Revision control
Copy as Markdown
Other Tools
//! This example shows basic usage of wgpu-hal by rendering
//! a ton of moving sprites, each with a separate texture and draw call.
extern crate wgpu_hal as hal;
use hal::{
Adapter as _, CommandEncoder as _, Device as _, Instance as _, Queue as _, Surface as _,
};
use raw_window_handle::{HasDisplayHandle, HasWindowHandle};
use winit::{
event::{ElementState, Event, KeyEvent, WindowEvent},
event_loop::ControlFlow,
keyboard::{Key, NamedKey},
};
use std::{
borrow::{Borrow, Cow},
iter,
mem::size_of,
ptr,
time::Instant,
};
const MAX_BUNNIES: usize = 1 << 20;
const BUNNY_SIZE: f32 = 0.15 * 256.0;
const GRAVITY: f32 = -9.8 * 100.0;
const MAX_VELOCITY: f32 = 750.0;
const DESIRED_MAX_LATENCY: u32 = 2;
#[repr(C)]
#[derive(Clone, Copy)]
struct Globals {
mvp: [[f32; 4]; 4],
size: [f32; 2],
pad: [f32; 2],
}
#[repr(C, align(256))]
#[derive(Clone, Copy)]
struct Locals {
position: [f32; 2],
velocity: [f32; 2],
color: u32,
_pad: u32,
}
struct ExecutionContext<A: hal::Api> {
encoder: A::CommandEncoder,
fence: A::Fence,
fence_value: hal::FenceValue,
used_views: Vec<A::TextureView>,
used_cmd_bufs: Vec<A::CommandBuffer>,
frames_recorded: usize,
}
impl<A: hal::Api> ExecutionContext<A> {
unsafe fn wait_and_clear(&mut self, device: &A::Device) {
device.wait(&self.fence, self.fence_value, !0).unwrap();
self.encoder.reset_all(self.used_cmd_bufs.drain(..));
for view in self.used_views.drain(..) {
device.destroy_texture_view(view);
}
self.frames_recorded = 0;
}
}
#[allow(dead_code)]
struct Example<A: hal::Api> {
instance: A::Instance,
adapter: A::Adapter,
surface: A::Surface,
surface_format: wgt::TextureFormat,
device: A::Device,
queue: A::Queue,
global_group: A::BindGroup,
local_group: A::BindGroup,
global_group_layout: A::BindGroupLayout,
local_group_layout: A::BindGroupLayout,
pipeline_layout: A::PipelineLayout,
shader: A::ShaderModule,
pipeline: A::RenderPipeline,
bunnies: Vec<Locals>,
local_buffer: A::Buffer,
local_alignment: u32,
global_buffer: A::Buffer,
sampler: A::Sampler,
texture: A::Texture,
texture_view: A::TextureView,
contexts: Vec<ExecutionContext<A>>,
context_index: usize,
extent: [u32; 2],
start: Instant,
}
impl<A: hal::Api> Example<A> {
fn init(window: &winit::window::Window) -> Result<Self, Box<dyn std::error::Error>> {
let instance_desc = hal::InstanceDescriptor {
name: "example",
flags: wgt::InstanceFlags::from_build_config().with_env(),
// Can't rely on having DXC available, so use FXC instead
dx12_shader_compiler: wgt::Dx12Compiler::Fxc,
gles_minor_version: wgt::Gles3MinorVersion::default(),
};
let instance = unsafe { A::Instance::init(&instance_desc)? };
let surface = {
let raw_window_handle = window.window_handle()?.as_raw();
let raw_display_handle = window.display_handle()?.as_raw();
unsafe {
instance
.create_surface(raw_display_handle, raw_window_handle)
.unwrap()
}
};
let (adapter, capabilities) = unsafe {
let mut adapters = instance.enumerate_adapters(Some(&surface));
if adapters.is_empty() {
return Err("no adapters found".into());
}
let exposed = adapters.swap_remove(0);
