicsPipelineCreateInfo::default()
.layout(desc.layout.raw)
.stages(&stages)
.vertex_input_state(&vk_vertex_input)
.input_assembly_state(&vk_input_assembly)
.rasterization_state(&vk_rasterization)
.viewport_state(&vk_viewport)
.multisample_state(&vk_multisample)
.depth_stencil_state(&vk_depth_stencil)
.color_blend_state(&vk_color_blend)
.dynamic_state(&vk_dynamic_state)
.render_pass(raw_pass)
}];
let pipeline_cache = desc
.cache
.map(|it| it.raw)
.unwrap_or(vk::PipelineCache::null());
let mut raw_vec = {
profiling::scope!("vkCreateGraphicsPipelines");
unsafe {
self.shared
.raw
.create_graphics_pipelines(pipeline_cache, &vk_infos, None)
.map_err(|(_, e)| super::map_pipeline_err(e))
}?
};
let raw = raw_vec.pop().unwrap();
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
if let Some(raw_module) = compiled_vs.temp_raw_module {
unsafe { self.shared.raw.destroy_shader_module(raw_module, None) };
}
if let Some(CompiledStage {
temp_raw_module: Some(raw_module),
..
}) = compiled_fs
{
unsafe { self.shared.raw.destroy_shader_module(raw_module, None) };
}
self.counters.render_pipelines.add(1);
Ok(super::RenderPipeline { raw })
}
unsafe fn destroy_render_pipeline(&self, pipeline: super::RenderPipeline) {
unsafe { self.shared.raw.destroy_pipeline(pipeline.raw, None) };
self.counters.render_pipelines.sub(1);
}
unsafe fn create_compute_pipeline(
&self,
desc: &crate::ComputePipelineDescriptor<
super::PipelineLayout,
super::ShaderModule,
super::PipelineCache,
>,
) -> Result<super::ComputePipeline, crate::PipelineError> {
let compiled = self.compile_stage(
&desc.stage,
naga::ShaderStage::Compute,
&desc.layout.binding_arrays,
)?;
let vk_infos = [{
vk::ComputePipelineCreateInfo::default()
.layout(desc.layout.raw)
.stage(compiled.create_info)
}];
let pipeline_cache = desc
.cache
.map(|it| it.raw)
.unwrap_or(vk::PipelineCache::null());
let mut raw_vec = {
profiling::scope!("vkCreateComputePipelines");
unsafe {
self.shared
.raw
.create_compute_pipelines(pipeline_cache, &vk_infos, None)
.map_err(|(_, e)| super::map_pipeline_err(e))
}?
};
let raw = raw_vec.pop().unwrap();
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
if let Some(raw_module) = compiled.temp_raw_module {
unsafe { self.shared.raw.destroy_shader_module(raw_module, None) };
}
self.counters.compute_pipelines.add(1);
Ok(super::ComputePipeline { raw })
}
unsafe fn destroy_compute_pipeline(&self, pipeline: super::ComputePipeline) {
unsafe { self.shared.raw.destroy_pipeline(pipeline.raw, None) };
self.counters.compute_pipelines.sub(1);
}
unsafe fn create_pipeline_cache(
&self,
desc: &crate::PipelineCacheDescriptor<'_>,
) -> Result<super::PipelineCache, crate::PipelineCacheError> {
let mut info = vk::PipelineCacheCreateInfo::default();
if let Some(data) = desc.data {
info = info.initial_data(data)
}
profiling::scope!("vkCreatePipelineCache");
let raw = unsafe { self.shared.raw.create_pipeline_cache(&info, None) }
.map_err(super::map_host_device_oom_err)?;
Ok(super::PipelineCache { raw })
}
fn pipeline_cache_validation_key(&self) -> Option<[u8; 16]> {
Some(self.shared.pipeline_cache_validation_key)
}
unsafe fn destroy_pipeline_cache(&self, cache: super::PipelineCache) {
