Revision control
Copy as Markdown
Other Tools
//! This crate provides helper types for matching against enum variants, and
//! extracting bindings to each of the fields in the deriving Struct or Enum in
//! a generic way.
//!
//! If you are writing a `#[derive]` which needs to perform some operation on
//! every field, then you have come to the right place!
//!
//! # Example: `WalkFields`
//! ### Trait Implementation
//! ```
//! pub trait WalkFields: std::any::Any {
//! fn walk_fields(&self, walk: &mut FnMut(&WalkFields));
//! }
//! impl WalkFields for i32 {
//! fn walk_fields(&self, _walk: &mut FnMut(&WalkFields)) {}
//! }
//! ```
//!
//! ### Custom Derive
//! ```
//! # use quote::quote;
//! fn walkfields_derive(s: synstructure::Structure) -> proc_macro2::TokenStream {
//! let body = s.each(|bi| quote!{
//! walk(#bi)
//! });
//!
//! s.gen_impl(quote! {
//! extern crate synstructure_test_traits;
//!
//! gen impl synstructure_test_traits::WalkFields for @Self {
//! fn walk_fields(&self, walk: &mut FnMut(&synstructure_test_traits::WalkFields)) {
//! match *self { #body }
//! }
//! }
//! })
//! }
//! # const _IGNORE: &'static str = stringify!(
//! synstructure::decl_derive!([WalkFields] => walkfields_derive);
//! # );
//!
//! /*
//! * Test Case
//! */
//! fn main() {
//! synstructure::test_derive! {
//! walkfields_derive {
//! enum A<T> {
//! B(i32, T),
//! C(i32),
//! }
//! }
//! expands to {
//! const _: () = {
//! extern crate synstructure_test_traits;
//! impl<T> synstructure_test_traits::WalkFields for A<T>
//! where T: synstructure_test_traits::WalkFields
//! {
//! fn walk_fields(&self, walk: &mut FnMut(&synstructure_test_traits::WalkFields)) {
//! match *self {
//! A::B(ref __binding_0, ref __binding_1,) => {
//! { walk(__binding_0) }
//! { walk(__binding_1) }
//! }
//! A::C(ref __binding_0,) => {
//! { walk(__binding_0) }
//! }
//! }
//! }
//! }
//! };
//! }
//! }
//! }
//! ```
//!
//! # Example: `Interest`
//! ### Trait Implementation
//! ```
//! pub trait Interest {
//! fn interesting(&self) -> bool;
//! }
//! impl Interest for i32 {
//! fn interesting(&self) -> bool { *self > 0 }
//! }
//! ```
//!
//! ### Custom Derive
//! ```
//! # use quote::quote;
//! fn interest_derive(mut s: synstructure::Structure) -> proc_macro2::TokenStream {
//! let body = s.fold(false, |acc, bi| quote!{
//! #acc || synstructure_test_traits::Interest::interesting(#bi)
//! });
//!
//! s.gen_impl(quote! {
//! extern crate synstructure_test_traits;
//! gen impl synstructure_test_traits::Interest for @Self {
//! fn interesting(&self) -> bool {
//! match *self {
//! #body
//! }
//! }
//! }
//! })
//! }
//! # const _IGNORE: &'static str = stringify!(
//! synstructure::decl_derive!([Interest] => interest_derive);
//! # );
//!
//! /*
//! * Test Case
//! */
//! fn main() {
//! synstructure::test_derive!{
//! interest_derive {
//! enum A<T> {
//! B(i32, T),
//! C(i32),
//! }
//! }
//! expands to {
//! const _: () = {
//! extern crate synstructure_test_traits;
//! impl<T> synstructure_test_traits::Interest for A<T>
//! where T: synstructure_test_traits::Interest
//! {
//! fn interesting(&self) -> bool {
//! match *self {
//! A::B(ref __binding_0, ref __binding_1,) => {
//! false ||
//! synstructure_test_traits::Interest::interesting(__binding_0) ||
//! synstructure_test_traits::Interest::interesting(__binding_1)
//! }
//! A::C(ref __binding_0,) => {
//! false ||
//! synstructure_test_traits::Interest::interesting(__binding_0)
//! }
//! }
//! }
//! }
//! };
//! }
//! }
//! }
//! ```
//!
//! For more example usage, consider investigating the `abomonation_derive` crate,
//! which makes use of this crate, and is fairly simple.
#![allow(
clippy::default_trait_access,
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::must_use_candidate,
clippy::needless_pass_by_value
)]
#[cfg(all(
not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
feature = "proc-macro"
))]
extern crate proc_macro;
use std::collections::HashSet;
use syn::parse::{ParseStream, Parser};
use syn::visit::{self, Visit};
use syn::{
braced, punctuated, token, Attribute, Data, DeriveInput, Error, Expr, Field, Fields,
FieldsNamed, FieldsUnnamed, GenericParam, Generics, Ident, PredicateType, Result, Token,
TraitBound, Type, TypeMacro, TypeParamBound, TypePath, WhereClause, WherePredicate,
};
use quote::{format_ident, quote_spanned, ToTokens};
// re-export the quote! macro so we can depend on it being around in our macro's
// implementations.
#[doc(hidden)]
pub use quote::quote;
use proc_macro2::{Span, TokenStream, TokenTree};
// NOTE: This module has documentation hidden, as it only exports macros (which
// always appear in the root of the crate) and helper methods / re-exports used
// in the implementation of those macros.
#[doc(hidden)]
pub mod macros;
/// Changes how bounds are added
#[allow(clippy::manual_non_exhaustive)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum AddBounds {
/// Add for fields and generics
Both,
/// Fields only
Fields,
/// Generics only
Generics,
/// None
None,
#[doc(hidden)]
__Nonexhaustive,
}
/// The type of binding to use when generating a pattern.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum BindStyle {
/// `x`
Move,
/// `mut x`
MoveMut,
/// `ref x`
Ref,
/// `ref mut x`
RefMut,
}
impl ToTokens for BindStyle {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
BindStyle::Move => {}
BindStyle::MoveMut => quote_spanned!(Span::call_site() => mut).to_tokens(tokens),
BindStyle::Ref => quote_spanned!(Span::call_site() => ref).to_tokens(tokens),
BindStyle::RefMut => quote_spanned!(Span::call_site() => ref mut).to_tokens(tokens),
}
}
}
// Internal method for merging seen_generics arrays together.
fn generics_fuse(res: &mut Vec<bool>, new: &[bool]) {
for (i, &flag) in new.iter().enumerate() {
if i == res.len() {
res.push(false);
}
if flag {
res[i] = true;
}
}
}
// Internal method for extracting the set of generics which have been matched.
fn fetch_generics<'a>(set: &[bool], generics: &'a Generics) -> Vec<&'a Ident> {
let mut tys = vec![];
for (&seen, param) in set.iter().zip(generics.params.iter()) {
if seen {
if let GenericParam::Type(tparam) = param {
tys.push(&tparam.ident);
}
}
}
tys
}
// Internal method to merge two Generics objects together intelligently.
fn merge_generics(into: &mut Generics, from: &Generics) -> Result<()> {
// Try to add the param into `into`, and merge parmas with identical names.
for p in &from.params {
for op in &into.params {
match (op, p) {
(GenericParam::Type(otp), GenericParam::Type(tp)) => {
// NOTE: This is only OK because syn ignores the span for equality purposes.
if otp.ident == tp.ident {
return Err(Error::new_spanned(
p,
format!(
"Attempted to merge conflicting generic parameters: {} and {}",
quote!(#op),
quote!(#p)
),
));
}
}
(GenericParam::Lifetime(olp), GenericParam::Lifetime(lp)) => {
// NOTE: This is only OK because syn ignores the span for equality purposes.
if olp.lifetime == lp.lifetime {
return Err(Error::new_spanned(
p,
format!(
"Attempted to merge conflicting generic parameters: {} and {}",
quote!(#op),
quote!(#p)
),
));
}
}
// We don't support merging Const parameters, because that wouldn't make much sense.