(exposed.adapter, exposed.capabilities)
};
let surface_caps = unsafe { adapter.surface_capabilities(&surface) }
.ok_or("failed to get surface capabilities")?;
log::info!("Surface caps: {:#?}", surface_caps);
let hal::OpenDevice { device, queue } = unsafe {
adapter
.open(
wgt::Features::empty(),
&wgt::Limits::default(),
&wgt::MemoryHints::default(),
)
.unwrap()
};
let window_size: (u32, u32) = window.inner_size().into();
let surface_config = hal::SurfaceConfiguration {
maximum_frame_latency: DESIRED_MAX_LATENCY.clamp(
*surface_caps.maximum_frame_latency.start(),
*surface_caps.maximum_frame_latency.end(),
),
present_mode: wgt::PresentMode::Fifo,
composite_alpha_mode: wgt::CompositeAlphaMode::Opaque,
format: wgt::TextureFormat::Bgra8UnormSrgb,
extent: wgt::Extent3d {
width: window_size.0,
height: window_size.1,
depth_or_array_layers: 1,
},
usage: hal::TextureUses::COLOR_TARGET,
view_formats: vec![],
};
unsafe {
surface.configure(&device, &surface_config).unwrap();
};
let naga_shader = {
let shader_file = std::path::PathBuf::from(env!("CARGO_MANIFEST_DIR"))
.join("examples")
.join("halmark")
.join("shader.wgsl");
let source = std::fs::read_to_string(shader_file).unwrap();
let module = naga::front::wgsl::Frontend::new().parse(&source).unwrap();
let info = naga::valid::Validator::new(
naga::valid::ValidationFlags::all(),
naga::valid::Capabilities::empty(),
)
.validate(&module)
.unwrap();
hal::NagaShader {
module: Cow::Owned(module),
info,
debug_source: None,
}
};
let shader_desc = hal::ShaderModuleDescriptor {
label: None,
runtime_checks: false,
};
let shader = unsafe {
device
.create_shader_module(&shader_desc, hal::ShaderInput::Naga(naga_shader))
.unwrap()
};
let global_bgl_desc = hal::BindGroupLayoutDescriptor {
label: None,
flags: hal::BindGroupLayoutFlags::empty(),
entries: &[
wgt::BindGroupLayoutEntry {
binding: 0,
visibility: wgt::ShaderStages::VERTEX,
ty: wgt::BindingType::Buffer {
ty: wgt::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: wgt::BufferSize::new(size_of::<Globals>() as _),
},
count: None,
},
wgt::BindGroupLayoutEntry {
binding: 1,
visibility: wgt::ShaderStages::FRAGMENT,
ty: wgt::BindingType::Texture {
sample_type: wgt::TextureSampleType::Float { filterable: true },
view_dimension: wgt::TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
wgt::BindGroupLayoutEntry {
binding: 2,
visibility: wgt::ShaderStages::FRAGMENT,
ty: wgt::BindingType::Sampler(wgt::SamplerBindingType::Filtering),
count: None,
},
],
};
let global_group_layout =
unsafe { device.create_bind_group_layout(&global_bgl_desc).unwrap() };
let local_bgl_desc = hal::BindGroupLayoutDescriptor {
label: None,
flags: hal::BindGroupLayoutFlags::empty(),
entries: &[wgt::BindGroupLayoutEntry {
binding: 0,
visibility: wgt::ShaderStages::VERTEX,
ty: wgt::BindingType::Buffer {
ty: wgt::BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: wgt::BufferSize::new(size_of::<Locals>() as _),
},
count: None,
}],
};
let local_group_layout =
unsafe { device.create_bind_group_layout(&local_bgl_desc).unwrap() };