unsafe { self.shared.raw.destroy_pipeline_cache(cache.raw, None) }
}
unsafe fn create_query_set(
&self,
desc: &wgt::QuerySetDescriptor<crate::Label>,
) -> Result<super::QuerySet, crate::DeviceError> {
let (vk_type, pipeline_statistics) = match desc.ty {
wgt::QueryType::Occlusion => (
vk::QueryType::OCCLUSION,
vk::QueryPipelineStatisticFlags::empty(),
),
wgt::QueryType::PipelineStatistics(statistics) => (
vk::QueryType::PIPELINE_STATISTICS,
conv::map_pipeline_statistics(statistics),
),
wgt::QueryType::Timestamp => (
vk::QueryType::TIMESTAMP,
vk::QueryPipelineStatisticFlags::empty(),
),
};
let vk_info = vk::QueryPoolCreateInfo::default()
.query_type(vk_type)
.query_count(desc.count)
.pipeline_statistics(pipeline_statistics);
let raw = unsafe { self.shared.raw.create_query_pool(&vk_info, None) }
.map_err(super::map_host_device_oom_err)?;
if let Some(label) = desc.label {
unsafe { self.shared.set_object_name(raw, label) };
}
self.counters.query_sets.add(1);
Ok(super::QuerySet { raw })
}
unsafe fn destroy_query_set(&self, set: super::QuerySet) {
unsafe { self.shared.raw.destroy_query_pool(set.raw, None) };
self.counters.query_sets.sub(1);
}
unsafe fn create_fence(&self) -> Result<super::Fence, crate::DeviceError> {
self.counters.fences.add(1);
Ok(if self.shared.private_caps.timeline_semaphores {
let mut sem_type_info =
vk::SemaphoreTypeCreateInfo::default().semaphore_type(vk::SemaphoreType::TIMELINE);
let vk_info = vk::SemaphoreCreateInfo::default().push_next(&mut sem_type_info);
let raw = unsafe { self.shared.raw.create_semaphore(&vk_info, None) }
.map_err(super::map_host_device_oom_err)?;
super::Fence::TimelineSemaphore(raw)
} else {
super::Fence::FencePool {
last_completed: 0,
active: Vec::new(),
free: Vec::new(),
}
})
}
unsafe fn destroy_fence(&self, fence: super::Fence) {
match fence {
super::Fence::TimelineSemaphore(raw) => {
unsafe { self.shared.raw.destroy_semaphore(raw, None) };
}
super::Fence::FencePool {
active,
free,
last_completed: _,
} => {
for (_, raw) in active {
unsafe { self.shared.raw.destroy_fence(raw, None) };
}
for raw in free {
unsafe { self.shared.raw.destroy_fence(raw, None) };
}
}
}
self.counters.fences.sub(1);
}
unsafe fn get_fence_value(
&self,
fence: &super::Fence,
) -> Result<crate::FenceValue, crate::DeviceError> {
fence.get_latest(
&self.shared.raw,
self.shared.extension_fns.timeline_semaphore.as_ref(),
)
}
unsafe fn wait(
&self,
fence: &super::Fence,
wait_value: crate::FenceValue,
timeout_ms: u32,
) -> Result<bool, crate::DeviceError> {
let timeout_ns = timeout_ms as u64 * super::MILLIS_TO_NANOS;
self.shared.wait_for_fence(fence, wait_value, timeout_ns)
}
unsafe fn start_capture(&self) -> bool {
#[cfg(feature = "renderdoc")]
{
// Renderdoc requires us to give us the pointer that vkInstance _points to_.
let raw_vk_instance =
vk::Handle::as_raw(self.shared.instance.raw.handle()) as *mut *mut _;
let raw_vk_instance_dispatch_table = unsafe { *raw_vk_instance };
unsafe {
self.render_doc
.start_frame_capture(raw_vk_instance_dispatch_table, ptr::null_mut())
}
}
#[cfg(not(feature = "renderdoc"))]
false
}
unsafe fn stop_capture(&self) {
#[cfg(feature = "renderdoc")]
{
// Renderdoc requires us to give us the pointer that vkInstance _points to_.