_ => (),
}
}
into.params.push(p.clone());
}
// Add any where clauses from the input generics object.
if let Some(from_clause) = &from.where_clause {
into.make_where_clause()
.predicates
.extend(from_clause.predicates.iter().cloned());
}
Ok(())
}
/// Helper method which does the same thing as rustc 1.20's
/// `Option::get_or_insert_with`. This method is used to keep backwards
/// compatibility with rustc 1.15.
fn get_or_insert_with<T, F>(opt: &mut Option<T>, f: F) -> &mut T
where
F: FnOnce() -> T,
{
if opt.is_none() {
*opt = Some(f());
}
match opt {
Some(v) => v,
None => unreachable!(),
}
}
/// Information about a specific binding. This contains both an `Ident`
/// reference to the given field, and the syn `&'a Field` descriptor for that
/// field.
///
/// This type supports `quote::ToTokens`, so can be directly used within the
/// `quote!` macro. It expands to a reference to the matched field.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct BindingInfo<'a> {
/// The name which this BindingInfo will bind to.
pub binding: Ident,
/// The type of binding which this BindingInfo will create.
pub style: BindStyle,
field: &'a Field,
// These are used to determine which type parameters are avaliable.
generics: &'a Generics,
seen_generics: Vec<bool>,
// The original index of the binding
// this will not change when .filter() is called
index: usize,
}
impl<'a> ToTokens for BindingInfo<'a> {
fn to_tokens(&self, tokens: &mut TokenStream) {
self.binding.to_tokens(tokens);
}
}
impl<'a> BindingInfo<'a> {
/// Returns a reference to the underlying `syn` AST node which this
/// `BindingInfo` references
pub fn ast(&self) -> &'a Field {
self.field
}
/// Generates the pattern fragment for this field binding.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B{ a: i32, b: i32 },
/// C(u32),
/// }
/// };
/// let s = Structure::new(&di);
///
/// assert_eq!(
/// s.variants()[0].bindings()[0].pat().to_string(),
/// quote! {
/// ref __binding_0
/// }.to_string()
/// );
/// ```
pub fn pat(&self) -> TokenStream {
let BindingInfo { binding, style, .. } = self;
quote!(#style #binding)
}
/// Returns a list of the type parameters which are referenced in this
/// field's type.
///
/// # Caveat
///
/// If the field contains any macros in type position, all parameters will
/// be considered bound. This is because we cannot determine which type
/// parameters are bound by type macros.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// struct A<T, U> {
/// a: Option<T>,
/// b: U,
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// assert_eq!(
/// s.variants()[0].bindings()[0].referenced_ty_params(),
/// &["e::format_ident!("T")]
/// );
/// ```
pub fn referenced_ty_params(&self) -> Vec<&'a Ident> {
fetch_generics(&self.seen_generics, self.generics)
}
}
/// This type is similar to `syn`'s `Variant` type, however each of the fields
/// are references rather than owned. When this is used as the AST for a real
/// variant, this struct simply borrows the fields of the `syn::Variant`,
/// however this type may also be used as the sole variant for a struct.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct VariantAst<'a> {
pub attrs: &'a [Attribute],
pub ident: &'a Ident,
pub fields: &'a Fields,
pub discriminant: &'a Option<(token::Eq, Expr)>,
}
/// A wrapper around a `syn::DeriveInput`'s variant which provides utilities
/// for destructuring `Variant`s with `match` expressions.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct VariantInfo<'a> {
pub prefix: Option<&'a Ident>,
bindings: Vec<BindingInfo<'a>>,
ast: VariantAst<'a>,
generics: &'a Generics,
// The original length of `bindings` before any `.filter()` calls
original_length: usize,
}
/// Helper function used by the `VariantInfo` constructor. Walks all of the types
/// in `field` and returns a list of the type parameters from `ty_params` which
/// are referenced in the field.
fn get_ty_params(field: &Field, generics: &Generics) -> Vec<bool> {
// Helper type. Discovers all identifiers inside of the visited type,
// and calls a callback with them.
struct BoundTypeLocator<'a> {
result: Vec<bool>,
generics: &'a Generics,
}
impl<'a> Visit<'a> for BoundTypeLocator<'a> {
// XXX: This also (intentionally) captures paths like T::SomeType. Is
// this desirable?
fn visit_ident(&mut self, id: &Ident) {
for (idx, i) in self.generics.params.iter().enumerate() {
if let GenericParam::Type(tparam) = i {
if tparam.ident == *id {
self.result[idx] = true;
}
}
}
}
fn visit_type_macro(&mut self, x: &'a TypeMacro) {
// If we see a type_mac declaration, then we can't know what type parameters
// it might be binding, so we presume it binds all of them.
for r in &mut self.result {
*r = true;
}
visit::visit_type_macro(self, x);
}
}
let mut btl = BoundTypeLocator {
result: vec![false; generics.params.len()],
generics,
};
btl.visit_type(&field.ty);
btl.result
}
impl<'a> VariantInfo<'a> {
fn new(ast: VariantAst<'a>, prefix: Option<&'a Ident>, generics: &'a Generics) -> Self {
let bindings = match ast.fields {
Fields::Unit => vec![],
Fields::Unnamed(FieldsUnnamed {
unnamed: fields, ..
})
| Fields::Named(FieldsNamed { named: fields, .. }) => {
fields
.into_iter()
.enumerate()
.map(|(i, field)| {
BindingInfo {
// XXX: This has to be call_site to avoid privacy
// when deriving on private fields.
binding: format_ident!("__binding_{}", i),
style: BindStyle::Ref,
field,
generics,
seen_generics: get_ty_params(field, generics),
index: i,
}
})
.collect::<Vec<_>>()
}
};
let original_length = bindings.len();
VariantInfo {
prefix,
bindings,
ast,
generics,
original_length,
}
}
/// Returns a slice of the bindings in this Variant.
pub fn bindings(&self) -> &[BindingInfo<'a>] {
&self.bindings
}
/// Returns a mut slice of the bindings in this Variant.
pub fn bindings_mut(&mut self) -> &mut [BindingInfo<'a>] {
&mut self.bindings
}
/// Returns a `VariantAst` object which contains references to the
/// underlying `syn` AST node which this `Variant` was created from.
pub fn ast(&self) -> VariantAst<'a> {
self.ast
}
/// True if any bindings were omitted due to a `filter` call.
pub fn omitted_bindings(&self) -> bool {
self.original_length != self.bindings.len()
}
/// Generates the match-arm pattern which could be used to match against this Variant.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
/// let s = Structure::new(&di);
///
/// assert_eq!(
/// s.variants()[0].pat().to_string(),
/// quote!{
/// A::B(ref __binding_0, ref __binding_1,)
/// }.to_string()
/// );
/// ```
pub fn pat(&self) -> TokenStream {
let mut t = TokenStream::new();
if let Some(prefix) = self.prefix {
prefix.to_tokens(&mut t);
quote!(::).to_tokens(&mut t);
}
self.ast.ident.to_tokens(&mut t);
match self.ast.fields {
Fields::Unit => {
assert!(self.bindings.is_empty());
}
Fields::Unnamed(..) => token::Paren(Span::call_site()).surround(&mut t, |t| {
let mut expected_index = 0;
for binding in &self.bindings {
while expected_index < binding.index {
quote!(_,).to_tokens(t);
expected_index += 1;
}
binding.pat().to_tokens(t);
quote!(,).to_tokens(t);
expected_index += 1;
}
if expected_index != self.original_length {
quote!(..).to_tokens(t);
}
}),
Fields::Named(..) => token::Brace(Span::call_site()).surround(&mut t, |t| {
for binding in &self.bindings {
binding.field.ident.to_tokens(t);
quote!(:).to_tokens(t);
binding.pat().to_tokens(t);
quote!(,).to_tokens(t);
}
if self.omitted_bindings() {
quote!(..).to_tokens(t);
}
}),
}
t
}
/// Generates the token stream required to construct the current variant.