let pipeline_layout_desc = hal::PipelineLayoutDescriptor {
label: None,
flags: hal::PipelineLayoutFlags::empty(),
bind_group_layouts: &[&global_group_layout, &local_group_layout],
push_constant_ranges: &[],
};
let pipeline_layout = unsafe {
device
.create_pipeline_layout(&pipeline_layout_desc)
.unwrap()
};
let constants = naga::back::PipelineConstants::default();
let pipeline_desc = hal::RenderPipelineDescriptor {
label: None,
layout: &pipeline_layout,
vertex_stage: hal::ProgrammableStage {
module: &shader,
entry_point: "vs_main",
constants: &constants,
zero_initialize_workgroup_memory: true,
},
vertex_buffers: &[],
fragment_stage: Some(hal::ProgrammableStage {
module: &shader,
entry_point: "fs_main",
constants: &constants,
zero_initialize_workgroup_memory: true,
}),
primitive: wgt::PrimitiveState {
topology: wgt::PrimitiveTopology::TriangleStrip,
..wgt::PrimitiveState::default()
},
depth_stencil: None,
multisample: wgt::MultisampleState::default(),
color_targets: &[Some(wgt::ColorTargetState {
format: surface_config.format,
blend: Some(wgt::BlendState::ALPHA_BLENDING),
write_mask: wgt::ColorWrites::default(),
})],
multiview: None,
cache: None,
};
let pipeline = unsafe { device.create_render_pipeline(&pipeline_desc).unwrap() };
let texture_data = [0xFFu8; 4];
let staging_buffer_desc = hal::BufferDescriptor {
label: Some("stage"),
size: texture_data.len() as wgt::BufferAddress,
usage: hal::BufferUses::MAP_WRITE | hal::BufferUses::COPY_SRC,
memory_flags: hal::MemoryFlags::TRANSIENT | hal::MemoryFlags::PREFER_COHERENT,
};
let staging_buffer = unsafe { device.create_buffer(&staging_buffer_desc).unwrap() };
unsafe {
let mapping = device
.map_buffer(&staging_buffer, 0..staging_buffer_desc.size)
.unwrap();
ptr::copy_nonoverlapping(
texture_data.as_ptr(),
mapping.ptr.as_ptr(),
texture_data.len(),
);
device.unmap_buffer(&staging_buffer);
assert!(mapping.is_coherent);
}
let texture_desc = hal::TextureDescriptor {
label: None,
size: wgt::Extent3d {
width: 1,
height: 1,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgt::TextureDimension::D2,
format: wgt::TextureFormat::Rgba8UnormSrgb,
usage: hal::TextureUses::COPY_DST | hal::TextureUses::RESOURCE,
memory_flags: hal::MemoryFlags::empty(),
view_formats: vec![],
};
let texture = unsafe { device.create_texture(&texture_desc).unwrap() };
let cmd_encoder_desc = hal::CommandEncoderDescriptor {
label: None,
queue: &queue,
};
let mut cmd_encoder = unsafe { device.create_command_encoder(&cmd_encoder_desc).unwrap() };
unsafe { cmd_encoder.begin_encoding(Some("init")).unwrap() };
{
let buffer_barrier = hal::BufferBarrier {
buffer: &staging_buffer,
usage: hal::StateTransition {
from: hal::BufferUses::empty(),
to: hal::BufferUses::COPY_SRC,
},
};
let texture_barrier1 = hal::TextureBarrier {
texture: &texture,
range: wgt::ImageSubresourceRange::default(),
usage: hal::StateTransition {
from: hal::TextureUses::UNINITIALIZED,
to: hal::TextureUses::COPY_DST,
},
};
let texture_barrier2 = hal::TextureBarrier {
texture: &texture,
range: wgt::ImageSubresourceRange::default(),
usage: hal::StateTransition {
