Revision control
Copy as Markdown
Other Tools
//! Unix path manipulation.
//!
//! This crate provides two types, [`PathBuf`] and [`Path`] (akin to `String`
//! and `str`), for working with paths abstractly. These types are thin wrappers
//! around `UnixString` and `UnixStr` respectively, meaning that they work
//! directly on strings independently from the local platform's path syntax.
//!
//! Paths can be parsed into [`Component`]s by iterating over the structure
//! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
//! correspond to the substrings between path separators (`/`). You can
//! reconstruct an equivalent path from components with the [`push`] method on
//! [`PathBuf`]; note that the paths may differ syntactically by the
//! normalization described in the documentation for the [`components`] method.
//!
//! ## Simple usage
//!
//! Path manipulation includes both parsing components from slices and building
//! new owned paths.
//!
//! To parse a path, you can create a [`Path`] slice from a `str`
//! slice and start asking questions:
//!
//! ```
//! use unix_path::Path;
//! use unix_str::UnixStr;
//!
//! let path = Path::new("/tmp/foo/bar.txt");
//!
//! let parent = path.parent();
//! assert_eq!(parent, Some(Path::new("/tmp/foo")));
//!
//! let file_stem = path.file_stem();
//! assert_eq!(file_stem, Some(UnixStr::new("bar")));
//!
//! let extension = path.extension();
//! assert_eq!(extension, Some(UnixStr::new("txt")));
//! ```
//!
//! To build or modify paths, use [`PathBuf`]:
//!
//! ```
//! use unix_path::PathBuf;
//!
//! // This way works...
//! let mut path = PathBuf::from("/");
//!
//! path.push("feel");
//! path.push("the");
//!
//! path.set_extension("force");
//!
//! // ... but push is best used if you don't know everything up
//! // front. If you do, this way is better:
//! let path: PathBuf = ["/", "feel", "the.force"].iter().collect();
//! ```
//!
//! [`Component`]: enum.Component.html
//! [`components`]:struct.Path.html#method.components
//! [`PathBuf`]: struct.PathBuf.html
//! [`Path`]: struct.Path.html
//! [`push`]: struct.PathBuf.html#method.push
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "shrink_to", feature(shrink_to))]
#[cfg(feature = "alloc")]
extern crate alloc;
use unix_str::UnixStr;
#[cfg(feature = "alloc")]
use unix_str::UnixString;
#[cfg(feature = "alloc")]
use core::borrow::Borrow;
use core::cmp;
use core::fmt;
use core::hash::{Hash, Hasher};
#[cfg(feature = "alloc")]
use core::iter;
use core::iter::FusedIterator;
#[cfg(feature = "alloc")]
use core::ops::{self, Deref};
#[cfg(feature = "alloc")]
use alloc::{
borrow::{Cow, ToOwned},
boxed::Box,
rc::Rc,
str::FromStr,
string::String,
sync::Arc,
vec::Vec,
};
#[cfg(feature = "std")]
use std::error::Error;
mod lossy;
////////////////////////////////////////////////////////////////////////////////
// Exposed parsing helpers
////////////////////////////////////////////////////////////////////////////////
/// Determines whether the character is the permitted path separator for Unix,
/// `/`.
///
/// # Examples
///
/// ```
/// assert!(unix_path::is_separator('/'));
/// assert!(!unix_path::is_separator('❤'));
/// ```
pub fn is_separator(c: char) -> bool {
c == '/'
}
/// The separator of path components for Unix, `/`.
pub const MAIN_SEPARATOR: char = '/';
////////////////////////////////////////////////////////////////////////////////
// Misc helpers
////////////////////////////////////////////////////////////////////////////////
// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
// `iter` after having exhausted `prefix`.
fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
where
I: Iterator<Item = Component<'a>> + Clone,
J: Iterator<Item = Component<'b>>,
{
loop {
let mut iter_next = iter.clone();
match (iter_next.next(), prefix.next()) {
(Some(ref x), Some(ref y)) if x == y => (),
(Some(_), Some(_)) => return None,
(Some(_), None) => return Some(iter),
(None, None) => return Some(iter),
(None, Some(_)) => return None,
}
iter = iter_next;
}
}
fn unix_str_as_u8_slice(s: &UnixStr) -> &[u8] {
unsafe { &*(s as *const UnixStr as *const [u8]) }
}
unsafe fn u8_slice_as_unix_str(s: &[u8]) -> &UnixStr {
&*(s as *const [u8] as *const UnixStr)
}
////////////////////////////////////////////////////////////////////////////////
// Cross-platform, iterator-independent parsing
////////////////////////////////////////////////////////////////////////////////
/// Says whether the first byte after the prefix is a separator.
fn has_physical_root(path: &[u8]) -> bool {
!path.is_empty() && path[0] == b'/'
}
// basic workhorse for splitting stem and extension
fn split_file_at_dot(file: &UnixStr) -> (Option<&UnixStr>, Option<&UnixStr>) {
unsafe {
if unix_str_as_u8_slice(file) == b".." {
return (Some(file), None);
}
// The unsafety here stems from converting between &OsStr and &[u8]
// and back. This is safe to do because (1) we only look at ASCII
// contents of the encoding and (2) new &OsStr values are produced
// only from ASCII-bounded slices of existing &OsStr values.
let mut iter = unix_str_as_u8_slice(file).rsplitn(2, |b| *b == b'.');
let after = iter.next();
let before = iter.next();
if before == Some(b"") {
(Some(file), None)
} else {
(
before.map(|s| u8_slice_as_unix_str(s)),
after.map(|s| u8_slice_as_unix_str(s)),
)
}
}
}
////////////////////////////////////////////////////////////////////////////////
// The core iterators
////////////////////////////////////////////////////////////////////////////////
/// Component parsing works by a double-ended state machine; the cursors at the
/// front and back of the path each keep track of what parts of the path have
/// been consumed so far.
///
/// Going front to back, a path is made up of a prefix, a starting
/// directory component, and a body (of normal components)
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
enum State {
Prefix = 0,
StartDir = 1, // / or . or nothing
Body = 2, // foo/bar/baz
Done = 3,
}
/// A single component of a path.
///
/// A `Component` roughly corresponds to a substring between path separators
/// (`/`).
///
/// This `enum` is created by iterating over [`Components`], which in turn is
/// created by the [`components`][`Path::components`] method on [`Path`].
///
/// # Examples
///
/// ```rust
/// use unix_path::{Component, Path};
///
/// let path = Path::new("/tmp/foo/bar.txt");
/// let components = path.components().collect::<Vec<_>>();
/// assert_eq!(&components, &[
/// Component::RootDir,
/// Component::Normal("tmp".as_ref()),
/// Component::Normal("foo".as_ref()),
/// Component::Normal("bar.txt".as_ref()),
/// ]);
/// ```
///
/// [`Components`]: struct.Components.html
/// [`Path`]: struct.Path.html
/// [`Path::components`]: struct.Path.html#method.components
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Component<'a> {
/// The root directory component, appears after any prefix and before anything else.
///
/// It represents a separator that designates that a path starts from root.
RootDir,
/// A reference to the current directory, i.e., `.`.
CurDir,
/// A reference to the parent directory, i.e., `..`.
ParentDir,
/// A normal component, e.g., `a` and `b` in `a/b`.
///
/// This variant is the most common one, it represents references to files
/// or directories.
Normal(&'a UnixStr),
}
impl<'a> Component<'a> {
/// Extracts the underlying `UnixStr` slice.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("./tmp/foo/bar.txt");
/// let components: Vec<_> = path.components().map(|comp| comp.as_unix_str()).collect();
/// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
/// ```
pub fn as_unix_str(self) -> &'a UnixStr {
match self {
Component::RootDir => UnixStr::new("/"),
Component::CurDir => UnixStr::new("."),
Component::ParentDir => UnixStr::new(".."),
Component::Normal(path) => path,
}
}
}
impl AsRef<UnixStr> for Component<'_> {
fn as_ref(&self) -> &UnixStr {
self.as_unix_str()
}
}
impl AsRef<Path> for Component<'_> {
fn as_ref(&self) -> &Path {
self.as_unix_str().as_ref()
}
}
/// An iterator over the [`Component`]s of a [`Path`].
///
/// This `struct` is created by the [`components`] method on [`Path`].
/// See its documentation for more.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("/tmp/foo/bar.txt");
///
/// for component in path.components() {
/// println!("{:?}", component);
/// }
/// ```
///
/// [`Component`]: enum.Component.html
/// [`components`]: struct.Path.html#method.components
/// [`Path`]: struct.Path.html
#[derive(Clone)]
pub struct Components<'a> {
// The path left to parse components from
path: &'a [u8],
// true if path *physically* has a root separator;.
has_physical_root: bool,
// The iterator is double-ended, and these two states keep track of what has
// been produced from either end
front: State,
back: State,
}
/// An iterator over the [`Component`]s of a [`Path`], as `UnixStr` slices.