///
/// The init array initializes each of the fields in the order they are
/// written in `variant.ast().fields`.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(usize, usize),
/// C{ v: usize },
/// }
/// };
/// let s = Structure::new(&di);
///
/// assert_eq!(
/// s.variants()[0].construct(|_, i| quote!(#i)).to_string(),
///
/// quote!{
/// A::B(0usize, 1usize,)
/// }.to_string()
/// );
///
/// assert_eq!(
/// s.variants()[1].construct(|_, i| quote!(#i)).to_string(),
///
/// quote!{
/// A::C{ v: 0usize, }
/// }.to_string()
/// );
/// ```
pub fn construct<F, T>(&self, mut func: F) -> TokenStream
where
F: FnMut(&Field, usize) -> T,
T: ToTokens,
{
let mut t = TokenStream::new();
if let Some(prefix) = self.prefix {
quote!(#prefix ::).to_tokens(&mut t);
}
self.ast.ident.to_tokens(&mut t);
match &self.ast.fields {
Fields::Unit => (),
Fields::Unnamed(FieldsUnnamed { unnamed, .. }) => {
token::Paren::default().surround(&mut t, |t| {
for (i, field) in unnamed.into_iter().enumerate() {
func(field, i).to_tokens(t);
quote!(,).to_tokens(t);
}
});
}
Fields::Named(FieldsNamed { named, .. }) => {
token::Brace::default().surround(&mut t, |t| {
for (i, field) in named.into_iter().enumerate() {
field.ident.to_tokens(t);
quote!(:).to_tokens(t);
func(field, i).to_tokens(t);
quote!(,).to_tokens(t);
}
});
}
}
t
}
/// Runs the passed-in function once for each bound field, passing in a `BindingInfo`.
/// and generating a `match` arm which evaluates the returned tokens.
///
/// This method will ignore fields which are ignored through the `filter`
/// method.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
/// let s = Structure::new(&di);
///
/// assert_eq!(
/// s.variants()[0].each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B(ref __binding_0, ref __binding_1,) => {
/// { println!("{:?}", __binding_0) }
/// { println!("{:?}", __binding_1) }
/// }
/// }.to_string()
/// );
/// ```
pub fn each<F, R>(&self, mut f: F) -> TokenStream
where
F: FnMut(&BindingInfo<'_>) -> R,
R: ToTokens,
{
let pat = self.pat();
let mut body = TokenStream::new();
for binding in &self.bindings {
token::Brace::default().surround(&mut body, |body| {
f(binding).to_tokens(body);
});
}
quote!(#pat => { #body })
}
/// Runs the passed-in function once for each bound field, passing in the
/// result of the previous call, and a `BindingInfo`. generating a `match`
/// arm which evaluates to the resulting tokens.
///
/// This method will ignore fields which are ignored through the `filter`
/// method.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
/// let s = Structure::new(&di);
///
/// assert_eq!(
/// s.variants()[0].fold(quote!(0), |acc, bi| quote!(#acc + #bi)).to_string(),
///
/// quote!{
/// A::B(ref __binding_0, ref __binding_1,) => {
/// 0 + __binding_0 + __binding_1
/// }
/// }.to_string()
/// );
/// ```
pub fn fold<F, I, R>(&self, init: I, mut f: F) -> TokenStream
where
F: FnMut(TokenStream, &BindingInfo<'_>) -> R,
I: ToTokens,
R: ToTokens,
{
let pat = self.pat();
let body = self.bindings.iter().fold(quote!(#init), |i, bi| {
let r = f(i, bi);
quote!(#r)
});
quote!(#pat => { #body })
}
/// Filter the bindings created by this `Variant` object. This has 2 effects:
///
/// * The bindings will no longer appear in match arms generated by methods
/// on this `Variant` or its subobjects.
///
/// * Impl blocks created with the `bound_impl` or `unsafe_bound_impl`
/// method only consider type parameters referenced in the types of
/// non-filtered fields.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B{ a: i32, b: i32 },
/// C{ a: u32 },
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.variants_mut()[0].filter(|bi| {
/// bi.ast().ident == Some(quote::format_ident!("b"))
/// });
///
/// assert_eq!(
/// s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B{ b: ref __binding_1, .. } => {
/// { println!("{:?}", __binding_1) }
/// }
/// A::C{ a: ref __binding_0, } => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
/// ```
pub fn filter<F>(&mut self, f: F) -> &mut Self
where
F: FnMut(&BindingInfo<'_>) -> bool,
{
self.bindings.retain(f);
self
}
/// Iterates all the bindings of this `Variant` object and uses a closure to determine if a
/// binding should be removed. If the closure returns `true` the binding is removed from the
/// variant. If the closure returns `false`, the binding remains in the variant.
///
/// All the removed bindings are moved to a new `Variant` object which is otherwise identical
/// to the current one. To understand the effects of removing a binding from a variant check
/// the [`VariantInfo::filter`] documentation.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B{ a: i32, b: i32 },
/// C{ a: u32 },
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// let mut with_b = &mut s.variants_mut()[0];
///
/// let with_a = with_b.drain_filter(|bi| {
/// bi.ast().ident == Some(quote::format_ident!("a"))
/// });
///
/// assert_eq!(
/// with_a.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B{ a: ref __binding_0, .. } => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
///
/// assert_eq!(
/// with_b.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B{ b: ref __binding_1, .. } => {
/// { println!("{:?}", __binding_1) }
/// }
/// }.to_string()
/// );
/// ```
#[allow(clippy::return_self_not_must_use)]
pub fn drain_filter<F>(&mut self, mut f: F) -> Self
where
F: FnMut(&BindingInfo<'_>) -> bool,
{
let mut other = VariantInfo {
prefix: self.prefix,
bindings: vec![],
ast: self.ast,
generics: self.generics,
original_length: self.original_length,
};
let (other_bindings, self_bindings) = self.bindings.drain(..).partition(&mut f);
other.bindings = other_bindings;
self.bindings = self_bindings;
other
}
/// Remove the binding at the given index.
///
/// # Panics
///
/// Panics if the index is out of range.
pub fn remove_binding(&mut self, idx: usize) -> &mut Self {
self.bindings.remove(idx);
self
}
/// Updates the `BindStyle` for each of the passed-in fields by calling the
/// passed-in function for each `BindingInfo`.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.variants_mut()[0].bind_with(|bi| BindStyle::RefMut);
///
/// assert_eq!(
/// s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B(ref mut __binding_0, ref mut __binding_1,) => {
/// { println!("{:?}", __binding_0) }
/// { println!("{:?}", __binding_1) }
/// }
/// A::C(ref __binding_0,) => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
/// ```
pub fn bind_with<F>(&mut self, mut f: F) -> &mut Self
where
F: FnMut(&BindingInfo<'_>) -> BindStyle,
{
for binding in &mut self.bindings {
binding.style = f(binding);
}
self
}
/// Updates the binding name for each fo the passed-in fields by calling the
/// passed-in function for each `BindingInfo`.
///
/// The function will be called with the `BindingInfo` and its index in the
/// enclosing variant.