from: hal::TextureUses::COPY_DST,
to: hal::TextureUses::RESOURCE,
},
};
let copy = hal::BufferTextureCopy {
buffer_layout: wgt::TexelCopyBufferLayout {
offset: 0,
bytes_per_row: Some(4),
rows_per_image: None,
},
texture_base: hal::TextureCopyBase {
origin: wgt::Origin3d::ZERO,
mip_level: 0,
array_layer: 0,
aspect: hal::FormatAspects::COLOR,
},
size: hal::CopyExtent {
width: 1,
height: 1,
depth: 1,
},
};
unsafe {
cmd_encoder.transition_buffers(iter::once(buffer_barrier));
cmd_encoder.transition_textures(iter::once(texture_barrier1));
cmd_encoder.copy_buffer_to_texture(&staging_buffer, &texture, iter::once(copy));
cmd_encoder.transition_textures(iter::once(texture_barrier2));
}
}
let sampler_desc = hal::SamplerDescriptor {
label: None,
address_modes: [wgt::AddressMode::ClampToEdge; 3],
mag_filter: wgt::FilterMode::Linear,
min_filter: wgt::FilterMode::Nearest,
mipmap_filter: wgt::FilterMode::Nearest,
lod_clamp: 0.0..32.0,
compare: None,
anisotropy_clamp: 1,
border_color: None,
};
let sampler = unsafe { device.create_sampler(&sampler_desc).unwrap() };
let globals = Globals {
// cgmath::ortho() projection
mvp: [
[2.0 / window_size.0 as f32, 0.0, 0.0, 0.0],
[0.0, 2.0 / window_size.1 as f32, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[-1.0, -1.0, 0.0, 1.0],
],
size: [BUNNY_SIZE; 2],
pad: [0.0; 2],
};
let global_buffer_desc = hal::BufferDescriptor {
label: Some("global"),
size: size_of::<Globals>() as wgt::BufferAddress,
usage: hal::BufferUses::MAP_WRITE | hal::BufferUses::UNIFORM,
memory_flags: hal::MemoryFlags::PREFER_COHERENT,
};
let global_buffer = unsafe {
let buffer = device.create_buffer(&global_buffer_desc).unwrap();
let mapping = device
.map_buffer(&buffer, 0..global_buffer_desc.size)
.unwrap();
ptr::copy_nonoverlapping(
&globals as *const Globals as *const u8,
mapping.ptr.as_ptr(),
size_of::<Globals>(),
);
device.unmap_buffer(&buffer);
assert!(mapping.is_coherent);
buffer
};
let local_alignment = wgt::math::align_to(
size_of::<Locals>() as u32,
capabilities.limits.min_uniform_buffer_offset_alignment,
);
let local_buffer_desc = hal::BufferDescriptor {
label: Some("local"),
size: (MAX_BUNNIES as wgt::BufferAddress) * (local_alignment as wgt::BufferAddress),
usage: hal::BufferUses::MAP_WRITE | hal::BufferUses::UNIFORM,
memory_flags: hal::MemoryFlags::PREFER_COHERENT,
};
let local_buffer = unsafe { device.create_buffer(&local_buffer_desc).unwrap() };
let view_desc = hal::TextureViewDescriptor {
label: None,
format: texture_desc.format,
dimension: wgt::TextureViewDimension::D2,
usage: hal::TextureUses::RESOURCE,
range: wgt::ImageSubresourceRange::default(),
};
let texture_view = unsafe { device.create_texture_view(&texture, &view_desc).unwrap() };
let global_group = {
let global_buffer_binding = hal::BufferBinding {
buffer: &global_buffer,
offset: 0,
size: None,
};
let texture_binding = hal::TextureBinding {
view: &texture_view,
usage: hal::TextureUses::RESOURCE,
};
let global_group_desc = hal::BindGroupDescriptor {
label: Some("global"),
layout: &global_group_layout,
buffers: &[global_buffer_binding],
samplers: &[&sampler],