let raw_vk_instance =
vk::Handle::as_raw(self.shared.instance.raw.handle()) as *mut *mut _;
let raw_vk_instance_dispatch_table = unsafe { *raw_vk_instance };
unsafe {
self.render_doc
.end_frame_capture(raw_vk_instance_dispatch_table, ptr::null_mut())
}
}
}
unsafe fn pipeline_cache_get_data(&self, cache: &super::PipelineCache) -> Option<Vec<u8>> {
let data = unsafe { self.raw_device().get_pipeline_cache_data(cache.raw) };
data.ok()
}
unsafe fn get_acceleration_structure_build_sizes<'a>(
&self,
desc: &crate::GetAccelerationStructureBuildSizesDescriptor<'a, super::Buffer>,
) -> crate::AccelerationStructureBuildSizes {
const CAPACITY: usize = 8;
let ray_tracing_functions = self
.shared
.extension_fns
.ray_tracing
.as_ref()
.expect("Feature `RAY_TRACING` not enabled");
let (geometries, primitive_counts) = match *desc.entries {
crate::AccelerationStructureEntries::Instances(ref instances) => {
let instance_data = vk::AccelerationStructureGeometryInstancesDataKHR::default();
let geometry = vk::AccelerationStructureGeometryKHR::default()
.geometry_type(vk::GeometryTypeKHR::INSTANCES)
.geometry(vk::AccelerationStructureGeometryDataKHR {
instances: instance_data,
});
(
smallvec::smallvec![geometry],
smallvec::smallvec![instances.count],
)
}
crate::AccelerationStructureEntries::Triangles(ref in_geometries) => {
let mut primitive_counts =
smallvec::SmallVec::<[u32; CAPACITY]>::with_capacity(in_geometries.len());
let mut geometries = smallvec::SmallVec::<
[vk::AccelerationStructureGeometryKHR; CAPACITY],
>::with_capacity(in_geometries.len());
for triangles in in_geometries {
let mut triangle_data =
vk::AccelerationStructureGeometryTrianglesDataKHR::default()
.vertex_format(conv::map_vertex_format(triangles.vertex_format))
.max_vertex(triangles.vertex_count)
.vertex_stride(triangles.vertex_stride);
let pritive_count = if let Some(ref indices) = triangles.indices {
triangle_data =
triangle_data.index_type(conv::map_index_format(indices.format));
indices.count / 3
} else {
triangles.vertex_count
};
let geometry = vk::AccelerationStructureGeometryKHR::default()
.geometry_type(vk::GeometryTypeKHR::TRIANGLES)
.geometry(vk::AccelerationStructureGeometryDataKHR {
triangles: triangle_data,
})
.flags(conv::map_acceleration_structure_geometry_flags(
triangles.flags,
));
geometries.push(geometry);
primitive_counts.push(pritive_count);
}
(geometries, primitive_counts)
}
crate::AccelerationStructureEntries::AABBs(ref in_geometries) => {
let mut primitive_counts =
smallvec::SmallVec::<[u32; CAPACITY]>::with_capacity(in_geometries.len());
let mut geometries = smallvec::SmallVec::<
[vk::AccelerationStructureGeometryKHR; CAPACITY],
>::with_capacity(in_geometries.len());
for aabb in in_geometries {
let aabbs_data = vk::AccelerationStructureGeometryAabbsDataKHR::default()
.stride(aabb.stride);
let geometry = vk::AccelerationStructureGeometryKHR::default()
.geometry_type(vk::GeometryTypeKHR::AABBS)
.geometry(vk::AccelerationStructureGeometryDataKHR { aabbs: aabbs_data })
.flags(conv::map_acceleration_structure_geometry_flags(aabb.flags));
geometries.push(geometry);
primitive_counts.push(aabb.count);
}
(geometries, primitive_counts)
}
};
let ty = match *desc.entries {
crate::AccelerationStructureEntries::Instances(_) => {
vk::AccelerationStructureTypeKHR::TOP_LEVEL
}
_ => vk::AccelerationStructureTypeKHR::BOTTOM_LEVEL,
};
let geometry_info = vk::AccelerationStructureBuildGeometryInfoKHR::default()
.ty(ty)
.flags(conv::map_acceleration_structure_flags(desc.flags))