///
/// This `struct` is created by the [`iter`] method on [`Path`].
/// See its documentation for more.
///
/// [`Component`]: enum.Component.html
/// [`iter`]: struct.Path.html#method.iter
/// [`Path`]: struct.Path.html
#[derive(Clone)]
pub struct Iter<'a> {
inner: Components<'a>,
}
impl fmt::Debug for Components<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct DebugHelper<'a>(&'a Path);
impl fmt::Debug for DebugHelper<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.0.components()).finish()
}
}
f.debug_tuple("Components")
.field(&DebugHelper(self.as_path()))
.finish()
}
}
impl<'a> Components<'a> {
// Given the iteration so far, how much of the pre-State::Body path is left?
#[inline]
fn len_before_body(&self) -> usize {
let root = if self.front <= State::StartDir && self.has_physical_root {
1
} else {
0
};
let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() {
1
} else {
0
};
root + cur_dir
}
// is the iteration complete?
#[inline]
fn finished(&self) -> bool {
self.front == State::Done || self.back == State::Done || self.front > self.back
}
#[inline]
fn is_sep_byte(&self, b: u8) -> bool {
b == b'/'
}
/// Extracts a slice corresponding to the portion of the path remaining for iteration.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let mut components = Path::new("/tmp/foo/bar.txt").components();
/// components.next();
/// components.next();
///
/// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
/// ```
pub fn as_path(&self) -> &'a Path {
let mut comps = self.clone();
if comps.front == State::Body {
comps.trim_left();
}
if comps.back == State::Body {
comps.trim_right();
}
unsafe { Path::from_u8_slice(comps.path) }
}
/// Is the *original* path rooted?
fn has_root(&self) -> bool {
self.has_physical_root
}
/// Should the normalized path include a leading . ?
fn include_cur_dir(&self) -> bool {
if self.has_root() {
return false;
}
let mut iter = self.path[..].iter();
match (iter.next(), iter.next()) {
(Some(&b'.'), None) => true,
(Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
_ => false,
}
}
// parse a given byte sequence into the corresponding path component
fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
match comp {
b"." => None, // . components are normalized away, except at
// the beginning of a path, which is treated
// separately via `include_cur_dir`
b".." => Some(Component::ParentDir),
b"" => None,
_ => Some(Component::Normal(unsafe { u8_slice_as_unix_str(comp) })),
}
}
// parse a component from the left, saying how many bytes to consume to
// remove the component
fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
debug_assert!(self.front == State::Body);
let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
None => (0, self.path),
Some(i) => (1, &self.path[..i]),
};
(comp.len() + extra, self.parse_single_component(comp))
}
// parse a component from the right, saying how many bytes to consume to
// remove the component
fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
debug_assert!(self.back == State::Body);
let start = self.len_before_body();
let (extra, comp) = match self.path[start..]
.iter()
.rposition(|b| self.is_sep_byte(*b))
{
None => (0, &self.path[start..]),
Some(i) => (1, &self.path[start + i + 1..]),
};
(comp.len() + extra, self.parse_single_component(comp))
}
// trim away repeated separators (i.e., empty components) on the left
fn trim_left(&mut self) {
while !self.path.is_empty() {
let (size, comp) = self.parse_next_component();
if comp.is_some() {
return;
} else {
self.path = &self.path[size..];
}
}
}
// trim away repeated separators (i.e., empty components) on the right
fn trim_right(&mut self) {
while self.path.len() > self.len_before_body() {
let (size, comp) = self.parse_next_component_back();
if comp.is_some() {
return;
} else {
self.path = &self.path[..self.path.len() - size];
}
}
}
}
impl AsRef<Path> for Components<'_> {
fn as_ref(&self) -> &Path {
self.as_path()
}
}
impl AsRef<UnixStr> for Components<'_> {
fn as_ref(&self) -> &UnixStr {
self.as_path().as_unix_str()
}
}
impl fmt::Debug for Iter<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct DebugHelper<'a>(&'a Path);
impl fmt::Debug for DebugHelper<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.0.iter()).finish()
}
}
f.debug_tuple("Iter")
.field(&DebugHelper(self.as_path()))
.finish()
}
}
impl<'a> Iter<'a> {
/// Extracts a slice corresponding to the portion of the path remaining for iteration.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
/// iter.next();
/// iter.next();
///
/// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
/// ```
pub fn as_path(&self) -> &'a Path {
self.inner.as_path()
}
}
impl AsRef<Path> for Iter<'_> {
fn as_ref(&self) -> &Path {
self.as_path()
}
}
impl AsRef<UnixStr> for Iter<'_> {
fn as_ref(&self) -> &UnixStr {
self.as_path().as_unix_str()
}
}
impl<'a> Iterator for Iter<'a> {
type Item = &'a UnixStr;
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(Component::as_unix_str)
}
}
impl<'a> DoubleEndedIterator for Iter<'a> {
fn next_back(&mut self) -> Option<Self::Item> {
self.inner.next_back().map(Component::as_unix_str)
}
}
impl FusedIterator for Iter<'_> {}
impl<'a> Iterator for Components<'a> {
type Item = Component<'a>;
fn next(&mut self) -> Option<Component<'a>> {
while !self.finished() {
match self.front {
State::Prefix => {
self.front = State::StartDir;
}
State::StartDir => {
self.front = State::Body;
if self.has_physical_root {
debug_assert!(!self.path.is_empty());
self.path = &self.path[1..];
return Some(Component::RootDir);
} else if self.include_cur_dir() {
debug_assert!(!self.path.is_empty());
self.path = &self.path[1..];
return Some(Component::CurDir);
}
}
State::Body if !self.path.is_empty() => {
let (size, comp) = self.parse_next_component();
self.path = &self.path[size..];
if comp.is_some() {
return comp;
}
}
State::Body => {
self.front = State::Done;
}
State::Done => unreachable!(),
}
}
None
}
}
impl<'a> DoubleEndedIterator for Components<'a> {
fn next_back(&mut self) -> Option<Component<'a>> {
while !self.finished() {
match self.back {
State::Body if self.path.len() > self.len_before_body() => {
let (size, comp) = self.parse_next_component_back();
self.path = &self.path[..self.path.len() - size];
if comp.is_some() {
return comp;
}
}
State::Body => {
self.back = State::StartDir;
}
State::StartDir => {
self.back = State::Prefix;
if self.has_physical_root {
self.path = &self.path[..self.path.len() - 1];
return Some(Component::RootDir);
} else if self.include_cur_dir() {
self.path = &self.path[..self.path.len() - 1];
return Some(Component::CurDir);
}
}
State::Prefix => {
self.back = State::Done;
return None;
}
State::Done => unreachable!(),
}
}
None
}
}
impl FusedIterator for Components<'_> {}
impl<'a> cmp::PartialEq for Components<'a> {
fn eq(&self, other: &Components<'a>) -> bool {
Iterator::eq(self.clone(), other.clone())
}
}
impl cmp::Eq for Components<'_> {}
impl<'a> cmp::PartialOrd for Components<'a> {
fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
Iterator::partial_cmp(self.clone(), other.clone())
}
}
impl cmp::Ord for Components<'_> {
fn cmp(&self, other: &Self) -> cmp::Ordering {
Iterator::cmp(self.clone(), other.clone())
}
}
/// An iterator over [`Path`] and its ancestors.
///
/// This `struct` is created by the [`ancestors`] method on [`Path`].
/// See its documentation for more.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("/foo/bar");
///
/// for ancestor in path.ancestors() {
/// println!("{:?}", ancestor);
/// }
/// ```
///
/// [`ancestors`]: struct.Path.html#method.ancestors
/// [`Path`]: struct.Path.html
#[derive(Copy, Clone, Debug)]
pub struct Ancestors<'a> {
next: Option<&'a Path>,
}
impl<'a> Iterator for Ancestors<'a> {
type Item = &'a Path;
fn next(&mut self) -> Option<Self::Item> {
let next = self.next;
self.next = next.and_then(Path::parent);
next
}
}
impl FusedIterator for Ancestors<'_> {}
////////////////////////////////////////////////////////////////////////////////
// Basic types and traits
////////////////////////////////////////////////////////////////////////////////
/// An owned, mutable path (akin to `String`).
///
/// This type provides methods like [`push`] and [`set_extension`] that mutate
/// the path in place. It also implements `Deref` to [`Path`], meaning that
/// all methods on [`Path`] slices are available on `PathBuf` values as well.
///
/// [`Path`]: struct.Path.html
/// [`push`]: struct.PathBuf.html#method.push
/// [`set_extension`]: struct.PathBuf.html#method.set_extension
///
/// More details about the overall approach can be found in
/// the [crate documentation](index.html).