///
/// The default name is `__binding_{}` where `{}` is replaced with an
/// increasing number.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B{ a: i32, b: i32 },
/// C{ a: u32 },
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.variants_mut()[0].binding_name(|bi, i| bi.ident.clone().unwrap());
///
/// assert_eq!(
/// s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B{ a: ref a, b: ref b, } => {
/// { println!("{:?}", a) }
/// { println!("{:?}", b) }
/// }
/// A::C{ a: ref __binding_0, } => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
/// ```
pub fn binding_name<F>(&mut self, mut f: F) -> &mut Self
where
F: FnMut(&Field, usize) -> Ident,
{
for (it, binding) in self.bindings.iter_mut().enumerate() {
binding.binding = f(binding.field, it);
}
self
}
/// Returns a list of the type parameters which are referenced in this
/// field's type.
///
/// # Caveat
///
/// If the field contains any macros in type position, all parameters will
/// be considered bound. This is because we cannot determine which type
/// parameters are bound by type macros.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// struct A<T, U> {
/// a: Option<T>,
/// b: U,
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// assert_eq!(
/// s.variants()[0].bindings()[0].referenced_ty_params(),
/// &["e::format_ident!("T")]
/// );
/// ```
pub fn referenced_ty_params(&self) -> Vec<&'a Ident> {
let mut flags = Vec::new();
for binding in &self.bindings {
generics_fuse(&mut flags, &binding.seen_generics);
}
fetch_generics(&flags, self.generics)
}
}
/// A wrapper around a `syn::DeriveInput` which provides utilities for creating
/// custom derive trait implementations.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Structure<'a> {
variants: Vec<VariantInfo<'a>>,
omitted_variants: bool,
ast: &'a DeriveInput,
extra_impl: Vec<GenericParam>,
extra_predicates: Vec<WherePredicate>,
add_bounds: AddBounds,
}
impl<'a> Structure<'a> {
/// Create a new `Structure` with the variants and fields from the passed-in
/// `DeriveInput`.
///
/// # Panics
///
/// This method will panic if the provided AST node represents an untagged
/// union.
pub fn new(ast: &'a DeriveInput) -> Self {
Self::try_new(ast).expect("Unable to create synstructure::Structure")
}
/// Create a new `Structure` with the variants and fields from the passed-in
/// `DeriveInput`.
///
/// Unlike `Structure::new`, this method does not panic if the provided AST
/// node represents an untagged union.
pub fn try_new(ast: &'a DeriveInput) -> Result<Self> {
let variants = match &ast.data {
Data::Enum(data) => (&data.variants)
.into_iter()
.map(|v| {
VariantInfo::new(
VariantAst {
attrs: &v.attrs,
ident: &v.ident,
fields: &v.fields,
discriminant: &v.discriminant,
},
Some(&ast.ident),
&ast.generics,
)
})
.collect::<Vec<_>>(),
Data::Struct(data) => {
vec![VariantInfo::new(
VariantAst {
attrs: &ast.attrs,
ident: &ast.ident,
fields: &data.fields,
discriminant: &None,
},
None,
&ast.generics,
)]
}
Data::Union(_) => {
return Err(Error::new_spanned(
ast,
"unexpected unsupported untagged union",
));
}
};
Ok(Structure {
variants,
omitted_variants: false,
ast,
extra_impl: vec![],
extra_predicates: vec![],
add_bounds: AddBounds::Both,
})
}
/// Returns a slice of the variants in this Structure.
pub fn variants(&self) -> &[VariantInfo<'a>] {
&self.variants
}
/// Returns a mut slice of the variants in this Structure.
pub fn variants_mut(&mut self) -> &mut [VariantInfo<'a>] {
&mut self.variants
}
/// Returns a reference to the underlying `syn` AST node which this
/// `Structure` was created from.
pub fn ast(&self) -> &'a DeriveInput {
self.ast
}
/// True if any variants were omitted due to a `filter_variants` call.
pub fn omitted_variants(&self) -> bool {
self.omitted_variants
}
/// Runs the passed-in function once for each bound field, passing in a `BindingInfo`.
/// and generating `match` arms which evaluate the returned tokens.
///
/// This method will ignore variants or fields which are ignored through the
/// `filter` and `filter_variant` methods.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
/// let s = Structure::new(&di);
///
/// assert_eq!(
/// s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B(ref __binding_0, ref __binding_1,) => {
/// { println!("{:?}", __binding_0) }
/// { println!("{:?}", __binding_1) }
/// }
/// A::C(ref __binding_0,) => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
/// ```
pub fn each<F, R>(&self, mut f: F) -> TokenStream
where
F: FnMut(&BindingInfo<'_>) -> R,
R: ToTokens,
{
let mut t = TokenStream::new();
for variant in &self.variants {
variant.each(&mut f).to_tokens(&mut t);
}
if self.omitted_variants {
quote!(_ => {}).to_tokens(&mut t);
}
t
}
/// Runs the passed-in function once for each bound field, passing in the
/// result of the previous call, and a `BindingInfo`. generating `match`
/// arms which evaluate to the resulting tokens.
///
/// This method will ignore variants or fields which are ignored through the
/// `filter` and `filter_variant` methods.
///
/// If a variant has been ignored, it will return the `init` value.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
/// let s = Structure::new(&di);
///
/// assert_eq!(
/// s.fold(quote!(0), |acc, bi| quote!(#acc + #bi)).to_string(),
///
/// quote!{
/// A::B(ref __binding_0, ref __binding_1,) => {
/// 0 + __binding_0 + __binding_1
/// }
/// A::C(ref __binding_0,) => {
/// 0 + __binding_0
/// }
/// }.to_string()
/// );
/// ```
pub fn fold<F, I, R>(&self, init: I, mut f: F) -> TokenStream
where
F: FnMut(TokenStream, &BindingInfo<'_>) -> R,
I: ToTokens,
R: ToTokens,
{
let mut t = TokenStream::new();
for variant in &self.variants {
variant.fold(&init, &mut f).to_tokens(&mut t);
}
if self.omitted_variants {
quote!(_ => { #init }).to_tokens(&mut t);
}
t
}
/// Runs the passed-in function once for each variant, passing in a
/// `VariantInfo`. and generating `match` arms which evaluate the returned
/// tokens.
///
/// This method will ignore variants and not bind fields which are ignored
/// through the `filter` and `filter_variant` methods.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
/// let s = Structure::new(&di);
///
/// assert_eq!(
/// s.each_variant(|v| {
/// let name = &v.ast().ident;
/// quote!(println!(stringify!(#name)))
/// }).to_string(),
///
/// quote!{
/// A::B(ref __binding_0, ref __binding_1,) => {
/// println!(stringify!(B))
/// }
/// A::C(ref __binding_0,) => {
/// println!(stringify!(C))
/// }
/// }.to_string()
/// );
/// ```
pub fn each_variant<F, R>(&self, mut f: F) -> TokenStream
where
F: FnMut(&VariantInfo<'_>) -> R,
R: ToTokens,
{
let mut t = TokenStream::new();
for variant in &self.variants {
let pat = variant.pat();
let body = f(variant);
quote!(#pat => { #body }).to_tokens(&mut t);
}
if self.omitted_variants {
quote!(_ => {}).to_tokens(&mut t);
}
t
}
/// Filter the bindings created by this `Structure` object. This has 2 effects:
///
/// * The bindings will no longer appear in match arms generated by methods
/// on this `Structure` or its subobjects.
///
/// * Impl blocks created with the `bound_impl` or `unsafe_bound_impl`
/// method only consider type parameters referenced in the types of
/// non-filtered fields.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B{ a: i32, b: i32 },
/// C{ a: u32 },
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.filter(|bi| {
/// bi.ast().ident == Some(quote::format_ident!("a"))
/// });
///
/// assert_eq!(
/// s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B{ a: ref __binding_0, .. } => {
/// { println!("{:?}", __binding_0) }
/// }
/// A::C{ a: ref __binding_0, } => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
/// ```
pub fn filter<F>(&mut self, mut f: F) -> &mut Self
where
F: FnMut(&BindingInfo<'_>) -> bool,
{
for variant in &mut self.variants {
variant.filter(&mut f);
}
self
}
/// Iterates all the bindings of this `Structure` object and uses a closure to determine if a
/// binding should be removed. If the closure returns `true` the binding is removed from the
/// structure. If the closure returns `false`, the binding remains in the structure.