textures: &[texture_binding],
acceleration_structures: &[],
entries: &[
hal::BindGroupEntry {
binding: 0,
resource_index: 0,
count: 1,
},
hal::BindGroupEntry {
binding: 1,
resource_index: 0,
count: 1,
},
hal::BindGroupEntry {
binding: 2,
resource_index: 0,
count: 1,
},
],
};
unsafe { device.create_bind_group(&global_group_desc).unwrap() }
};
let local_group = {
let local_buffer_binding = hal::BufferBinding {
buffer: &local_buffer,
offset: 0,
size: wgt::BufferSize::new(size_of::<Locals>() as _),
};
let local_group_desc = hal::BindGroupDescriptor {
label: Some("local"),
layout: &local_group_layout,
buffers: &[local_buffer_binding],
samplers: &[],
textures: &[],
acceleration_structures: &[],
entries: &[hal::BindGroupEntry {
binding: 0,
resource_index: 0,
count: 1,
}],
};
unsafe { device.create_bind_group(&local_group_desc).unwrap() }
};
let init_fence_value = 1;
let fence = unsafe {
let mut fence = device.create_fence().unwrap();
let init_cmd = cmd_encoder.end_encoding().unwrap();
queue
.submit(&[&init_cmd], &[], (&mut fence, init_fence_value))
.unwrap();
device.wait(&fence, init_fence_value, !0).unwrap();
device.destroy_buffer(staging_buffer);
cmd_encoder.reset_all(iter::once(init_cmd));
fence
};
Ok(Example {
instance,
surface,
surface_format: surface_config.format,
adapter,
device,
queue,
pipeline_layout,
shader,
pipeline,
global_group,
local_group,
global_group_layout,
local_group_layout,
bunnies: Vec::new(),
local_buffer,
local_alignment,
global_buffer,
sampler,
texture,
texture_view,
contexts: vec![ExecutionContext {
encoder: cmd_encoder,
fence,
fence_value: init_fence_value + 1,
used_views: Vec::new(),
used_cmd_bufs: Vec::new(),
frames_recorded: 0,
}],
context_index: 0,
extent: [window_size.0, window_size.1],
start: Instant::now(),
})
}
fn is_empty(&self) -> bool {
self.bunnies.is_empty()
}
fn exit(mut self) {
unsafe {
{
let ctx = &mut self.contexts[self.context_index];
self.queue
.submit(&[], &[], (&mut ctx.fence, ctx.fence_value))
.unwrap();
}
for mut ctx in self.contexts {
ctx.wait_and_clear(&self.device);
drop(ctx.encoder);
self.device.destroy_fence(ctx.fence);
}
self.device.destroy_bind_group(self.local_group);
self.device.destroy_bind_group(self.global_group);
self.device.destroy_buffer(self.local_buffer);
self.device.destroy_buffer(self.global_buffer);
self.device.destroy_texture_view(self.texture_view);
self.device.destroy_texture(self.texture);
self.device.destroy_sampler(self.sampler);
self.device.destroy_shader_module(self.shader);
self.device.destroy_render_pipeline(self.pipeline);
self.device
.destroy_bind_group_layout(self.local_group_layout);
self.device
.destroy_bind_group_layout(self.global_group_layout);
self.device.destroy_pipeline_layout(self.pipeline_layout);
self.surface.unconfigure(&self.device);
drop(self.queue);
drop(self.device);
drop(self.surface);
drop(self.adapter);
}
}
fn update(&mut self, event: winit::event::WindowEvent) {
if let winit::event::WindowEvent::KeyboardInput {
event:
KeyEvent {
logical_key: Key::Named(NamedKey::Space),
state: ElementState::Pressed,
..
},
..