///
/// # Examples
///
/// You can use [`push`] to build up a `PathBuf` from
/// components:
///
/// ```
/// use unix_path::PathBuf;
///
/// let mut path = PathBuf::new();
///
/// path.push("/");
/// path.push("feel");
/// path.push("the");
///
/// path.set_extension("force");
/// ```
///
/// However, [`push`] is best used for dynamic situations. This is a better way
/// to do this when you know all of the components ahead of time:
///
/// ```
/// use unix_path::PathBuf;
///
/// let path: PathBuf = ["/", "feel", "the.force"].iter().collect();
/// ```
///
/// We can still do better than this! Since these are all strings, we can use
/// `From::from`:
///
/// ```
/// use unix_path::PathBuf;
///
/// let path = PathBuf::from(r"/feel/the.force");
/// ```
///
/// Which method works best depends on what kind of situation you're in.
#[derive(Clone)]
#[cfg(feature = "alloc")]
pub struct PathBuf {
inner: UnixString,
}
#[cfg(feature = "alloc")]
impl PathBuf {
fn as_mut_vec(&mut self) -> &mut Vec<u8> {
unsafe { &mut *(self as *mut PathBuf as *mut Vec<u8>) }
}
/// Allocates an empty `PathBuf`.
///
/// # Examples
///
/// ```
/// use unix_path::PathBuf;
///
/// let path = PathBuf::new();
/// ```
pub fn new() -> PathBuf {
PathBuf {
inner: UnixString::new(),
}
}
/// Creates a new `PathBuf` with a given capacity used to create the
/// internal `UnixString`. See `with_capacity` defined on `UnixString`.
///
/// # Examples
///
/// ```
/// use unix_path::PathBuf;
///
/// let mut path = PathBuf::with_capacity(10);
/// let capacity = path.capacity();
///
/// // This push is done without reallocating
/// path.push("/");
///
/// assert_eq!(capacity, path.capacity());
/// ```
pub fn with_capacity(capacity: usize) -> PathBuf {
PathBuf {
inner: UnixString::with_capacity(capacity),
}
}
/// Coerces to a [`Path`] slice.
///
/// [`Path`]: struct.Path.html
///
/// # Examples
///
/// ```
/// use unix_path::{Path, PathBuf};
///
/// let p = PathBuf::from("/test");
/// assert_eq!(Path::new("/test"), p.as_path());
/// ```
pub fn as_path(&self) -> &Path {
self
}
/// Extends `self` with `path`.
///
/// If `path` is absolute, it replaces the current path.
///
/// # Examples
///
/// Pushing a relative path extends the existing path:
///
/// ```
/// use unix_path::PathBuf;
///
/// let mut path = PathBuf::from("/tmp");
/// path.push("file.bk");
/// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
/// ```
///
/// Pushing an absolute path replaces the existing path:
///
/// ```
/// use unix_path::PathBuf;
///
/// let mut path = PathBuf::from("/tmp");
/// path.push("/etc");
/// assert_eq!(path, PathBuf::from("/etc"));
/// ```
pub fn push<P: AsRef<Path>>(&mut self, path: P) {
self._push(path.as_ref())
}
fn _push(&mut self, path: &Path) {
// in general, a separator is needed if the rightmost byte is not a separator
let need_sep = self
.as_mut_vec()
.last()
.map(|c| *c != b'/')
.unwrap_or(false);
// absolute `path` replaces `self`
if path.is_absolute() || path.has_root() {
self.as_mut_vec().truncate(0);
} else if need_sep {
self.inner.push("/");
}
self.inner.push(path.as_unix_str());
}
/// Truncates `self` to [`self.parent`].
///
/// Returns `false` and does nothing if [`self.parent`] is `None`.
/// Otherwise, returns `true`.
///
/// [`self.parent`]: struct.PathBuf.html#method.parent
///
/// # Examples
///
/// ```
/// use unix_path::{Path, PathBuf};
///
/// let mut p = PathBuf::from("/test/test.rs");
///
/// p.pop();
/// assert_eq!(Path::new("/test"), p);
/// p.pop();
/// assert_eq!(Path::new("/"), p);
/// ```
pub fn pop(&mut self) -> bool {
match self.parent().map(|p| p.as_unix_str().len()) {
Some(len) => {
self.as_mut_vec().truncate(len);
true
}
None => false,
}
}
/// Updates [`self.file_name`] to `file_name`.
///
/// If [`self.file_name`] was `None`, this is equivalent to pushing
/// `file_name`.
///
/// Otherwise it is equivalent to calling [`pop`] and then pushing
/// `file_name`. The new path will be a sibling of the original path.
/// (That is, it will have the same parent.)
///
/// [`self.file_name`]: struct.PathBuf.html#method.file_name
/// [`pop`]: struct.PathBuf.html#method.pop
///
/// # Examples
///
/// ```
/// use unix_path::PathBuf;
///
/// let mut buf = PathBuf::from("/");
/// assert!(buf.file_name() == None);
/// buf.set_file_name("bar");
/// assert!(buf == PathBuf::from("/bar"));
/// assert!(buf.file_name().is_some());
/// buf.set_file_name("baz.txt");
/// assert!(buf == PathBuf::from("/baz.txt"));
/// ```
pub fn set_file_name<S: AsRef<UnixStr>>(&mut self, file_name: S) {
self._set_file_name(file_name.as_ref())
}
fn _set_file_name(&mut self, file_name: &UnixStr) {
if self.file_name().is_some() {
let popped = self.pop();
debug_assert!(popped);
}
self.push(file_name);
}
/// Updates [`self.extension`] to `extension`.
///
/// Returns `false` and does nothing if [`self.file_name`] is `None`,
/// returns `true` and updates the extension otherwise.
///
/// If [`self.extension`] is `None`, the extension is added; otherwise
/// it is replaced.
///
/// [`self.file_name`]: struct.PathBuf.html#method.file_name
/// [`self.extension`]: struct.PathBuf.html#method.extension
///
/// # Examples
///
/// ```
/// use unix_path::{Path, PathBuf};
///
/// let mut p = PathBuf::from("/feel/the");
///
/// p.set_extension("force");
/// assert_eq!(Path::new("/feel/the.force"), p.as_path());
///
/// p.set_extension("dark_side");
/// assert_eq!(Path::new("/feel/the.dark_side"), p.as_path());
/// ```
pub fn set_extension<S: AsRef<UnixStr>>(&mut self, extension: S) -> bool {
self._set_extension(extension.as_ref())
}
fn _set_extension(&mut self, extension: &UnixStr) -> bool {
let file_stem = match self.file_stem() {
None => return false,
Some(f) => unix_str_as_u8_slice(f),
};
// truncate until right after the file stem
let end_file_stem = file_stem[file_stem.len()..].as_ptr() as usize;
let start = unix_str_as_u8_slice(&self.inner).as_ptr() as usize;
let v = self.as_mut_vec();
v.truncate(end_file_stem.wrapping_sub(start));
// add the new extension, if any
let new = unix_str_as_u8_slice(extension);
if !new.is_empty() {
v.reserve_exact(new.len() + 1);
v.push(b'.');
v.extend_from_slice(new);
}
true
}
/// Consumes the `PathBuf`, yielding its internal `UnixString` storage.
///
/// # Examples
///
/// ```
/// use unix_path::PathBuf;
///
/// let p = PathBuf::from("/the/head");
/// let bytes = p.into_unix_string();
/// ```
pub fn into_unix_string(self) -> UnixString {
self.inner
}
/// Converts this `PathBuf` into a boxed [`Path`].
///
/// [`Path`]: struct.Path.html
pub fn into_boxed_path(self) -> Box<Path> {
let rw = Box::into_raw(self.inner.into_boxed_unix_str()) as *mut Path;
unsafe { Box::from_raw(rw) }
}
/// Invokes `capacity` on the underlying instance of `UnixString`.
pub fn capacity(&self) -> usize {
self.inner.capacity()
}
/// Invokes `clear` on the underlying instance of `UnixString`.
pub fn clear(&mut self) {
self.inner.clear()
}
/// Invokes `reserve` on the underlying instance of `UnixString`.
pub fn reserve(&mut self, additional: usize) {
self.inner.reserve(additional)
}
/// Invokes `reserve_exact` on the underlying instance of `UnixString`.
pub fn reserve_exact(&mut self, additional: usize) {
self.inner.reserve_exact(additional)
}
/// Invokes `shrink_to_fit` on the underlying instance of `UnixString`.
pub fn shrink_to_fit(&mut self) {
self.inner.shrink_to_fit()
}
/// Invokes `shrink_to` on the underlying instance of `UnixString`.
