Revision control
Copy as Markdown
Other Tools
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
use crate::error::{Error, Result};
use base64::{
engine::general_purpose::{STANDARD, URL_SAFE_NO_PAD},
Engine,
};
use rc_crypto::{
aead::{self, OpeningKey, SealingKey},
rand,
};
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct KeyBundle {
enc_key: Vec<u8>,
mac_key: Vec<u8>,
}
impl std::fmt::Debug for KeyBundle {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("KeyBundle").finish()
}
}
impl KeyBundle {
/// Construct a key bundle from the already-decoded encrypt and hmac keys.
/// Panics (asserts) if they aren't both 32 bytes.
pub fn new(enc: Vec<u8>, mac: Vec<u8>) -> Result<KeyBundle> {
if enc.len() != 32 {
error_support::report_error!(
"sync15-key-bundle",
"Bad key length (enc_key): {} != 32",
enc.len()
);
return Err(Error::BadKeyLength("enc_key", enc.len(), 32));
}
if mac.len() != 32 {
error_support::report_error!(
"sync15-key-bundle",
"Bad key length (mac_key): {} != 32",
mac.len()
);
return Err(Error::BadKeyLength("mac_key", mac.len(), 32));
}
Ok(KeyBundle {
enc_key: enc,
mac_key: mac,
})
}
pub fn new_random() -> Result<KeyBundle> {
let mut buffer = [0u8; 64];
rand::fill(&mut buffer)?;
KeyBundle::from_ksync_bytes(&buffer)
}
pub fn from_ksync_bytes(ksync: &[u8]) -> Result<KeyBundle> {
if ksync.len() != 64 {
error_support::report_error!(
"sync15-key-bundle",
"Bad key length (kSync): {} != 64",
ksync.len()
);
return Err(Error::BadKeyLength("kSync", ksync.len(), 64));
}
Ok(KeyBundle {
enc_key: ksync[0..32].into(),
mac_key: ksync[32..64].into(),
})
}
pub fn from_ksync_base64(ksync: &str) -> Result<KeyBundle> {
let bytes = URL_SAFE_NO_PAD.decode(ksync)?;
KeyBundle::from_ksync_bytes(&bytes)
}
pub fn from_base64(enc: &str, mac: &str) -> Result<KeyBundle> {
let enc_bytes = STANDARD.decode(enc)?;
let mac_bytes = STANDARD.decode(mac)?;
KeyBundle::new(enc_bytes, mac_bytes)
}
#[inline]
pub fn encryption_key(&self) -> &[u8] {
&self.enc_key
}
#[inline]
pub fn hmac_key(&self) -> &[u8] {
&self.mac_key
}
#[inline]
pub fn to_b64_array(&self) -> [String; 2] {
[
STANDARD.encode(&self.enc_key),
STANDARD.encode(&self.mac_key),
]
}
/// Decrypt the provided ciphertext with the given iv, and decodes the
/// result as a utf8 string.
pub fn decrypt(&self, enc_base64: &str, iv_base64: &str, hmac_base16: &str) -> Result<String> {
// Decode the expected_hmac into bytes to avoid issues if a client happens to encode
// this as uppercase. This shouldn't happen in practice, but doing it this way is more
// robust and avoids an allocation.
let mut decoded_hmac = vec![0u8; 32];
if base16::decode_slice(hmac_base16, &mut decoded_hmac).is_err() {
log::warn!("Garbage HMAC verification string: contained non base16 characters");
return Err(Error::HmacMismatch);
}
let iv = STANDARD.decode(iv_base64)?;
let ciphertext_bytes = STANDARD.decode(enc_base64)?;
let key_bytes = [self.encryption_key(), self.hmac_key()].concat();
let key = OpeningKey::new(&aead::LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes)?;
let nonce = aead::Nonce::try_assume_unique_for_key(
&aead::LEGACY_SYNC_AES_256_CBC_HMAC_SHA256,
&iv,
)?;
let ciphertext_and_hmac = [ciphertext_bytes, decoded_hmac].concat();
let cleartext_bytes = aead::open(&key, nonce, aead::Aad::empty(), &ciphertext_and_hmac)?;
let cleartext = String::from_utf8(cleartext_bytes)?;
Ok(cleartext)
}
/// Encrypt using the provided IV.
pub fn encrypt_bytes_with_iv(
&self,
cleartext_bytes: &[u8],
iv: &[u8],
) -> Result<(String, String)> {
let key_bytes = [self.encryption_key(), self.hmac_key()].concat();
let key = SealingKey::new(&aead::LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes)?;
let nonce =
aead::Nonce::try_assume_unique_for_key(&aead::LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, iv)?;
let ciphertext_and_hmac = aead::seal(&key, nonce, aead::Aad::empty(), cleartext_bytes)?;
let ciphertext_len = ciphertext_and_hmac.len() - key.algorithm().tag_len();
// Do the string conversions here so we don't have to split and copy to 2 vectors.
let (ciphertext, hmac_signature) = ciphertext_and_hmac.split_at(ciphertext_len);
let enc_base64 = STANDARD.encode(ciphertext);
let hmac_base16 = base16::encode_lower(&hmac_signature);
Ok((enc_base64, hmac_base16))
}
/// Generate a random iv and encrypt with it. Return both the encrypted bytes
/// and the generated iv.