.geometries(&geometries);
let mut raw = Default::default();
unsafe {
ray_tracing_functions
.acceleration_structure
.get_acceleration_structure_build_sizes(
vk::AccelerationStructureBuildTypeKHR::DEVICE,
&geometry_info,
&primitive_counts,
&mut raw,
)
}
crate::AccelerationStructureBuildSizes {
acceleration_structure_size: raw.acceleration_structure_size,
update_scratch_size: raw.update_scratch_size,
build_scratch_size: raw.build_scratch_size,
}
}
unsafe fn get_acceleration_structure_device_address(
&self,
acceleration_structure: &super::AccelerationStructure,
) -> wgt::BufferAddress {
let ray_tracing_functions = self
.shared
.extension_fns
.ray_tracing
.as_ref()
.expect("Feature `RAY_TRACING` not enabled");
unsafe {
ray_tracing_functions
.acceleration_structure
.get_acceleration_structure_device_address(
&vk::AccelerationStructureDeviceAddressInfoKHR::default()
.acceleration_structure(acceleration_structure.raw),
)
}
}
unsafe fn create_acceleration_structure(
&self,
desc: &crate::AccelerationStructureDescriptor,
) -> Result<super::AccelerationStructure, crate::DeviceError> {
let ray_tracing_functions = self
.shared
.extension_fns
.ray_tracing
.as_ref()
.expect("Feature `RAY_TRACING` not enabled");
let vk_buffer_info = vk::BufferCreateInfo::default()
.size(desc.size)
.usage(
vk::BufferUsageFlags::ACCELERATION_STRUCTURE_STORAGE_KHR
| vk::BufferUsageFlags::SHADER_DEVICE_ADDRESS,
)
.sharing_mode(vk::SharingMode::EXCLUSIVE);
unsafe {
let raw_buffer = self
.shared
.raw
.create_buffer(&vk_buffer_info, None)
.map_err(super::map_host_device_oom_and_ioca_err)?;
let req = self.shared.raw.get_buffer_memory_requirements(raw_buffer);
let block = self.mem_allocator.lock().alloc(
&*self.shared,
gpu_alloc::Request {
size: req.size,
align_mask: req.alignment - 1,
usage: gpu_alloc::UsageFlags::FAST_DEVICE_ACCESS,
memory_types: req.memory_type_bits & self.valid_ash_memory_types,
},
)?;
self.shared
.raw
.bind_buffer_memory(raw_buffer, *block.memory(), block.offset())
.map_err(super::map_host_device_oom_and_ioca_err)?;
if let Some(label) = desc.label {
self.shared.set_object_name(raw_buffer, label);
}
let vk_info = vk::AccelerationStructureCreateInfoKHR::default()
.buffer(raw_buffer)
.offset(0)
.size(desc.size)
.ty(conv::map_acceleration_structure_format(desc.format));
let raw_acceleration_structure = ray_tracing_functions
.acceleration_structure
.create_acceleration_structure(&vk_info, None)
.map_err(super::map_host_oom_and_ioca_err)?;
if let Some(label) = desc.label {
self.shared
.set_object_name(raw_acceleration_structure, label);
}
Ok(super::AccelerationStructure {
raw: raw_acceleration_structure,
buffer: raw_buffer,
block: Mutex::new(block),
})
}
}
unsafe fn destroy_acceleration_structure(
&self,
acceleration_structure: super::AccelerationStructure,
) {
let ray_tracing_functions = self
.shared
.extension_fns
.ray_tracing
.as_ref()
.expect("Feature `RAY_TRACING` not enabled");
unsafe {
ray_tracing_functions
.acceleration_structure
.destroy_acceleration_structure(acceleration_structure.raw, None);
self.shared
.raw
.destroy_buffer(acceleration_structure.buffer, None);
self.mem_allocator
.lock()
.dealloc(&*self.shared, acceleration_structure.block.into_inner());
}
}
fn get_internal_counters(&self) -> wgt::HalCounters {
self.counters
.memory_allocations
.set(self.shared.memory_allocations_counter.read());
self.counters.as_ref().clone()
}
fn tlas_instance_to_bytes(&self, instance: TlasInstance) -> Vec<u8> {