#[cfg(feature = "shrink_to")]
pub fn shrink_to(&mut self, min_capacity: usize) {
self.inner.shrink_to(min_capacity)
}
}
#[cfg(feature = "alloc")]
impl From<&Path> for Box<Path> {
fn from(path: &Path) -> Box<Path> {
let boxed: Box<UnixStr> = path.inner.into();
let rw = Box::into_raw(boxed) as *mut Path;
unsafe { Box::from_raw(rw) }
}
}
#[cfg(feature = "alloc")]
impl From<Cow<'_, Path>> for Box<Path> {
#[inline]
fn from(cow: Cow<'_, Path>) -> Box<Path> {
match cow {
Cow::Borrowed(path) => Box::from(path),
Cow::Owned(path) => Box::from(path),
}
}
}
#[cfg(feature = "alloc")]
impl From<Box<Path>> for PathBuf {
/// Converts a `Box<Path>` into a `PathBuf`
///
/// This conversion does not allocate or copy memory.
fn from(boxed: Box<Path>) -> PathBuf {
boxed.into_path_buf()
}
}
#[cfg(feature = "alloc")]
impl From<PathBuf> for Box<Path> {
/// Converts a `PathBuf` into a `Box<Path>`
///
/// This conversion currently should not allocate memory,
/// but this behavior is not guaranteed in all future versions.
fn from(p: PathBuf) -> Self {
p.into_boxed_path()
}
}
#[cfg(feature = "alloc")]
impl Clone for Box<Path> {
#[inline]
fn clone(&self) -> Self {
self.to_path_buf().into_boxed_path()
}
}
#[cfg(feature = "alloc")]
impl<T: ?Sized + AsRef<UnixStr>> From<&T> for PathBuf {
fn from(s: &T) -> Self {
PathBuf::from(s.as_ref().to_unix_string())
}
}
#[cfg(feature = "alloc")]
impl From<UnixString> for PathBuf {
/// Converts a `UnixString` into a `PathBuf`
///
/// This conversion does not allocate or copy memory.
#[inline]
fn from(s: UnixString) -> Self {
PathBuf { inner: s }
}
}
#[cfg(feature = "alloc")]
impl From<PathBuf> for UnixString {
/// Converts a `PathBuf` into a `UnixString`
///
/// This conversion does not allocate or copy memory.
fn from(path_buf: PathBuf) -> Self {
path_buf.inner
}
}
#[cfg(feature = "alloc")]
impl From<String> for PathBuf {
/// Converts a `String` into a `PathBuf`
///
/// This conversion does not allocate or copy memory.
fn from(s: String) -> PathBuf {
PathBuf::from(UnixString::from(s))
}
}
#[cfg(feature = "alloc")]
impl FromStr for PathBuf {
type Err = core::convert::Infallible;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(PathBuf::from(s))
}
}
#[cfg(feature = "alloc")]
impl<P: AsRef<Path>> iter::FromIterator<P> for PathBuf {
fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
let mut buf = PathBuf::new();
buf.extend(iter);
buf
}
}
#[cfg(feature = "alloc")]
impl<P: AsRef<Path>> iter::Extend<P> for PathBuf {
fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
iter.into_iter().for_each(move |p| self.push(p.as_ref()));
}
}
#[cfg(feature = "alloc")]
impl fmt::Debug for PathBuf {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, formatter)
}
}
#[cfg(feature = "alloc")]
impl ops::Deref for PathBuf {
type Target = Path;
#[inline]
fn deref(&self) -> &Path {
Path::new(&self.inner)
}
}
#[cfg(feature = "alloc")]
impl Borrow<Path> for PathBuf {
fn borrow(&self) -> &Path {
self.deref()
}
}
#[cfg(feature = "alloc")]
impl Default for PathBuf {
fn default() -> Self {
PathBuf::new()
}
}
#[cfg(feature = "alloc")]
impl<'a> From<&'a Path> for Cow<'a, Path> {
#[inline]
fn from(s: &'a Path) -> Cow<'a, Path> {
Cow::Borrowed(s)
}
}
#[cfg(feature = "alloc")]
impl<'a> From<PathBuf> for Cow<'a, Path> {
#[inline]
fn from(s: PathBuf) -> Cow<'a, Path> {
Cow::Owned(s)
}
}
#[cfg(feature = "alloc")]
impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
#[inline]
fn from(p: &'a PathBuf) -> Cow<'a, Path> {
Cow::Borrowed(p.as_path())
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Cow<'a, Path>> for PathBuf {
#[inline]
fn from(p: Cow<'a, Path>) -> Self {
p.into_owned()
}
}
#[cfg(feature = "alloc")]
impl From<PathBuf> for Arc<Path> {
/// Converts a `PathBuf` into an `Arc` by moving the `PathBuf` data into a new `Arc` buffer.
#[inline]
fn from(s: PathBuf) -> Arc<Path> {
let arc: Arc<UnixStr> = Arc::from(s.into_unix_string());
unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
}
}
#[cfg(feature = "alloc")]
impl From<&Path> for Arc<Path> {
/// Converts a `Path` into an `Arc` by copying the `Path` data into a new `Arc` buffer.
#[inline]
fn from(s: &Path) -> Arc<Path> {
let arc: Arc<UnixStr> = Arc::from(s.as_unix_str());
unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
}
}
#[cfg(feature = "alloc")]
impl From<PathBuf> for Rc<Path> {
/// Converts a `PathBuf` into an `Rc` by moving the `PathBuf` data into a new `Rc` buffer.
#[inline]
fn from(s: PathBuf) -> Rc<Path> {
let rc: Rc<UnixStr> = Rc::from(s.into_unix_string());
unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
}
}
#[cfg(feature = "alloc")]
impl From<&Path> for Rc<Path> {
/// Converts a `Path` into an `Rc` by copying the `Path` data into a new `Rc` buffer.
#[inline]
fn from(s: &Path) -> Rc<Path> {
let rc: Rc<UnixStr> = Rc::from(s.as_unix_str());
unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
}
}
#[cfg(feature = "alloc")]
impl ToOwned for Path {
type Owned = PathBuf;
fn to_owned(&self) -> PathBuf {
self.to_path_buf()
}
}
#[cfg(feature = "alloc")]
impl cmp::PartialEq for PathBuf {
fn eq(&self, other: &PathBuf) -> bool {
self.components() == other.components()
}
}
#[cfg(feature = "alloc")]
impl Hash for PathBuf {
fn hash<H: Hasher>(&self, h: &mut H) {
self.as_path().hash(h)
}
}
#[cfg(feature = "alloc")]
impl cmp::Eq for PathBuf {}
#[cfg(feature = "alloc")]
impl cmp::PartialOrd for PathBuf {
fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
self.components().partial_cmp(other.components())
}
}
#[cfg(feature = "alloc")]
impl cmp::Ord for PathBuf {
fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
self.components().cmp(other.components())
}
}
#[cfg(feature = "alloc")]
impl AsRef<UnixStr> for PathBuf {
fn as_ref(&self) -> &UnixStr {
&self.inner[..]
}
}
/// A slice of a path (akin to `str`).
///
/// This type supports a number of operations for inspecting a path, including
/// breaking the path into its components (separated by `/` ), extracting the
/// file name, determining whether the path is absolute, and so on.
///
/// This is an *unsized* type, meaning that it must always be used behind a
/// pointer like `&` or `Box`. For an owned version of this type,
/// see [`PathBuf`].
///
/// [`PathBuf`]: struct.PathBuf.html
///
/// More details about the overall approach can be found in
/// the [crate documentation](index.html).
///
/// # Examples
///
/// ```
/// use unix_path::Path;
/// use unix_str::UnixStr;
///
/// let path = Path::new("./foo/bar.txt");
///
/// let parent = path.parent();
/// assert_eq!(parent, Some(Path::new("./foo")));
///
/// let file_stem = path.file_stem();
/// assert_eq!(file_stem, Some(UnixStr::new("bar")));
///
/// let extension = path.extension();
/// assert_eq!(extension, Some(UnixStr::new("txt")));
/// ```
pub struct Path {
inner: UnixStr,
}
/// An error returned from [`Path::strip_prefix`][`strip_prefix`] if the prefix
/// was not found.
///
/// This `struct` is created by the [`strip_prefix`] method on [`Path`].
/// See its documentation for more.
///
/// [`strip_prefix`]: struct.Path.html#method.strip_prefix
/// [`Path`]: struct.Path.html
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct StripPrefixError(());
impl Path {
// The following (private!) function allows construction of a path from a u8
// slice, which is only safe when it is known to follow the OsStr encoding.
unsafe fn from_u8_slice(s: &[u8]) -> &Path {
Path::new(u8_slice_as_unix_str(s))
}
// The following (private!) function reveals the byte encoding used for OsStr.
fn as_u8_slice(&self) -> &[u8] {
unix_str_as_u8_slice(&self.inner)
}
/// Directly wraps a string slice as a `Path` slice.