///
/// All the removed bindings are moved to a new `Structure` object which is otherwise identical
/// to the current one. To understand the effects of removing a binding from a structure check
/// the [`Structure::filter`] documentation.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B{ a: i32, b: i32 },
/// C{ a: u32 },
/// }
/// };
/// let mut with_b = Structure::new(&di);
///
/// let with_a = with_b.drain_filter(|bi| {
/// bi.ast().ident == Some(quote::format_ident!("a"))
/// });
///
/// assert_eq!(
/// with_a.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B{ a: ref __binding_0, .. } => {
/// { println!("{:?}", __binding_0) }
/// }
/// A::C{ a: ref __binding_0, } => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
///
/// assert_eq!(
/// with_b.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B{ b: ref __binding_1, .. } => {
/// { println!("{:?}", __binding_1) }
/// }
/// A::C{ .. } => {
///
/// }
/// }.to_string()
/// );
/// ```
#[allow(clippy::return_self_not_must_use)]
pub fn drain_filter<F>(&mut self, mut f: F) -> Self
where
F: FnMut(&BindingInfo<'_>) -> bool,
{
Self {
variants: self
.variants
.iter_mut()
.map(|variant| variant.drain_filter(&mut f))
.collect(),
omitted_variants: self.omitted_variants,
ast: self.ast,
extra_impl: self.extra_impl.clone(),
extra_predicates: self.extra_predicates.clone(),
add_bounds: self.add_bounds,
}
}
/// Specify additional where predicate bounds which should be generated by
/// impl-generating functions such as `gen_impl`, `bound_impl`, and
/// `unsafe_bound_impl`.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// // Add an additional where predicate.
/// s.add_where_predicate(syn::parse_quote!(T: std::fmt::Display));
///
/// assert_eq!(
/// s.bound_impl(quote!(krate::Trait), quote!{
/// fn a() {}
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// impl<T, U> krate::Trait for A<T, U>
/// where T: std::fmt::Display,
/// T: krate::Trait,
/// Option<U>: krate::Trait,
/// U: krate::Trait
/// {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
/// ```
pub fn add_where_predicate(&mut self, pred: WherePredicate) -> &mut Self {
self.extra_predicates.push(pred);
self
}
/// Specify which bounds should be generated by impl-generating functions
/// such as `gen_impl`, `bound_impl`, and `unsafe_bound_impl`.
///
/// The default behaviour is to generate both field and generic bounds from
/// type parameters.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// // Limit bounds to only generics.
/// s.add_bounds(AddBounds::Generics);
///
/// assert_eq!(
/// s.bound_impl(quote!(krate::Trait), quote!{
/// fn a() {}
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// impl<T, U> krate::Trait for A<T, U>
/// where T: krate::Trait,
/// U: krate::Trait
/// {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
/// ```
pub fn add_bounds(&mut self, mode: AddBounds) -> &mut Self {
self.add_bounds = mode;
self
}
/// Filter the variants matched by this `Structure` object. This has 2 effects:
///
/// * Match arms destructuring these variants will no longer be generated by
/// methods on this `Structure`
///
/// * Impl blocks created with the `bound_impl` or `unsafe_bound_impl`
/// method only consider type parameters referenced in the types of
/// fields in non-fitered variants.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
///
/// let mut s = Structure::new(&di);
///
/// s.filter_variants(|v| v.ast().ident != "B");
///
/// assert_eq!(
/// s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::C(ref __binding_0,) => {
/// { println!("{:?}", __binding_0) }
/// }
/// _ => {}
/// }.to_string()
/// );
/// ```
pub fn filter_variants<F>(&mut self, f: F) -> &mut Self
where
F: FnMut(&VariantInfo<'_>) -> bool,
{
let before_len = self.variants.len();
self.variants.retain(f);
if self.variants.len() != before_len {
self.omitted_variants = true;
}
self
}
/// Iterates all the variants of this `Structure` object and uses a closure to determine if a
/// variant should be removed. If the closure returns `true` the variant is removed from the
/// structure. If the closure returns `false`, the variant remains in the structure.
///
/// All the removed variants are moved to a new `Structure` object which is otherwise identical
/// to the current one. To understand the effects of removing a variant from a structure check
/// the [`Structure::filter_variants`] documentation.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
///
/// let mut with_c = Structure::new(&di);
///
/// let with_b = with_c.drain_filter_variants(|v| v.ast().ident == "B");
///
/// assert_eq!(
/// with_c.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::C(ref __binding_0,) => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
///
/// assert_eq!(
/// with_b.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B(ref __binding_0, ref __binding_1,) => {
/// { println!("{:?}", __binding_0) }
/// { println!("{:?}", __binding_1) }
/// }
/// }.to_string()
/// );
#[allow(clippy::return_self_not_must_use)]
pub fn drain_filter_variants<F>(&mut self, mut f: F) -> Self
where
F: FnMut(&VariantInfo<'_>) -> bool,
{
let mut other = Self {
variants: vec![],
omitted_variants: self.omitted_variants,
ast: self.ast,
extra_impl: self.extra_impl.clone(),
extra_predicates: self.extra_predicates.clone(),
add_bounds: self.add_bounds,
};
let (other_variants, self_variants) = self.variants.drain(..).partition(&mut f);
other.variants = other_variants;
self.variants = self_variants;
other
}
/// Remove the variant at the given index.
///
/// # Panics
///
/// Panics if the index is out of range.
pub fn remove_variant(&mut self, idx: usize) -> &mut Self {
self.variants.remove(idx);
self.omitted_variants = true;
self
}
/// Updates the `BindStyle` for each of the passed-in fields by calling the
/// passed-in function for each `BindingInfo`.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B(i32, i32),
/// C(u32),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.bind_with(|bi| BindStyle::RefMut);
///
/// assert_eq!(
/// s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B(ref mut __binding_0, ref mut __binding_1,) => {
/// { println!("{:?}", __binding_0) }
/// { println!("{:?}", __binding_1) }
/// }
/// A::C(ref mut __binding_0,) => {
/// { println!("{:?}", __binding_0) }
/// }
/// }.to_string()
/// );
/// ```
pub fn bind_with<F>(&mut self, mut f: F) -> &mut Self
where
F: FnMut(&BindingInfo<'_>) -> BindStyle,
{
for variant in &mut self.variants {
variant.bind_with(&mut f);
}
self
}
/// Updates the binding name for each fo the passed-in fields by calling the
/// passed-in function for each `BindingInfo`.
///
/// The function will be called with the `BindingInfo` and its index in the
/// enclosing variant.
///
/// The default name is `__binding_{}` where `{}` is replaced with an
/// increasing number.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A {
/// B{ a: i32, b: i32 },
/// C{ a: u32 },
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.binding_name(|bi, i| bi.ident.clone().unwrap());
///
/// assert_eq!(
/// s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),
///
/// quote!{
/// A::B{ a: ref a, b: ref b, } => {
/// { println!("{:?}", a) }
/// { println!("{:?}", b) }
/// }
/// A::C{ a: ref a, } => {
/// { println!("{:?}", a) }
/// }
/// }.to_string()
/// );
/// ```
pub fn binding_name<F>(&mut self, mut f: F) -> &mut Self
where
F: FnMut(&Field, usize) -> Ident,
{
for variant in &mut self.variants {
variant.binding_name(&mut f);
}
self
}
/// Returns a list of the type parameters which are refrenced in the types
/// of non-filtered fields / variants.