const MAX_U24: u32 = (1u32 << 24u32) - 1u32;
let temp = RawTlasInstance {
transform: instance.transform,
custom_index_and_mask: (instance.custom_index & MAX_U24)
| (u32::from(instance.mask) << 24),
shader_binding_table_record_offset_and_flags: 0,
acceleration_structure_reference: instance.blas_address,
};
let temp: *const _ = &temp;
unsafe {
slice::from_raw_parts::<u8>(temp.cast::<u8>(), size_of::<RawTlasInstance>()).to_vec()
}
}
}
impl super::DeviceShared {
pub(super) fn new_binary_semaphore(&self) -> Result<vk::Semaphore, crate::DeviceError> {
unsafe {
self.raw
.create_semaphore(&vk::SemaphoreCreateInfo::default(), None)
.map_err(super::map_host_device_oom_err)
}
}
pub(super) fn wait_for_fence(
&self,
fence: &super::Fence,
wait_value: crate::FenceValue,
timeout_ns: u64,
) -> Result<bool, crate::DeviceError> {
profiling::scope!("Device::wait");
match *fence {
super::Fence::TimelineSemaphore(raw) => {
let semaphores = [raw];
let values = [wait_value];
let vk_info = vk::SemaphoreWaitInfo::default()
.semaphores(&semaphores)
.values(&values);
let result = match self.extension_fns.timeline_semaphore {
Some(super::ExtensionFn::Extension(ref ext)) => unsafe {
ext.wait_semaphores(&vk_info, timeout_ns)
},
Some(super::ExtensionFn::Promoted) => unsafe {
self.raw.wait_semaphores(&vk_info, timeout_ns)
},
None => unreachable!(),
};
match result {
Ok(()) => Ok(true),
Err(vk::Result::TIMEOUT) => Ok(false),
Err(other) => Err(super::map_host_device_oom_and_lost_err(other)),
}
}
super::Fence::FencePool {
last_completed,
ref active,
free: _,
} => {
if wait_value <= last_completed {
Ok(true)
} else {
match active.iter().find(|&&(value, _)| value >= wait_value) {
Some(&(_, raw)) => {
match unsafe { self.raw.wait_for_fences(&[raw], true, timeout_ns) } {
Ok(()) => Ok(true),
Err(vk::Result::TIMEOUT) => Ok(false),
Err(other) => Err(super::map_host_device_oom_and_lost_err(other)),
}
}
None => {
crate::hal_usage_error(format!(
"no signals reached value {wait_value}"
));
}
}
}
}
}
}
}
impl From<gpu_alloc::AllocationError> for crate::DeviceError {
fn from(error: gpu_alloc::AllocationError) -> Self {
use gpu_alloc::AllocationError as Ae;
match error {
Ae::OutOfDeviceMemory | Ae::OutOfHostMemory | Ae::TooManyObjects => Self::OutOfMemory,
Ae::NoCompatibleMemoryTypes => crate::hal_usage_error(error),
}
}
}
impl From<gpu_alloc::MapError> for crate::DeviceError {
fn from(error: gpu_alloc::MapError) -> Self {
use gpu_alloc::MapError as Me;
match error {
Me::OutOfDeviceMemory | Me::OutOfHostMemory | Me::MapFailed => Self::OutOfMemory,
Me::NonHostVisible | Me::AlreadyMapped => crate::hal_usage_error(error),
}
}
}
impl From<gpu_descriptor::AllocationError> for crate::DeviceError {
fn from(error: gpu_descriptor::AllocationError) -> Self {
use gpu_descriptor::AllocationError as Ae;
match error {
Ae::OutOfDeviceMemory | Ae::OutOfHostMemory | Ae::Fragmentation => Self::OutOfMemory,
}
}
}
/// We usually map unexpected vulkan errors to the [`crate::DeviceError::Unexpected`]
/// variant to be more robust even in cases where the driver is not
/// complying with the spec.
///
/// However, we implement a few Trait methods that don't have an equivalent
/// error variant. In those cases we use this function.
fn handle_unexpected(err: vk::Result) -> ! {
panic!("Unexpected Vulkan error: `{err}`")
}
struct ImageWithoutMemory {
raw: vk::Image,
requirements: vk::MemoryRequirements,
copy_size: crate::CopyExtent,
view_formats: Vec<wgt::TextureFormat>,
raw_flags: vk::ImageCreateFlags,
}