///
/// This is a cost-free conversion.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// Path::new("foo.txt");
/// ```
///
/// You can create `Path`s from `String`s, or even other `Path`s:
///
/// ```
/// use unix_path::Path;
///
/// let string = String::from("foo.txt");
/// let from_string = Path::new(&string);
/// let from_path = Path::new(&from_string);
/// assert_eq!(from_string, from_path);
/// ```
pub fn new<S: AsRef<UnixStr> + ?Sized>(s: &S) -> &Path {
unsafe { &*(s.as_ref() as *const UnixStr as *const Path) }
}
/// Yields the underlying bytes.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
/// use unix_str::UnixStr;
///
/// let os_str = Path::new("foo.txt").as_unix_str();
/// assert_eq!(os_str, UnixStr::new("foo.txt"));
/// ```
pub fn as_unix_str(&self) -> &UnixStr {
&self.inner
}
/// Yields a `&str` slice if the `Path` is valid unicode.
///
/// This conversion may entail doing a check for UTF-8 validity.
/// Note that validation is performed because non-UTF-8 strings are
/// perfectly valid for some OS.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("foo.txt");
/// assert_eq!(path.to_str(), Some("foo.txt"));
/// ```
pub fn to_str(&self) -> Option<&str> {
self.inner.to_str()
}
/// Converts a `Path` to a `Cow<str>`.
///
/// Any non-Unicode sequences are replaced with
/// `U+FFFD REPLACEMENT CHARACTER`.
///
///
/// # Examples
///
/// Calling `to_string_lossy` on a `Path` with valid unicode:
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("foo.txt");
/// assert_eq!(path.to_string_lossy(), "foo.txt");
/// ```
///
/// Had `path` contained invalid unicode, the `to_string_lossy` call might
/// have returned `"fo�.txt"`.
#[cfg(feature = "alloc")]
pub fn to_string_lossy(&self) -> Cow<'_, str> {
self.inner.to_string_lossy()
}
/// Converts a `Path` to an owned [`PathBuf`].
///
/// [`PathBuf`]: struct.PathBuf.html
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path_buf = Path::new("foo.txt").to_path_buf();
/// assert_eq!(path_buf, unix_path::PathBuf::from("foo.txt"));
/// ```
#[cfg(feature = "alloc")]
pub fn to_path_buf(&self) -> PathBuf {
PathBuf::from(&self.inner)
}
/// Returns `true` if the `Path` is absolute, i.e., if it is independent of
/// the current directory.
///
/// A path is absolute if it starts with the root, so `is_absolute` and
/// [`has_root`] are equivalent.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// assert!(!Path::new("foo.txt").is_absolute());
/// ```
///
/// [`has_root`]: #method.has_root
pub fn is_absolute(&self) -> bool {
self.has_root()
}
/// Returns `true` if the `Path` is relative, i.e., not absolute.
///
/// See [`is_absolute`]'s documentation for more details.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// assert!(Path::new("foo.txt").is_relative());
/// ```
///
/// [`is_absolute`]: #method.is_absolute
pub fn is_relative(&self) -> bool {
!self.is_absolute()
}
/// Returns `true` if the `Path` has a root.
///
/// A path has a root if it begins with `/`.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// assert!(Path::new("/etc/passwd").has_root());
/// ```
pub fn has_root(&self) -> bool {
self.components().has_root()
}
/// Returns the `Path` without its final component, if there is one.
///
/// Returns `None` if the path terminates in a root or prefix.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("/foo/bar");
/// let parent = path.parent().unwrap();
/// assert_eq!(parent, Path::new("/foo"));
///
/// let grand_parent = parent.parent().unwrap();
/// assert_eq!(grand_parent, Path::new("/"));
/// assert_eq!(grand_parent.parent(), None);
/// ```
pub fn parent(&self) -> Option<&Path> {
let mut comps = self.components();
let comp = comps.next_back();
comp.and_then(|p| match p {
Component::Normal(_) | Component::CurDir | Component::ParentDir => {
Some(comps.as_path())
}
_ => None,
})
}
/// Produces an iterator over `Path` and its ancestors.
///
/// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
/// or more times. That means, the iterator will yield `&self`, `&self.parent().unwrap()`,
/// `&self.parent().unwrap().parent().unwrap()` and so on. If the [`parent`] method returns
/// `None`, the iterator will do likewise. The iterator will always yield at least one value,
/// namely `&self`.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let mut ancestors = Path::new("/foo/bar").ancestors();
/// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
/// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
/// assert_eq!(ancestors.next(), Some(Path::new("/")));
/// assert_eq!(ancestors.next(), None);
/// ```
///
/// [`parent`]: struct.Path.html#method.parent
pub fn ancestors(&self) -> Ancestors<'_> {
Ancestors { next: Some(&self) }
}
/// Returns the final component of the `Path`, if there is one.
///
/// If the path is a normal file, this is the file name. If it's the path of a directory, this
/// is the directory name.
///
/// Returns `None` if the path terminates in `..`.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
/// use unix_str::UnixStr;
///
/// assert_eq!(Some(UnixStr::new("bin")), Path::new("/usr/bin/").file_name());
/// assert_eq!(Some(UnixStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
/// assert_eq!(Some(UnixStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
/// assert_eq!(Some(UnixStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
/// assert_eq!(None, Path::new("foo.txt/..").file_name());
/// assert_eq!(None, Path::new("/").file_name());
/// ```
pub fn file_name(&self) -> Option<&UnixStr> {
self.components().next_back().and_then(|p| match p {
Component::Normal(p) => Some(p),
_ => None,
})
}
/// Returns a path that, when joined onto `base`, yields `self`.
///
/// # Errors
///
/// If `base` is not a prefix of `self` (i.e., [`starts_with`]
/// returns `false`), returns `Err`.
///
/// [`starts_with`]: #method.starts_with
///
/// # Examples
///
/// ```
/// use unix_path::{Path, PathBuf};
///
/// let path = Path::new("/test/haha/foo.txt");
///
/// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
/// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
/// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
/// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
/// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
/// assert_eq!(path.strip_prefix("test").is_ok(), false);
/// assert_eq!(path.strip_prefix("/haha").is_ok(), false);
///
/// let prefix = PathBuf::from("/test/");
/// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
/// ```
pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
where
P: AsRef<Path>,
{
self._strip_prefix(base.as_ref())
}
fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
iter_after(self.components(), base.components())
.map(|c| c.as_path())
.ok_or(StripPrefixError(()))
}
/// Determines whether `base` is a prefix of `self`.
///
/// Only considers whole path components to match.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("/etc/passwd");
///
/// assert!(path.starts_with("/etc"));
/// assert!(path.starts_with("/etc/"));
/// assert!(path.starts_with("/etc/passwd"));
/// assert!(path.starts_with("/etc/passwd/"));
///
/// assert!(!path.starts_with("/e"));
/// ```
pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
self._starts_with(base.as_ref())
}
fn _starts_with(&self, base: &Path) -> bool {
iter_after(self.components(), base.components()).is_some()
}
/// Determines whether `child` is a suffix of `self`.
///
/// Only considers whole path components to match.
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("/etc/passwd");
///
/// assert!(path.ends_with("passwd"));
/// ```
pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
self._ends_with(child.as_ref())
}
fn _ends_with(&self, child: &Path) -> bool {
iter_after(self.components().rev(), child.components().rev()).is_some()
}
/// Extracts the stem (non-extension) portion of [`self.file_name`].
///
/// [`self.file_name`]: struct.Path.html#method.file_name
///
/// The stem is:
///
/// * `None`, if there is no file name;
/// * The entire file name if there is no embedded `.`;
/// * The entire file name if the file name begins with `.` and has no other `.`s within;
/// * Otherwise, the portion of the file name before the final `.`
///
/// # Examples
///
/// ```
/// use unix_path::Path;
///
/// let path = Path::new("foo.rs");
///
/// assert_eq!("foo", path.file_stem().unwrap());
/// ```
pub fn file_stem(&self) -> Option<&UnixStr> {
self.file_name()
.map(split_file_at_dot)
.and_then(|(before, after)| before.or(after))
}
/// Extracts the extension of [`self.file_name`], if possible.
///
/// The extension is:
///
/// * `None`, if there is no file name;
/// * `None`, if there is no embedded `.`;
/// * `None`, if the file name begins with `.` and has no other `.`s within;
/// * Otherwise, the portion of the file name after the final `.`
///
/// [`self.file_name`]: struct.Path.html#method.file_name
///
/// # Examples
///
/// ```
/// use unix_path::Path;
/// use unix_str::UnixStr;
///
/// let path = Path::new("foo.rs");
///
/// assert_eq!(UnixStr::new("rs"), path.extension().unwrap());
/// ```
pub fn extension(&self) -> Option<&UnixStr> {
self.file_name()
.map(split_file_at_dot)
.and_then(|(before, after)| before.and(after))
}
/// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
///
/// See [`PathBuf::push`] for more details on what it means to adjoin a path.