} = event
{
let spawn_count = 64 + self.bunnies.len() / 2;
let elapsed = self.start.elapsed();
let color = elapsed.as_nanos() as u32;
println!(
"Spawning {} bunnies, total at {}",
spawn_count,
self.bunnies.len() + spawn_count
);
for i in 0..spawn_count {
let random = ((elapsed.as_nanos() * (i + 1) as u128) & 0xFF) as f32 / 255.0;
let speed = random * MAX_VELOCITY - (MAX_VELOCITY * 0.5);
self.bunnies.push(Locals {
position: [0.0, 0.5 * (self.extent[1] as f32)],
velocity: [speed, 0.0],
color,
_pad: 0,
});
}
}
}
fn render(&mut self) {
let delta = 0.01;
for bunny in self.bunnies.iter_mut() {
bunny.position[0] += bunny.velocity[0] * delta;
bunny.position[1] += bunny.velocity[1] * delta;
bunny.velocity[1] += GRAVITY * delta;
if (bunny.velocity[0] > 0.0
&& bunny.position[0] + 0.5 * BUNNY_SIZE > self.extent[0] as f32)
|| (bunny.velocity[0] < 0.0 && bunny.position[0] - 0.5 * BUNNY_SIZE < 0.0)
{
bunny.velocity[0] *= -1.0;
}
if bunny.velocity[1] < 0.0 && bunny.position[1] < 0.5 * BUNNY_SIZE {
bunny.velocity[1] *= -1.0;
}
}
if !self.bunnies.is_empty() {
let size = self.bunnies.len() * self.local_alignment as usize;
unsafe {
let mapping = self
.device
.map_buffer(&self.local_buffer, 0..size as wgt::BufferAddress)
.unwrap();
ptr::copy_nonoverlapping(
self.bunnies.as_ptr() as *const u8,
mapping.ptr.as_ptr(),
size,
);
assert!(mapping.is_coherent);
self.device.unmap_buffer(&self.local_buffer);
}
}
let ctx = &mut self.contexts[self.context_index];
let surface_tex = unsafe {
self.surface
.acquire_texture(None, &ctx.fence)
.unwrap()
.unwrap()
.texture
};
let target_barrier0 = hal::TextureBarrier {
texture: surface_tex.borrow(),
range: wgt::ImageSubresourceRange::default(),
usage: hal::StateTransition {
from: hal::TextureUses::UNINITIALIZED,
to: hal::TextureUses::COLOR_TARGET,
},
};
unsafe {
ctx.encoder.begin_encoding(Some("frame")).unwrap();
ctx.encoder.transition_textures(iter::once(target_barrier0));
}
let surface_view_desc = hal::TextureViewDescriptor {
label: None,
format: self.surface_format,
dimension: wgt::TextureViewDimension::D2,
usage: hal::TextureUses::COLOR_TARGET,
range: wgt::ImageSubresourceRange::default(),
};
let surface_tex_view = unsafe {
self.device
.create_texture_view(surface_tex.borrow(), &surface_view_desc)
.unwrap()
};
let pass_desc = hal::RenderPassDescriptor {
label: None,
extent: wgt::Extent3d {
width: self.extent[0],
height: self.extent[1],
depth_or_array_layers: 1,
},
sample_count: 1,
color_attachments: &[Some(hal::ColorAttachment {
target: hal::Attachment {
view: &surface_tex_view,
usage: hal::TextureUses::COLOR_TARGET,
},
resolve_target: None,
ops: hal::AttachmentOps::STORE,
clear_value: wgt::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
},
})],
depth_stencil_attachment: None,
multiview: None,
timestamp_writes: None,
occlusion_query_set: None,
};
unsafe {
ctx.encoder.begin_render_pass(&pass_desc);
ctx.encoder.set_render_pipeline(&self.pipeline);
ctx.encoder
.set_bind_group(&self.pipeline_layout, 0, &self.global_group, &[]);
}
for i in 0..self.bunnies.len() {
let offset = (i as wgt::DynamicOffset) * (self.local_alignment as wgt::DynamicOffset);
unsafe {
ctx.encoder
.set_bind_group(&self.pipeline_layout, 1, &self.local_group, &[offset]);