///
/// # Caveat
///
/// If the struct contains any macros in type position, all parameters will
/// be considered bound. This is because we cannot determine which type
/// parameters are bound by type macros.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T, i32),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.filter_variants(|v| v.ast().ident != "C");
///
/// assert_eq!(
/// s.referenced_ty_params(),
/// &["e::format_ident!("T")]
/// );
/// ```
pub fn referenced_ty_params(&self) -> Vec<&'a Ident> {
let mut flags = Vec::new();
for variant in &self.variants {
for binding in &variant.bindings {
generics_fuse(&mut flags, &binding.seen_generics);
}
}
fetch_generics(&flags, &self.ast.generics)
}
/// Adds an `impl<>` generic parameter.
/// This can be used when the trait to be derived needs some extra generic parameters.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
/// let generic: syn::GenericParam = syn::parse_quote!(X: krate::AnotherTrait);
///
/// assert_eq!(
/// s.add_impl_generic(generic)
/// .bound_impl(quote!(krate::Trait<X>),
/// quote!{
/// fn a() {}
/// }
/// ).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// impl<T, U, X: krate::AnotherTrait> krate::Trait<X> for A<T, U>
/// where T : krate :: Trait < X >,
/// Option<U>: krate::Trait<X>,
/// U: krate::Trait<X>
/// {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
/// ```
pub fn add_impl_generic(&mut self, param: GenericParam) -> &mut Self {
self.extra_impl.push(param);
self
}
/// Add trait bounds for a trait with the given path for each type parmaeter
/// referenced in the types of non-filtered fields.
///
/// # Caveat
///
/// If the method contains any macros in type position, all parameters will
/// be considered bound. This is because we cannot determine which type
/// parameters are bound by type macros.
pub fn add_trait_bounds(
&self,
bound: &TraitBound,
where_clause: &mut Option<WhereClause>,
mode: AddBounds,
) {
// If we have any explicit where predicates, make sure to add them first.
if !self.extra_predicates.is_empty() {
let clause = get_or_insert_with(&mut *where_clause, || WhereClause {
where_token: Default::default(),
predicates: punctuated::Punctuated::new(),
});
clause
.predicates
.extend(self.extra_predicates.iter().cloned());
}
let mut seen = HashSet::new();
let mut pred = |ty: Type| {
if !seen.contains(&ty) {
seen.insert(ty.clone());
// Add a predicate.
let clause = get_or_insert_with(&mut *where_clause, || WhereClause {
where_token: Default::default(),
predicates: punctuated::Punctuated::new(),
});
clause.predicates.push(WherePredicate::Type(PredicateType {
lifetimes: None,
bounded_ty: ty,
colon_token: Default::default(),
bounds: Some(punctuated::Pair::End(TypeParamBound::Trait(bound.clone())))
.into_iter()
.collect(),
}));
}
};
for variant in &self.variants {
for binding in &variant.bindings {
match mode {
AddBounds::Both | AddBounds::Fields => {
for &seen in &binding.seen_generics {
if seen {
pred(binding.ast().ty.clone());
break;
}
}
}
_ => {}
}
match mode {
AddBounds::Both | AddBounds::Generics => {
for param in binding.referenced_ty_params() {
pred(Type::Path(TypePath {
qself: None,
path: (*param).clone().into(),
}));
}
}
_ => {}
}
}
}
}
/// This method is a no-op, underscore consts are used by default now.
pub fn underscore_const(&mut self, _enabled: bool) -> &mut Self {
self
}
/// > NOTE: This methods' features are superceded by `Structure::gen_impl`.
///
/// Creates an `impl` block with the required generic type fields filled in
/// to implement the trait `path`.
///
/// This method also adds where clauses to the impl requiring that all
/// referenced type parmaeters implement the trait `path`.
///
/// # Hygiene and Paths
///
/// This method wraps the impl block inside of a `const` (see the example
/// below). In this scope, the first segment of the passed-in path is
/// `extern crate`-ed in. If you don't want to generate that `extern crate`
/// item, use a global path.
///
/// This means that if you are implementing `my_crate::Trait`, you simply
/// write `s.bound_impl(quote!(my_crate::Trait), quote!(...))`, and for the
/// entirety of the definition, you can refer to your crate as `my_crate`.
///
/// # Caveat
///
/// If the method contains any macros in type position, all parameters will
/// be considered bound. This is because we cannot determine which type
/// parameters are bound by type macros.
///
/// # Panics
///
/// Panics if the path string parameter is not a valid `TraitBound`.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.filter_variants(|v| v.ast().ident != "B");
///
/// assert_eq!(
/// s.bound_impl(quote!(krate::Trait), quote!{
/// fn a() {}
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// impl<T, U> krate::Trait for A<T, U>
/// where Option<U>: krate::Trait,
/// U: krate::Trait
/// {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
/// ```
pub fn bound_impl<P: ToTokens, B: ToTokens>(&self, path: P, body: B) -> TokenStream {
self.impl_internal(
path.into_token_stream(),
body.into_token_stream(),
quote!(),
None,
)
}
/// > NOTE: This methods' features are superceded by `Structure::gen_impl`.
///
/// Creates an `impl` block with the required generic type fields filled in
/// to implement the unsafe trait `path`.
///
/// This method also adds where clauses to the impl requiring that all
/// referenced type parmaeters implement the trait `path`.
///
/// # Hygiene and Paths
///
/// This method wraps the impl block inside of a `const` (see the example
/// below). In this scope, the first segment of the passed-in path is
/// `extern crate`-ed in. If you don't want to generate that `extern crate`
/// item, use a global path.
///
/// This means that if you are implementing `my_crate::Trait`, you simply
/// write `s.bound_impl(quote!(my_crate::Trait), quote!(...))`, and for the
/// entirety of the definition, you can refer to your crate as `my_crate`.
///
/// # Caveat
///
/// If the method contains any macros in type position, all parameters will
/// be considered bound. This is because we cannot determine which type
/// parameters are bound by type macros.
///
/// # Panics
///
/// Panics if the path string parameter is not a valid `TraitBound`.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.filter_variants(|v| v.ast().ident != "B");
///
/// assert_eq!(
/// s.unsafe_bound_impl(quote!(krate::Trait), quote!{
/// fn a() {}
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// unsafe impl<T, U> krate::Trait for A<T, U>
/// where Option<U>: krate::Trait,
/// U: krate::Trait
/// {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
/// ```
pub fn unsafe_bound_impl<P: ToTokens, B: ToTokens>(&self, path: P, body: B) -> TokenStream {
self.impl_internal(
path.into_token_stream(),
body.into_token_stream(),
quote!(unsafe),
None,
)
}
/// > NOTE: This methods' features are superceded by `Structure::gen_impl`.
///
/// Creates an `impl` block with the required generic type fields filled in
/// to implement the trait `path`.
///
/// This method will not add any where clauses to the impl.
///
/// # Hygiene and Paths
///
/// This method wraps the impl block inside of a `const` (see the example
/// below). In this scope, the first segment of the passed-in path is
/// `extern crate`-ed in. If you don't want to generate that `extern crate`
/// item, use a global path.
///
/// This means that if you are implementing `my_crate::Trait`, you simply
/// write `s.bound_impl(quote!(my_crate::Trait), quote!(...))`, and for the
/// entirety of the definition, you can refer to your crate as `my_crate`.