///
/// [`PathBuf`]: struct.PathBuf.html
/// [`PathBuf::push`]: struct.PathBuf.html#method.push
///
/// # Examples
///
/// ```
/// use unix_path::{Path, PathBuf};
///
/// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
/// ```
#[must_use]
#[cfg(feature = "alloc")]
pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
self._join(path.as_ref())
}
#[cfg(feature = "alloc")]
fn _join(&self, path: &Path) -> PathBuf {
let mut buf = self.to_path_buf();
buf.push(path);
buf
}
/// Creates an owned [`PathBuf`] like `self` but with the given file name.
///
/// See [`PathBuf::set_file_name`] for more details.
///
/// [`PathBuf`]: struct.PathBuf.html
/// [`PathBuf::set_file_name`]: struct.PathBuf.html#method.set_file_name
///
/// # Examples
///
/// ```
/// use unix_path::{Path, PathBuf};
///
/// let path = Path::new("/tmp/foo.txt");
/// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
///
/// let path = Path::new("/tmp");
/// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
/// ```
#[cfg(feature = "alloc")]
pub fn with_file_name<S: AsRef<UnixStr>>(&self, file_name: S) -> PathBuf {
self._with_file_name(file_name.as_ref())
}
#[cfg(feature = "alloc")]
fn _with_file_name(&self, file_name: &UnixStr) -> PathBuf {
let mut buf = self.to_path_buf();
buf.set_file_name(file_name);
buf
}
/// Creates an owned [`PathBuf`] like `self` but with the given extension.
///
/// See [`PathBuf::set_extension`] for more details.
///
/// [`PathBuf`]: struct.PathBuf.html
/// [`PathBuf::set_extension`]: struct.PathBuf.html#method.set_extension
///
/// # Examples
///
/// ```
/// use unix_path::{Path, PathBuf};
///
/// let path = Path::new("foo.rs");
/// assert_eq!(path.with_extension("txt"), PathBuf::from("foo.txt"));
/// ```
#[cfg(feature = "alloc")]
pub fn with_extension<S: AsRef<UnixStr>>(&self, extension: S) -> PathBuf {
self._with_extension(extension.as_ref())
}
#[cfg(feature = "alloc")]
fn _with_extension(&self, extension: &UnixStr) -> PathBuf {
let mut buf = self.to_path_buf();
buf.set_extension(extension);
buf
}
/// Produces an iterator over the [`Component`]s of the path.
///
/// When parsing the path, there is a small amount of normalization:
///
/// * Repeated separators are ignored, so `a/b` and `a//b` both have
/// `a` and `b` as components.
///
/// * Occurrences of `.` are normalized away, except if they are at the
/// beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
/// `a/b` all have `a` and `b` as components, but `./a/b` starts with
/// an additional [`CurDir`] component.
///
/// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
///
/// Note that no other normalization takes place; in particular, `a/c`
/// and `a/b/../c` are distinct, to account for the possibility that `b`
/// is a symbolic link (so its parent isn't `a`).
///
/// # Examples
///
/// ```
/// use unix_path::{Path, Component};
/// use unix_str::UnixStr;
///
/// let mut components = Path::new("/tmp/foo.txt").components();
///
/// assert_eq!(components.next(), Some(Component::RootDir));
/// assert_eq!(components.next(), Some(Component::Normal(UnixStr::new("tmp"))));
/// assert_eq!(components.next(), Some(Component::Normal(UnixStr::new("foo.txt"))));
/// assert_eq!(components.next(), None)
/// ```
///
/// [`Component`]: enum.Component.html
/// [`CurDir`]: enum.Component.html#variant.CurDir
pub fn components(&self) -> Components<'_> {
Components {
path: self.as_u8_slice(),
has_physical_root: has_physical_root(self.as_u8_slice()),
front: State::Prefix,
back: State::Body,
}
}
/// Produces an iterator over the path's components viewed as `UnixStr`
/// slices.
///
/// For more information about the particulars of how the path is separated
/// into components, see [`components`].
///
/// [`components`]: #method.components
///
/// # Examples
///
/// ```
/// use unix_path::{self, Path};
/// use unix_str::UnixStr;
///
/// let mut it = Path::new("/tmp/foo.txt").iter();
/// assert_eq!(it.next(), Some(UnixStr::new("/")));
/// assert_eq!(it.next(), Some(UnixStr::new("tmp")));
/// assert_eq!(it.next(), Some(UnixStr::new("foo.txt")));
/// assert_eq!(it.next(), None)
/// ```
pub fn iter(&self) -> Iter<'_> {
Iter {
inner: self.components(),
}
}
/// Converts a `Box<Path>` into a [`PathBuf`] without copying or
/// allocating.
///
/// [`PathBuf`]: struct.PathBuf.html
#[cfg(feature = "alloc")]
pub fn into_path_buf(self: Box<Path>) -> PathBuf {
let rw = Box::into_raw(self) as *mut UnixStr;
let inner = unsafe { Box::from_raw(rw) };
PathBuf {
inner: UnixString::from(inner),
}
}
/// Returns a newtype that implements Display for safely printing paths
/// that may contain non-Unicode data.
pub fn display(&self) -> Display<'_> {
Display { path: self }
}
}
impl AsRef<UnixStr> for Path {
fn as_ref(&self) -> &UnixStr {
&self.inner
}
}
impl fmt::Debug for Path {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.inner, formatter)
}
}
impl cmp::PartialEq for Path {
fn eq(&self, other: &Path) -> bool {
self.components().eq(other.components())
}
}
impl Hash for Path {
fn hash<H: Hasher>(&self, h: &mut H) {
for component in self.components() {
component.hash(h);
}
}
}
impl cmp::Eq for Path {}
impl cmp::PartialOrd for Path {
fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
self.components().partial_cmp(other.components())
}
}
impl cmp::Ord for Path {
fn cmp(&self, other: &Path) -> cmp::Ordering {
self.components().cmp(other.components())
}
}
impl AsRef<Path> for Path {
fn as_ref(&self) -> &Path {
self
}
}
impl AsRef<Path> for UnixStr {
fn as_ref(&self) -> &Path {
Path::new(self)
}
}
#[cfg(feature = "alloc")]
impl AsRef<Path> for Cow<'_, UnixStr> {
fn as_ref(&self) -> &Path {
Path::new(self)
}
}
#[cfg(feature = "alloc")]
impl AsRef<Path> for UnixString {
fn as_ref(&self) -> &Path {
Path::new(self)
}
}
impl AsRef<Path> for str {
#[inline]
fn as_ref(&self) -> &Path {
Path::new(self)
}
}
#[cfg(feature = "alloc")]
impl AsRef<Path> for String {
fn as_ref(&self) -> &Path {
Path::new(self)
}
}
#[cfg(feature = "alloc")]
impl AsRef<Path> for PathBuf {
#[inline]
fn as_ref(&self) -> &Path {
self
}
}
#[cfg(feature = "alloc")]
impl<'a> IntoIterator for &'a PathBuf {
type Item = &'a UnixStr;
type IntoIter = Iter<'a>;
fn into_iter(self) -> Iter<'a> {
self.iter()
}
}
impl<'a> IntoIterator for &'a Path {
type Item = &'a UnixStr;
type IntoIter = Iter<'a>;
fn into_iter(self) -> Iter<'a> {
self.iter()
}
}
#[cfg(feature = "serde")]
use serde::{
de::{self, Deserialize, Deserializer, Unexpected, Visitor},
ser::{self, Serialize, Serializer},
};
#[cfg(feature = "serde")]
impl Serialize for Path {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
match self.to_str() {
Some(s) => s.serialize(serializer),
None => Err(ser::Error::custom("path contains invalid UTF-8 characters")),
}
}
}
#[cfg(feature = "serde")]
impl Serialize for PathBuf {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.as_path().serialize(serializer)
}
}
#[cfg(feature = "serde")]
struct PathVisitor;
#[cfg(feature = "serde")]
impl<'a> Visitor<'a> for PathVisitor {
type Value = &'a Path;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a borrowed path")
}
fn visit_borrowed_str<E>(self, v: &'a str) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(v.as_ref())
}
fn visit_borrowed_bytes<E>(self, v: &'a [u8]) -> Result<Self::Value, E>
where
E: de::Error,
{
core::str::from_utf8(v)
.map(AsRef::as_ref)
.map_err(|_| de::Error::invalid_value(Unexpected::Bytes(v), &self))
}
}
#[cfg(feature = "serde")]
impl<'de: 'a, 'a> Deserialize<'de> for &'a Path {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_str(PathVisitor)
}
}
#[cfg(feature = "serde")]
struct PathBufVisitor;
#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for PathBufVisitor {
type Value = PathBuf;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("path string")
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(From::from(v))
}
fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(From::from(v))
