Revision control
Copy as Markdown
Other Tools
#![warn(rust_2018_idioms)]
use slab::*;
use std::panic::{catch_unwind, resume_unwind, AssertUnwindSafe};
#[test]
fn insert_get_remove_one() {
let mut slab = Slab::new();
assert!(slab.is_empty());
let key = slab.insert(10);
assert_eq!(slab[key], 10);
assert_eq!(slab.get(key), Some(&10));
assert!(!slab.is_empty());
assert!(slab.contains(key));
assert_eq!(slab.remove(key), 10);
assert!(!slab.contains(key));
assert!(slab.get(key).is_none());
}
#[test]
fn insert_get_many() {
let mut slab = Slab::with_capacity(10);
for i in 0..10 {
let key = slab.insert(i + 10);
assert_eq!(slab[key], i + 10);
}
assert_eq!(slab.capacity(), 10);
// Storing another one grows the slab
let key = slab.insert(20);
assert_eq!(slab[key], 20);
// Capacity grows by 2x
assert_eq!(slab.capacity(), 20);
}
#[test]
fn insert_get_remove_many() {
let mut slab = Slab::with_capacity(10);
let mut keys = vec![];
for i in 0..10 {
for j in 0..10 {
let val = (i * 10) + j;
let key = slab.insert(val);
keys.push((key, val));
assert_eq!(slab[key], val);
}
for (key, val) in keys.drain(..) {
assert_eq!(val, slab.remove(key));
}
}
assert_eq!(10, slab.capacity());
}
#[test]
fn insert_with_vacant_entry() {
let mut slab = Slab::with_capacity(1);
let key;
{
let entry = slab.vacant_entry();
key = entry.key();
entry.insert(123);
}
assert_eq!(123, slab[key]);
}
#[test]
fn get_vacant_entry_without_using() {
let mut slab = Slab::<usize>::with_capacity(1);
let key = slab.vacant_entry().key();
assert_eq!(key, slab.vacant_entry().key());
}
#[test]
#[should_panic(expected = "invalid key")]
fn invalid_get_panics() {
let slab = Slab::<usize>::with_capacity(1);
let _ = &slab[0];
}
#[test]
#[should_panic(expected = "invalid key")]
fn invalid_get_mut_panics() {
let mut slab = Slab::<usize>::new();
let _ = &mut slab[0];
}
#[test]
#[should_panic(expected = "invalid key")]
fn double_remove_panics() {
let mut slab = Slab::<usize>::with_capacity(1);
let key = slab.insert(123);
slab.remove(key);
slab.remove(key);
}
#[test]
#[should_panic(expected = "invalid key")]
fn invalid_remove_panics() {
let mut slab = Slab::<usize>::with_capacity(1);
slab.remove(0);
}
#[test]
fn slab_get_mut() {
let mut slab = Slab::new();
let key = slab.insert(1);
slab[key] = 2;
assert_eq!(slab[key], 2);
*slab.get_mut(key).unwrap() = 3;
assert_eq!(slab[key], 3);
}
#[test]
fn key_of_tagged() {
let mut slab = Slab::new();
slab.insert(0);
assert_eq!(slab.key_of(&slab[0]), 0);
}
#[test]
fn key_of_layout_optimizable() {
// Entry<&str> doesn't need a discriminant tag because it can use the
// nonzero-ness of ptr and store Vacant's next at the same offset as len
let mut slab = Slab::new();
slab.insert("foo");
slab.insert("bar");
let third = slab.insert("baz");
slab.insert("quux");
assert_eq!(slab.key_of(&slab[third]), third);
}
#[test]
fn key_of_zst() {
let mut slab = Slab::new();
slab.insert(());
let second = slab.insert(());
slab.insert(());
assert_eq!(slab.key_of(&slab[second]), second);
}
#[test]
fn reserve_does_not_allocate_if_available() {
let mut slab = Slab::with_capacity(10);
let mut keys = vec![];
for i in 0..6 {
keys.push(slab.insert(i));
}
for key in 0..4 {
slab.remove(key);
}
assert!(slab.capacity() - slab.len() == 8);
slab.reserve(8);
assert_eq!(10, slab.capacity());
}
#[test]
fn reserve_exact_does_not_allocate_if_available() {
let mut slab = Slab::with_capacity(10);
let mut keys = vec![];
for i in 0..6 {
keys.push(slab.insert(i));
}
for key in 0..4 {
slab.remove(key);
}
assert!(slab.capacity() - slab.len() == 8);
slab.reserve_exact(8);
assert_eq!(10, slab.capacity());
}
#[test]
#[should_panic(expected = "capacity overflow")]
fn reserve_does_panic_with_capacity_overflow() {
let mut slab = Slab::with_capacity(10);
slab.insert(true);
slab.reserve(std::isize::MAX as usize);
}
#[test]
#[should_panic(expected = "capacity overflow")]
fn reserve_does_panic_with_capacity_overflow_bytes() {
let mut slab = Slab::with_capacity(10);
slab.insert(1u16);