///
/// # Panics
///
/// Panics if the path string parameter is not a valid `TraitBound`.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.filter_variants(|v| v.ast().ident != "B");
///
/// assert_eq!(
/// s.unbound_impl(quote!(krate::Trait), quote!{
/// fn a() {}
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// impl<T, U> krate::Trait for A<T, U> {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
/// ```
pub fn unbound_impl<P: ToTokens, B: ToTokens>(&self, path: P, body: B) -> TokenStream {
self.impl_internal(
path.into_token_stream(),
body.into_token_stream(),
quote!(),
Some(AddBounds::None),
)
}
/// > NOTE: This methods' features are superceded by `Structure::gen_impl`.
///
/// Creates an `impl` block with the required generic type fields filled in
/// to implement the unsafe trait `path`.
///
/// This method will not add any where clauses to the impl.
///
/// # Hygiene and Paths
///
/// This method wraps the impl block inside of a `const` (see the example
/// below). In this scope, the first segment of the passed-in path is
/// `extern crate`-ed in. If you don't want to generate that `extern crate`
/// item, use a global path.
///
/// This means that if you are implementing `my_crate::Trait`, you simply
/// write `s.bound_impl(quote!(my_crate::Trait), quote!(...))`, and for the
/// entirety of the definition, you can refer to your crate as `my_crate`.
///
/// # Panics
///
/// Panics if the path string parameter is not a valid `TraitBound`.
///
/// # Example
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.filter_variants(|v| v.ast().ident != "B");
///
/// assert_eq!(
/// s.unsafe_unbound_impl(quote!(krate::Trait), quote!{
/// fn a() {}
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// unsafe impl<T, U> krate::Trait for A<T, U> {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
/// ```
#[deprecated]
pub fn unsafe_unbound_impl<P: ToTokens, B: ToTokens>(&self, path: P, body: B) -> TokenStream {
self.impl_internal(
path.into_token_stream(),
body.into_token_stream(),
quote!(unsafe),
Some(AddBounds::None),
)
}
fn impl_internal(
&self,
path: TokenStream,
body: TokenStream,
safety: TokenStream,
mode: Option<AddBounds>,
) -> TokenStream {
let mode = mode.unwrap_or(self.add_bounds);
let name = &self.ast.ident;
let mut gen_clone = self.ast.generics.clone();
gen_clone.params.extend(self.extra_impl.iter().cloned());
let (impl_generics, _, _) = gen_clone.split_for_impl();
let (_, ty_generics, where_clause) = self.ast.generics.split_for_impl();
let bound = syn::parse2::<TraitBound>(path)
.expect("`path` argument must be a valid rust trait bound");
let mut where_clause = where_clause.cloned();
self.add_trait_bounds(&bound, &mut where_clause, mode);
// This function is smart. If a global path is passed, no extern crate
// statement will be generated, however, a relative path will cause the
// crate which it is relative to to be imported within the current
// scope.
let mut extern_crate = quote!();
if bound.path.leading_colon.is_none() {
if let Some(seg) = bound.path.segments.first() {
let seg = &seg.ident;
extern_crate = quote! { extern crate #seg; };
}
}
let generated = quote! {
#extern_crate
#safety impl #impl_generics #bound for #name #ty_generics #where_clause {
#body
}
};
quote! {
const _: () = { #generated };
}
}
/// Generate an impl block for the given struct. This impl block will
/// automatically use hygiene tricks to avoid polluting the caller's
/// namespace, and will automatically add trait bounds for generic type
/// parameters.
///
/// # Syntax
///
/// This function accepts its arguments as a `TokenStream`. The recommended way
/// to call this function is passing the result of invoking the `quote!`
/// macro to it.
///
/// ```ignore
/// s.gen_impl(quote! {
/// // You can write any items which you want to import into scope here.
/// // For example, you may want to include an `extern crate` for the
/// // crate which implements your trait. These items will only be
/// // visible to the code you generate, and won't be exposed to the
/// // consuming crate
/// extern crate krate;
///
/// // You can also add `use` statements here to bring types or traits
/// // into scope.
/// //
/// // WARNING: Try not to use common names here, because the stable
/// // version of syn does not support hygiene and you could accidentally
/// // shadow types from the caller crate.
/// use krate::Trait as MyTrait;
///
/// // The actual impl block is a `gen impl` or `gen unsafe impl` block.
/// // You can use `@Self` to refer to the structure's type.
/// gen impl MyTrait for @Self {
/// fn f(&self) { ... }
/// }
/// })
/// ```
///
/// The most common usage of this trait involves loading the crate the
/// target trait comes from with `extern crate`, and then invoking a `gen
/// impl` block.
///
/// # Hygiene
///
/// This method tries to handle hygiene intelligently for both stable and
/// unstable proc-macro implementations, however there are visible
/// differences.
///
/// The output of every `gen_impl` function is wrapped in a dummy `const`
/// value, to ensure that it is given its own scope, and any values brought
/// into scope are not leaked to the calling crate.
///
/// By default, the above invocation may generate an output like the
/// following:
///
/// ```ignore
/// const _: () = {
/// extern crate krate;
/// use krate::Trait as MyTrait;
/// impl<T> MyTrait for Struct<T> where T: MyTrait {
/// fn f(&self) { ... }
/// }
/// };
/// ```
///
/// ### Using the `std` crate
///
/// If you are using `quote!()` to implement your trait, with the
/// `proc-macro2/nightly` feature, `std` isn't considered to be in scope for
/// your macro. This means that if you use types from `std` in your
/// procedural macro, you'll want to explicitly load it with an `extern
/// crate std;`.
///
/// ### Absolute paths
///
/// You should generally avoid using absolute paths in your generated code,
/// as they will resolve very differently when using the stable and nightly
/// versions of `proc-macro2`. Instead, load the crates you need to use
/// explictly with `extern crate` and
///
/// # Trait Bounds
///
/// This method will automatically add trait bounds for any type parameters
/// which are referenced within the types of non-ignored fields.
///
/// Additional type parameters may be added with the generics syntax after
/// the `impl` keyword.
///
/// ### Type Macro Caveat
///
/// If the method contains any macros in type position, all parameters will
/// be considered bound. This is because we cannot determine which type
/// parameters are bound by type macros.
///
/// # Errors
///
/// This function will generate a `compile_error!` if additional type
/// parameters added by `impl<..>` conflict with generic type parameters on
/// the original struct.
///
/// # Panics
///
/// This function will panic if the input `TokenStream` is not well-formed.
///
/// # Example Usage
///
/// ```
/// # use synstructure::*;
/// let di: syn::DeriveInput = syn::parse_quote! {
/// enum A<T, U> {
/// B(T),
/// C(Option<U>),
/// }
/// };
/// let mut s = Structure::new(&di);
///
/// s.filter_variants(|v| v.ast().ident != "B");
///
/// assert_eq!(
/// s.gen_impl(quote! {
/// extern crate krate;
/// gen impl krate::Trait for @Self {
/// fn a() {}
/// }
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// impl<T, U> krate::Trait for A<T, U>
/// where
/// Option<U>: krate::Trait,
/// U: krate::Trait
/// {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
///
/// // NOTE: You can also add extra generics after the impl
/// assert_eq!(
/// s.gen_impl(quote! {
/// extern crate krate;
/// gen impl<X: krate::OtherTrait> krate::Trait<X> for @Self
/// where
/// X: Send + Sync,
/// {
/// fn a() {}
/// }
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// impl<X: krate::OtherTrait, T, U> krate::Trait<X> for A<T, U>
/// where
/// X: Send + Sync,
/// Option<U>: krate::Trait<X>,
/// U: krate::Trait<X>
/// {
/// fn a() {}
/// }
/// };
/// }.to_string()
/// );
///
/// // NOTE: you can generate multiple traits with a single call
/// assert_eq!(
/// s.gen_impl(quote! {
/// extern crate krate;
///
/// gen impl krate::Trait for @Self {
/// fn a() {}
/// }
///
/// gen impl krate::OtherTrait for @Self {
/// fn b() {}
/// }
/// }).to_string(),
/// quote!{
/// const _: () = {
/// extern crate krate;
/// impl<T, U> krate::Trait for A<T, U>
/// where
/// Option<U>: krate::Trait,
/// U: krate::Trait
/// {
/// fn a() {}
/// }
///
/// impl<T, U> krate::OtherTrait for A<T, U>
/// where
/// Option<U>: krate::OtherTrait,
/// U: krate::OtherTrait
/// {
/// fn b() {}
/// }
/// };
/// }.to_string()
/// );
/// ```
///
/// Use `add_bounds` to change which bounds are generated.