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: de::Error,
{
core::str::from_utf8(v)
.map(From::from)
.map_err(|_| de::Error::invalid_value(Unexpected::Bytes(v), &self))
}
fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
where
E: de::Error,
{
String::from_utf8(v)
.map(From::from)
.map_err(|e| de::Error::invalid_value(Unexpected::Bytes(&e.into_bytes()), &self))
}
}
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for PathBuf {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_string(PathBufVisitor)
}
}
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Box<Path> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
Deserialize::deserialize(deserializer).map(PathBuf::into_boxed_path)
}
}
#[cfg(feature = "alloc")]
macro_rules! impl_cmp {
($lhs:ty, $rhs: ty) => {
impl<'a, 'b> PartialEq<$rhs> for $lhs {
#[inline]
fn eq(&self, other: &$rhs) -> bool {
<Path as PartialEq>::eq(self, other)
}
}
impl<'a, 'b> PartialEq<$lhs> for $rhs {
#[inline]
fn eq(&self, other: &$lhs) -> bool {
<Path as PartialEq>::eq(self, other)
}
}
impl<'a, 'b> PartialOrd<$rhs> for $lhs {
#[inline]
fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
<Path as PartialOrd>::partial_cmp(self, other)
}
}
impl<'a, 'b> PartialOrd<$lhs> for $rhs {
#[inline]
fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
<Path as PartialOrd>::partial_cmp(self, other)
}
}
};
}
#[cfg(feature = "alloc")]
impl_cmp!(PathBuf, Path);
#[cfg(feature = "alloc")]
impl_cmp!(PathBuf, &'a Path);
#[cfg(feature = "alloc")]
impl_cmp!(Cow<'a, Path>, Path);
#[cfg(feature = "alloc")]
impl_cmp!(Cow<'a, Path>, &'b Path);
#[cfg(feature = "alloc")]
impl_cmp!(Cow<'a, Path>, PathBuf);
impl fmt::Display for StripPrefixError {
#[allow(deprecated, deprecated_in_future)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"prefix not found".fmt(f)
}
}
#[cfg(feature = "std")]
impl Error for StripPrefixError {
#[allow(deprecated)]
fn description(&self) -> &str {
"prefix not found"
}
}
pub struct Display<'a> {
path: &'a Path,
}
impl fmt::Debug for Display<'_> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.path, formatter)
}
}
impl fmt::Display for Display<'_> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(
&lossy::Utf8Lossy::from_bytes(&self.path.as_unix_str().as_bytes()),
formatter,
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::rc::Rc;
use alloc::sync::Arc;
macro_rules! t(
($path:expr, iter: $iter:expr) => (
{
let path = Path::new($path);
// Forward iteration
let comps = path.iter()
.map(|p| p.to_string_lossy().into_owned())
.collect::<Vec<String>>();
let exp: &[&str] = &$iter;
let exps = exp.iter().map(|s| s.to_string()).collect::<Vec<String>>();
assert!(comps == exps, "iter: Expected {:?}, found {:?}",
exps, comps);
// Reverse iteration
let comps = Path::new($path).iter().rev()
.map(|p| p.to_string_lossy().into_owned())
.collect::<Vec<String>>();
let exps = exps.into_iter().rev().collect::<Vec<String>>();
assert!(comps == exps, "iter().rev(): Expected {:?}, found {:?}",
exps, comps);
}
);
($path:expr, has_root: $has_root:expr, is_absolute: $is_absolute:expr) => (
{
let path = Path::new($path);
let act_root = path.has_root();
assert!(act_root == $has_root, "has_root: Expected {:?}, found {:?}",
$has_root, act_root);
let act_abs = path.is_absolute();
assert!(act_abs == $is_absolute, "is_absolute: Expected {:?}, found {:?}",
$is_absolute, act_abs);
}
);
($path:expr, parent: $parent:expr, file_name: $file:expr) => (
{
let path = Path::new($path);
let parent = path.parent().map(|p| p.to_str().unwrap());
let exp_parent: Option<&str> = $parent;
assert!(parent == exp_parent, "parent: Expected {:?}, found {:?}",
exp_parent, parent);
let file = path.file_name().map(|p| p.to_str().unwrap());
let exp_file: Option<&str> = $file;
assert!(file == exp_file, "file_name: Expected {:?}, found {:?}",
exp_file, file);
}
);
($path:expr, file_stem: $file_stem:expr, extension: $extension:expr) => (
{
let path = Path::new($path);
let stem = path.file_stem().map(|p| p.to_str().unwrap());
let exp_stem: Option<&str> = $file_stem;
assert!(stem == exp_stem, "file_stem: Expected {:?}, found {:?}",
exp_stem, stem);
let ext = path.extension().map(|p| p.to_str().unwrap());
let exp_ext: Option<&str> = $extension;
assert!(ext == exp_ext, "extension: Expected {:?}, found {:?}",
exp_ext, ext);
}
);
($path:expr, iter: $iter:expr,
has_root: $has_root:expr, is_absolute: $is_absolute:expr,
parent: $parent:expr, file_name: $file:expr,
file_stem: $file_stem:expr, extension: $extension:expr) => (
{
t!($path, iter: $iter);
t!($path, has_root: $has_root, is_absolute: $is_absolute);
t!($path, parent: $parent, file_name: $file);
t!($path, file_stem: $file_stem, extension: $extension);
}
);
);
#[test]
fn into() {
use alloc::borrow::Cow;
let static_path = Path::new("/home/foo");
let static_cow_path: Cow<'static, Path> = static_path.into();
let pathbuf = PathBuf::from("/home/foo");
{
let path: &Path = &pathbuf;
let borrowed_cow_path: Cow<'_, Path> = path.into();
assert_eq!(static_cow_path, borrowed_cow_path);
}
let owned_cow_path: Cow<'static, Path> = pathbuf.into();
assert_eq!(static_cow_path, owned_cow_path);
}
#[test]
pub fn test_decompositions_unix() {
t!("",
iter: [],
has_root: false,
is_absolute: false,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("foo",
iter: ["foo"],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("/",
iter: ["/"],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("/foo",
iter: ["/", "foo"],
has_root: true,
is_absolute: true,
parent: Some("/"),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("foo/",
iter: ["foo"],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("/foo/",
iter: ["/", "foo"],
has_root: true,
is_absolute: true,
parent: Some("/"),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("foo/bar",
iter: ["foo", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("/foo/bar",
iter: ["/", "foo", "bar"],
has_root: true,
is_absolute: true,
parent: Some("/foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("///foo///",
iter: ["/", "foo"],
has_root: true,
is_absolute: true,
parent: Some("/"),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("///foo///bar",
iter: ["/", "foo", "bar"],
has_root: true,
is_absolute: true,
parent: Some("///foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("./.",
iter: ["."],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: None,
file_stem: None,
extension: None
);
t!("/..",
iter: ["/", ".."],
has_root: true,
is_absolute: true,
parent: Some("/"),
file_name: None,
file_stem: None,
extension: None
);
t!("../",
iter: [".."],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/.",
iter: ["foo"],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("foo/..",
iter: ["foo", ".."],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/./",
iter: ["foo"],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("foo/./bar",
iter: ["foo", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("foo/../",
iter: ["foo", ".."],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/../bar",
iter: ["foo", "..", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo/.."),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("./a",
iter: [".", "a"],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: Some("a"),
file_stem: Some("a"),
extension: None
);
t!(".",
iter: ["."],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: None,
file_stem: None,
extension: None
);
t!("./",
iter: ["."],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: None,
file_stem: None,
extension: None
);
t!("a/b",
iter: ["a", "b"],
has_root: false,
is_absolute: false,
parent: Some("a"),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a//b",
iter: ["a", "b"],
has_root: false,
is_absolute: false,
parent: Some("a"),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a/./b",
iter: ["a", "b"],
has_root: false,
is_absolute: false,