pub fn encrypt_bytes_rand_iv(
&self,
cleartext_bytes: &[u8],
) -> Result<(String, String, String)> {
let mut iv = [0u8; 16];
rand::fill(&mut iv)?;
let (enc_base64, hmac_base16) = self.encrypt_bytes_with_iv(cleartext_bytes, &iv)?;
let iv_base64 = STANDARD.encode(iv);
Ok((enc_base64, iv_base64, hmac_base16))
}
pub fn encrypt_with_iv(&self, cleartext: &str, iv: &[u8]) -> Result<(String, String)> {
self.encrypt_bytes_with_iv(cleartext.as_bytes(), iv)
}
pub fn encrypt_rand_iv(&self, cleartext: &str) -> Result<(String, String, String)> {
self.encrypt_bytes_rand_iv(cleartext.as_bytes())
}
}
#[cfg(test)]
mod test {
use super::*;
const HMAC_B16: &str = "b1e6c18ac30deb70236bc0d65a46f7a4dce3b8b0e02cf92182b914e3afa5eebc";
const IV_B64: &str = "GX8L37AAb2FZJMzIoXlX8w==";
const HMAC_KEY_B64: &str = "MMntEfutgLTc8FlTLQFms8/xMPmCldqPlq/QQXEjx70=";
const ENC_KEY_B64: &str = "9K/wLdXdw+nrTtXo4ZpECyHFNr4d7aYHqeg3KW9+m6Q=";
const CIPHERTEXT_B64_PIECES: &[&str] = &[
"NMsdnRulLwQsVcwxKW9XwaUe7ouJk5Wn80QhbD80l0HEcZGCynh45qIbeYBik0lgcHbK",
"mlIxTJNwU+OeqipN+/j7MqhjKOGIlvbpiPQQLC6/ffF2vbzL0nzMUuSyvaQzyGGkSYM2",
"xUFt06aNivoQTvU2GgGmUK6MvadoY38hhW2LCMkoZcNfgCqJ26lO1O0sEO6zHsk3IVz6",
"vsKiJ2Hq6VCo7hu123wNegmujHWQSGyf8JeudZjKzfi0OFRRvvm4QAKyBWf0MgrW1F8S",
"FDnVfkq8amCB7NhdwhgLWbN+21NitNwWYknoEWe1m6hmGZDgDT32uxzWxCV8QqqrpH/Z",
"ggViEr9uMgoy4lYaWqP7G5WKvvechc62aqnsNEYhH26A5QgzmlNyvB+KPFvPsYzxDnSC",
"jOoRSLx7GG86wT59QZw=",
];
const CLEARTEXT_B64_PIECES: &[&str] = &[
"eyJpZCI6IjVxUnNnWFdSSlpYciIsImhpc3RVcmkiOiJmaWxlOi8vL1VzZXJzL2phc29u",
"L0xpYnJhcnkvQXBwbGljYXRpb24lMjBTdXBwb3J0L0ZpcmVmb3gvUHJvZmlsZXMva3Nn",
"ZDd3cGsuTG9jYWxTeW5jU2VydmVyL3dlYXZlL2xvZ3MvIiwidGl0bGUiOiJJbmRleCBv",
"ZiBmaWxlOi8vL1VzZXJzL2phc29uL0xpYnJhcnkvQXBwbGljYXRpb24gU3VwcG9ydC9G",
"aXJlZm94L1Byb2ZpbGVzL2tzZ2Q3d3BrLkxvY2FsU3luY1NlcnZlci93ZWF2ZS9sb2dz",
"LyIsInZpc2l0cyI6W3siZGF0ZSI6MTMxOTE0OTAxMjM3MjQyNSwidHlwZSI6MX1dfQ==",
];
#[test]
fn test_decrypt() {
let key_bundle = KeyBundle::from_base64(ENC_KEY_B64, HMAC_KEY_B64).unwrap();
let ciphertext = CIPHERTEXT_B64_PIECES.join("");
let s = key_bundle.decrypt(&ciphertext, IV_B64, HMAC_B16).unwrap();
let cleartext =
String::from_utf8(STANDARD.decode(CLEARTEXT_B64_PIECES.join("")).unwrap()).unwrap();
assert_eq!(&cleartext, &s);
}
#[test]
fn test_encrypt() {
let key_bundle = KeyBundle::from_base64(ENC_KEY_B64, HMAC_KEY_B64).unwrap();
let iv = STANDARD.decode(IV_B64).unwrap();
let cleartext_bytes = STANDARD.decode(CLEARTEXT_B64_PIECES.join("")).unwrap();
let (enc_base64, _hmac_base16) = key_bundle
.encrypt_bytes_with_iv(&cleartext_bytes, &iv)
.unwrap();
let expect_ciphertext = CIPHERTEXT_B64_PIECES.join("");
assert_eq!(&enc_base64, &expect_ciphertext);
let (enc_base64_2, iv_base64_2, hmac_base16_2) =
key_bundle.encrypt_bytes_rand_iv(&cleartext_bytes).unwrap();
assert_ne!(&enc_base64_2, &expect_ciphertext);
let s = key_bundle
.decrypt(&enc_base64_2, &iv_base64_2, &hmac_base16_2)
.unwrap();
assert_eq!(&cleartext_bytes, &s.as_bytes());
}
}