ctx.encoder.draw(0, 4, 0, 1);
}
}
ctx.frames_recorded += 1;
let target_barrier1 = hal::TextureBarrier {
texture: surface_tex.borrow(),
range: wgt::ImageSubresourceRange::default(),
usage: hal::StateTransition {
from: hal::TextureUses::COLOR_TARGET,
to: hal::TextureUses::PRESENT,
},
};
unsafe {
ctx.encoder.end_render_pass();
ctx.encoder.transition_textures(iter::once(target_barrier1));
}
unsafe {
let cmd_buf = ctx.encoder.end_encoding().unwrap();
self.queue
.submit(
&[&cmd_buf],
&[&surface_tex],
(&mut ctx.fence, ctx.fence_value),
)
.unwrap();
self.queue.present(&self.surface, surface_tex).unwrap();
ctx.used_cmd_bufs.push(cmd_buf);
ctx.used_views.push(surface_tex_view);
};
log::debug!("Context switch from {}", self.context_index);
let old_fence_value = ctx.fence_value;
if self.contexts.len() == 1 {
let hal_desc = hal::CommandEncoderDescriptor {
label: None,
queue: &self.queue,
};
self.contexts.push(unsafe {
ExecutionContext {
encoder: self.device.create_command_encoder(&hal_desc).unwrap(),
fence: self.device.create_fence().unwrap(),
fence_value: 0,
used_views: Vec::new(),
used_cmd_bufs: Vec::new(),
frames_recorded: 0,
}
});
}
self.context_index = (self.context_index + 1) % self.contexts.len();
let next = &mut self.contexts[self.context_index];
unsafe {
next.wait_and_clear(&self.device);
}
next.fence_value = old_fence_value + 1;
}
}
cfg_if::cfg_if! {
// Apple + Metal
if #[cfg(all(any(target_os = "macos", target_os = "ios"), feature = "metal"))] {
type Api = hal::api::Metal;
}
// Wasm + Vulkan
else if #[cfg(all(not(target_arch = "wasm32"), feature = "vulkan"))] {
type Api = hal::api::Vulkan;
}
// Windows + DX12
else if #[cfg(all(windows, feature = "dx12"))] {
type Api = hal::api::Dx12;
}
// Anything + GLES
else if #[cfg(feature = "gles")] {
type Api = hal::api::Gles;
}
// Fallback
else {
type Api = hal::api::Empty;
}
}
fn main() {
env_logger::init();
let event_loop = winit::event_loop::EventLoop::new().unwrap();
let window = winit::window::WindowBuilder::new()
.with_title("hal-bunnymark")
.build(&event_loop)
.unwrap();
let example_result = Example::<Api>::init(&window);
let mut example = Some(example_result.expect("Selected backend is not supported"));
println!("Press space to spawn bunnies.");
let mut last_frame_inst = Instant::now();
let (mut frame_count, mut accum_time) = (0, 0.0);
event_loop
.run(move |event, target| {
let _ = &window; // force ownership by the closure
target.set_control_flow(ControlFlow::Poll);
match event {
Event::LoopExiting => {
example.take().unwrap().exit();
}
Event::WindowEvent { event, .. } => match event {
WindowEvent::KeyboardInput {
event:
KeyEvent {
logical_key: Key::Named(NamedKey::Escape),
state: ElementState::Pressed,
..
},
..
}
| WindowEvent::CloseRequested => target.exit(),
WindowEvent::RedrawRequested => {
let ex = example.as_mut().unwrap();
{
accum_time += last_frame_inst.elapsed().as_secs_f32();
last_frame_inst = Instant::now();
frame_count += 1;
if frame_count == 100 && !ex.is_empty() {
println!(
"Avg frame time {}ms",
accum_time * 1000.0 / frame_count as f32
);
accum_time = 0.0;
frame_count = 0;
}
}
ex.render();
window.request_redraw();
}
_ => {
example.as_mut().unwrap().update(event);
}
},
_ => {}
}
})
.unwrap();
}