pub fn gen_impl(&self, cfg: TokenStream) -> TokenStream {
Parser::parse2(
|input: ParseStream<'_>| -> Result<TokenStream> { self.gen_impl_parse(input, true) },
cfg,
)
.expect("Failed to parse gen_impl")
}
fn gen_impl_parse(&self, input: ParseStream<'_>, wrap: bool) -> Result<TokenStream> {
fn parse_prefix(input: ParseStream<'_>) -> Result<Option<Token![unsafe]>> {
if input.parse::<Ident>()? != "gen" {
return Err(input.error("Expected keyword `gen`"));
}
let safety = input.parse::<Option<Token![unsafe]>>()?;
let _ = input.parse::<Token![impl]>()?;
Ok(safety)
}
let mut before = vec![];
loop {
if parse_prefix(&input.fork()).is_ok() {
break;
}
before.push(input.parse::<TokenTree>()?);
}
// Parse the prefix "for real"
let safety = parse_prefix(input)?;
// optional `<>`
let mut generics = input.parse::<Generics>()?;
// @bound
let bound = input.parse::<TraitBound>()?;
// `for @Self`
let _ = input.parse::<Token![for]>()?;
let _ = input.parse::<Token![@]>()?;
let _ = input.parse::<Token![Self]>()?;
// optional `where ...`
generics.where_clause = input.parse()?;
// Body of the impl
let body;
braced!(body in input);
let body = body.parse::<TokenStream>()?;
// Try to parse the next entry in sequence. If this fails, we'll fall
// back to just parsing the entire rest of the TokenStream.
let maybe_next_impl = self.gen_impl_parse(&input.fork(), false);
// Eat tokens to the end. Whether or not our speculative nested parse
// succeeded, we're going to want to consume the rest of our input.
let mut after = input.parse::<TokenStream>()?;
if let Ok(stream) = maybe_next_impl {
after = stream;
}
assert!(input.is_empty(), "Should've consumed the rest of our input");
/* Codegen Logic */
let name = &self.ast.ident;
// Add the generics from the original struct in, and then add any
// additional trait bounds which we need on the type.
if let Err(err) = merge_generics(&mut generics, &self.ast.generics) {
// Report the merge error as a `compile_error!`, as it may be
// triggerable by an end-user.
return Ok(err.to_compile_error());
}
self.add_trait_bounds(&bound, &mut generics.where_clause, self.add_bounds);
let (impl_generics, _, where_clause) = generics.split_for_impl();
let (_, ty_generics, _) = self.ast.generics.split_for_impl();
let generated = quote! {
#(#before)*
#safety impl #impl_generics #bound for #name #ty_generics #where_clause {
#body
}
#after
};
if wrap {
Ok(quote! {
const _: () = { #generated };
})
} else {
Ok(generated)
}
}
}
/// Dumps an unpretty version of a tokenstream. Takes any type which implements
/// `Display`.
///
/// This is mostly useful for visualizing the output of a procedural macro, as
/// it makes it marginally more readable. It is used in the implementation of
/// `test_derive!` to unprettily print the output.
///
/// # Stability
///
/// The stability of the output of this function is not guaranteed. Do not
/// assert that the output of this function does not change between minor
/// versions.
///
/// # Example
///
/// ```
/// # use quote::quote;
/// assert_eq!(
/// synstructure::unpretty_print(quote! {
/// const _: () = {
/// extern crate krate;
/// impl<T, U> krate::Trait for A<T, U>
/// where
/// Option<U>: krate::Trait,
/// U: krate::Trait
/// {
/// fn a() {}
/// }
/// };
/// }),
/// "const _ : (
/// )
/// = {
/// extern crate krate ;
/// impl < T , U > krate :: Trait for A < T , U > where Option < U > : krate :: Trait , U : krate :: Trait {
/// fn a (
/// )
/// {
/// }
/// }
/// }
/// ;
/// "
/// )
/// ```
pub fn unpretty_print<T: std::fmt::Display>(ts: T) -> String {
let mut res = String::new();
let raw_s = ts.to_string();
let mut s = &raw_s[..];
let mut indent = 0;
while let Some(i) = s.find(&['(', '{', '[', ')', '}', ']', ';'][..]) {
match &s[i..=i] {
"(" | "{" | "[" => indent += 1,
")" | "}" | "]" => indent -= 1,
_ => {}
}
res.push_str(&s[..=i]);
res.push('\n');
for _ in 0..indent {
res.push_str(" ");
}
s = trim_start_matches(&s[i + 1..], ' ');
}
res.push_str(s);
res
}
/// `trim_left_matches` has been deprecated in favor of `trim_start_matches`.
/// This helper silences the warning, as we need to continue using
/// `trim_left_matches` for rust 1.15 support.
#[allow(deprecated)]
fn trim_start_matches(s: &str, c: char) -> &str {
s.trim_left_matches(c)
}
/// Helper trait describing values which may be returned by macro implementation
/// methods used by this crate's macros.
pub trait MacroResult {
/// Convert this result into a `Result` for further processing / validation.
fn into_result(self) -> Result<TokenStream>;
/// Convert this result into a `proc_macro::TokenStream`, ready to return
/// from a native `proc_macro` implementation.
///
/// If `into_result()` would return an `Err`, this method should instead
/// generate a `compile_error!` invocation to nicely report the error.
///
/// *This method is available if `synstructure` is built with the
/// `"proc-macro"` feature.*
#[cfg(all(
not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
feature = "proc-macro"
))]
fn into_stream(self) -> proc_macro::TokenStream
where
Self: Sized,
{
match self.into_result() {
Ok(ts) => ts.into(),
Err(err) => err.to_compile_error().into(),
}
}
}
#[cfg(all(
not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
feature = "proc-macro"
))]
impl MacroResult for proc_macro::TokenStream {
fn into_result(self) -> Result<TokenStream> {
Ok(self.into())
}
fn into_stream(self) -> proc_macro::TokenStream {
self
}
}
impl MacroResult for TokenStream {
fn into_result(self) -> Result<TokenStream> {
Ok(self)
}
}
impl<T: MacroResult> MacroResult for Result<T> {
fn into_result(self) -> Result<TokenStream> {
match self {
Ok(v) => v.into_result(),
Err(err) => Err(err),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
// Regression test for #48
#[test]
fn test_each_enum() {
let di: syn::DeriveInput = syn::parse_quote! {
enum A {
Foo(usize, bool),
Bar(bool, usize),
Baz(usize, bool, usize),
Quux(bool, usize, bool)
}
};
let mut s = Structure::new(&di);
s.filter(|bi| bi.ast().ty.to_token_stream().to_string() == "bool");
assert_eq!(
s.each(|bi| quote!(do_something(#bi))).to_string(),
quote! {
A::Foo(_, ref __binding_1,) => { { do_something(__binding_1) } }
A::Bar(ref __binding_0, ..) => { { do_something(__binding_0) } }
A::Baz(_, ref __binding_1, ..) => { { do_something(__binding_1) } }
A::Quux(ref __binding_0, _, ref __binding_2,) => {
{
do_something(__binding_0)
}
{
do_something(__binding_2)
}
}
}
.to_string()
);
}
}