parent: Some("a"),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a/b/c",
iter: ["a", "b", "c"],
has_root: false,
is_absolute: false,
parent: Some("a/b"),
file_name: Some("c"),
file_stem: Some("c"),
extension: None
);
t!(".foo",
iter: [".foo"],
has_root: false,
is_absolute: false,
parent: Some(""),
file_name: Some(".foo"),
file_stem: Some(".foo"),
extension: None
);
}
#[test]
pub fn test_stem_ext() {
t!("foo",
file_stem: Some("foo"),
extension: None
);
t!("foo.",
file_stem: Some("foo"),
extension: Some("")
);
t!(".foo",
file_stem: Some(".foo"),
extension: None
);
t!("foo.txt",
file_stem: Some("foo"),
extension: Some("txt")
);
t!("foo.bar.txt",
file_stem: Some("foo.bar"),
extension: Some("txt")
);
t!("foo.bar.",
file_stem: Some("foo.bar"),
extension: Some("")
);
t!(".", file_stem: None, extension: None);
t!("..", file_stem: None, extension: None);
t!("", file_stem: None, extension: None);
}
#[test]
pub fn test_push() {
macro_rules! tp(
($path:expr, $push:expr, $expected:expr) => ( {
let mut actual = PathBuf::from($path);
actual.push($push);
assert!(actual.to_str() == Some($expected),
"pushing {:?} onto {:?}: Expected {:?}, got {:?}",
$push, $path, $expected, actual.to_str().unwrap());
});
);
tp!("", "foo", "foo");
tp!("foo", "bar", "foo/bar");
tp!("foo/", "bar", "foo/bar");
tp!("foo//", "bar", "foo//bar");
tp!("foo/.", "bar", "foo/./bar");
tp!("foo./.", "bar", "foo././bar");
tp!("foo", "", "foo/");
tp!("foo", ".", "foo/.");
tp!("foo", "..", "foo/..");
tp!("foo", "/", "/");
tp!("/foo/bar", "/", "/");
tp!("/foo/bar", "/baz", "/baz");
tp!("/foo/bar", "./baz", "/foo/bar/./baz");
}
#[test]
pub fn test_pop() {
macro_rules! tp(
($path:expr, $expected:expr, $output:expr) => ( {
let mut actual = PathBuf::from($path);
let output = actual.pop();
assert!(actual.to_str() == Some($expected) && output == $output,
"popping from {:?}: Expected {:?}/{:?}, got {:?}/{:?}",
$path, $expected, $output,
actual.to_str().unwrap(), output);
});
);
tp!("", "", false);
tp!("/", "/", false);
tp!("foo", "", true);
tp!(".", "", true);
tp!("/foo", "/", true);
tp!("/foo/bar", "/foo", true);
tp!("foo/bar", "foo", true);
tp!("foo/.", "", true);
tp!("foo//bar", "foo", true);
}
#[test]
pub fn test_set_file_name() {
macro_rules! tfn(
($path:expr, $file:expr, $expected:expr) => ( {
let mut p = PathBuf::from($path);
p.set_file_name($file);
assert!(p.to_str() == Some($expected),
"setting file name of {:?} to {:?}: Expected {:?}, got {:?}",
$path, $file, $expected,
p.to_str().unwrap());
});
);
tfn!("foo", "foo", "foo");
tfn!("foo", "bar", "bar");
tfn!("foo", "", "");
tfn!("", "foo", "foo");
tfn!(".", "foo", "./foo");
tfn!("foo/", "bar", "bar");
tfn!("foo/.", "bar", "bar");
tfn!("..", "foo", "../foo");
tfn!("foo/..", "bar", "foo/../bar");
tfn!("/", "foo", "/foo");
}
#[test]
pub fn test_set_extension() {
macro_rules! tfe(
($path:expr, $ext:expr, $expected:expr, $output:expr) => ( {
let mut p = PathBuf::from($path);
let output = p.set_extension($ext);
assert!(p.to_str() == Some($expected) && output == $output,
"setting extension of {:?} to {:?}: Expected {:?}/{:?}, got {:?}/{:?}",
$path, $ext, $expected, $output,
p.to_str().unwrap(), output);
});
);
tfe!("foo", "txt", "foo.txt", true);
tfe!("foo.bar", "txt", "foo.txt", true);
tfe!("foo.bar.baz", "txt", "foo.bar.txt", true);
tfe!(".test", "txt", ".test.txt", true);
tfe!("foo.txt", "", "foo", true);
tfe!("foo", "", "foo", true);
tfe!("", "foo", "", false);
tfe!(".", "foo", ".", false);
tfe!("foo/", "bar", "foo.bar", true);
tfe!("foo/.", "bar", "foo.bar", true);
tfe!("..", "foo", "..", false);
tfe!("foo/..", "bar", "foo/..", false);
tfe!("/", "foo", "/", false);
}
#[test]
fn test_eq_receivers() {
use alloc::borrow::Cow;
let borrowed: &Path = Path::new("foo/bar");
let mut owned: PathBuf = PathBuf::new();
owned.push("foo");
owned.push("bar");
let borrowed_cow: Cow<'_, Path> = borrowed.into();
let owned_cow: Cow<'_, Path> = owned.clone().into();
macro_rules! t {
($($current:expr),+) => {
$(
assert_eq!($current, borrowed);
assert_eq!($current, owned);
assert_eq!($current, borrowed_cow);
assert_eq!($current, owned_cow);
)+
}
}
t!(borrowed, owned, borrowed_cow, owned_cow);
}
#[test]
pub fn test_compare() {
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
fn hash<T: Hash>(t: T) -> u64 {
let mut s = DefaultHasher::new();
t.hash(&mut s);
s.finish()
}
macro_rules! tc(
($path1:expr, $path2:expr, eq: $eq:expr,
starts_with: $starts_with:expr, ends_with: $ends_with:expr,
relative_from: $relative_from:expr) => ({
let path1 = Path::new($path1);
let path2 = Path::new($path2);
let eq = path1 == path2;
assert!(eq == $eq, "{:?} == {:?}, expected {:?}, got {:?}",
$path1, $path2, $eq, eq);
assert!($eq == (hash(path1) == hash(path2)),
"{:?} == {:?}, expected {:?}, got {} and {}",
$path1, $path2, $eq, hash(path1), hash(path2));
let starts_with = path1.starts_with(path2);
assert!(starts_with == $starts_with,
"{:?}.starts_with({:?}), expected {:?}, got {:?}", $path1, $path2,
$starts_with, starts_with);
let ends_with = path1.ends_with(path2);
assert!(ends_with == $ends_with,
"{:?}.ends_with({:?}), expected {:?}, got {:?}", $path1, $path2,
$ends_with, ends_with);
let relative_from = path1.strip_prefix(path2)
.map(|p| p.to_str().unwrap())
.ok();
let exp: Option<&str> = $relative_from;
assert!(relative_from == exp,
"{:?}.strip_prefix({:?}), expected {:?}, got {:?}",
$path1, $path2, exp, relative_from);
});
);
tc!("", "",
eq: true,
starts_with: true,
ends_with: true,
relative_from: Some("")
);
tc!("foo", "",
eq: false,
starts_with: true,
ends_with: true,
relative_from: Some("foo")
);
tc!("", "foo",
eq: false,
starts_with: false,
ends_with: false,
relative_from: None
);
tc!("foo", "foo",
eq: true,
starts_with: true,
ends_with: true,
relative_from: Some("")
);
tc!("foo/", "foo",
eq: true,
starts_with: true,
ends_with: true,
relative_from: Some("")
);
tc!("foo/bar", "foo",
eq: false,
starts_with: true,
ends_with: false,
relative_from: Some("bar")
);
tc!("foo/bar/baz", "foo/bar",
eq: false,
starts_with: true,
ends_with: false,
relative_from: Some("baz")
);
tc!("foo/bar", "foo/bar/baz",
eq: false,
starts_with: false,
ends_with: false,
relative_from: None
);
tc!("./foo/bar/", ".",
eq: false,
starts_with: true,
ends_with: false,
relative_from: Some("foo/bar")
);
}
#[test]
fn test_components_debug() {
let path = Path::new("/tmp");
let mut components = path.components();
let expected = "Components([RootDir, Normal(\"tmp\")])";
let actual = format!("{:?}", components);
assert_eq!(expected, actual);
let _ = components.next().unwrap();
let expected = "Components([Normal(\"tmp\")])";
let actual = format!("{:?}", components);
assert_eq!(expected, actual);
let _ = components.next().unwrap();
let expected = "Components([])";
let actual = format!("{:?}", components);
assert_eq!(expected, actual);
}
#[test]
fn test_iter_debug() {
let path = Path::new("/tmp");
let mut iter = path.iter();
let expected = "Iter([\"/\", \"tmp\"])";
let actual = format!("{:?}", iter);
assert_eq!(expected, actual);
let _ = iter.next().unwrap();
let expected = "Iter([\"tmp\"])";
let actual = format!("{:?}", iter);
assert_eq!(expected, actual);
let _ = iter.next().unwrap();
let expected = "Iter([])";
let actual = format!("{:?}", iter);
assert_eq!(expected, actual);
}
#[test]
fn into_boxed() {
let orig: &str = "some/sort/of/path";
let path = Path::new(orig);
let boxed: Box<Path> = Box::from(path);
let path_buf = path.to_owned().into_boxed_path().into_path_buf();
assert_eq!(path, &*boxed);
assert_eq!(&*boxed, &*path_buf);
assert_eq!(&*path_buf, path);
}
#[test]
fn into_rc() {
let orig = "hello/world";
let path = Path::new(orig);
let rc: Rc<Path> = Rc::from(path);
let arc: Arc<Path> = Arc::from(path);
assert_eq!(&*rc, path);
assert_eq!(&*arc, path);
let rc2: Rc<Path> = Rc::from(path.to_owned());
let arc2: Arc<Path> = Arc::from(path.to_owned());
assert_eq!(&*rc2, path);
assert_eq!(&*arc2, path);
}
}