slab.reserve((std::isize::MAX as usize) / 2);
}
#[test]
#[should_panic(expected = "capacity overflow")]
fn reserve_exact_does_panic_with_capacity_overflow() {
let mut slab = Slab::with_capacity(10);
slab.insert(true);
slab.reserve_exact(std::isize::MAX as usize);
}
#[test]
fn retain() {
let mut slab = Slab::with_capacity(2);
let key1 = slab.insert(0);
let key2 = slab.insert(1);
slab.retain(|key, x| {
assert_eq!(key, *x);
*x % 2 == 0
});
assert_eq!(slab.len(), 1);
assert_eq!(slab[key1], 0);
assert!(!slab.contains(key2));
// Ensure consistency is retained
let key = slab.insert(123);
assert_eq!(key, key2);
assert_eq!(2, slab.len());
assert_eq!(2, slab.capacity());
// Inserting another element grows
let key = slab.insert(345);
assert_eq!(key, 2);
assert_eq!(4, slab.capacity());
}
#[test]
fn into_iter() {
let mut slab = Slab::new();
for i in 0..8 {
slab.insert(i);
}
slab.remove(0);
slab.remove(4);
slab.remove(5);
slab.remove(7);
let vals: Vec<_> = slab
.into_iter()
.inspect(|&(key, val)| assert_eq!(key, val))
.map(|(_, val)| val)
.collect();
assert_eq!(vals, vec![1, 2, 3, 6]);
}
#[test]
fn into_iter_rev() {
let mut slab = Slab::new();
for i in 0..4 {
slab.insert(i);
}
let mut iter = slab.into_iter();
assert_eq!(iter.next_back(), Some((3, 3)));
assert_eq!(iter.next_back(), Some((2, 2)));
assert_eq!(iter.next(), Some((0, 0)));
assert_eq!(iter.next_back(), Some((1, 1)));
assert_eq!(iter.next_back(), None);
assert_eq!(iter.next(), None);
}
#[test]
fn iter() {
let mut slab = Slab::new();
for i in 0..4 {
slab.insert(i);
}
let vals: Vec<_> = slab
.iter()
.enumerate()
.map(|(i, (key, val))| {
assert_eq!(i, key);
*val
})
.collect();
assert_eq!(vals, vec![0, 1, 2, 3]);
slab.remove(1);
let vals: Vec<_> = slab.iter().map(|(_, r)| *r).collect();
assert_eq!(vals, vec![0, 2, 3]);
}
#[test]
fn iter_rev() {
let mut slab = Slab::new();
for i in 0..4 {
slab.insert(i);
}
slab.remove(0);
let vals = slab.iter().rev().collect::<Vec<_>>();
assert_eq!(vals, vec![(3, &3), (2, &2), (1, &1)]);
}
#[test]
fn iter_mut() {
let mut slab = Slab::new();
for i in 0..4 {
slab.insert(i);
}
for (i, (key, e)) in slab.iter_mut().enumerate() {
assert_eq!(i, key);
*e += 1;
}
let vals: Vec<_> = slab.iter().map(|(_, r)| *r).collect();
assert_eq!(vals, vec![1, 2, 3, 4]);
slab.remove(2);
for (_, e) in slab.iter_mut() {
*e += 1;
}
let vals: Vec<_> = slab.iter().map(|(_, r)| *r).collect();
assert_eq!(vals, vec![2, 3, 5]);
}
#[test]
fn iter_mut_rev() {
let mut slab = Slab::new();
for i in 0..4 {
slab.insert(i);
}
slab.remove(2);
{
let mut iter = slab.iter_mut();
assert_eq!(iter.next(), Some((0, &mut 0)));
let mut prev_key = !0;
for (key, e) in iter.rev() {
*e += 10;
assert!(prev_key > key);
prev_key = key;
}
}
assert_eq!(slab[0], 0);
assert_eq!(slab[1], 11);
assert_eq!(slab[3], 13);
assert!(!slab.contains(2));
}
#[test]
fn from_iterator_sorted() {
let mut slab = (0..5).map(|i| (i, i)).collect::<Slab<_>>();
assert_eq!(slab.len(), 5);
assert_eq!(slab[0], 0);
assert_eq!(slab[2], 2);
assert_eq!(slab[4], 4);
assert_eq!(slab.vacant_entry().key(), 5);
}
#[test]
fn from_iterator_new_in_order() {
// all new keys come in increasing order, but existing keys are overwritten
let mut slab = [(0, 'a'), (1, 'a'), (1, 'b'), (0, 'b'), (9, 'a'), (0, 'c')]
.iter()
.cloned()
.collect::<Slab<_>>();
assert_eq!(slab.len(), 3);
assert_eq!(slab[0], 'c');
assert_eq!(slab[1], 'b');
assert_eq!(slab[9], 'a');
assert_eq!(slab.get(5), None);
assert_eq!(slab.vacant_entry().key(), 8);
}
#[test]
fn from_iterator_unordered() {
let mut slab = vec![(1, "one"), (50, "fifty"), (3, "three"), (20, "twenty")]
.into_iter()
.collect::<Slab<_>>();
assert_eq!(slab.len(), 4);
assert_eq!(slab.vacant_entry().key(), 0);
let mut iter = slab.iter();
assert_eq!(iter.next(), Some((1, &"one")));
assert_eq!(iter.next(), Some((3, &"three")));
assert_eq!(iter.next(), Some((20, &"twenty")));
assert_eq!(iter.next(), Some((50, &"fifty")));
assert_eq!(iter.next(), None);
}
#[test]
fn from_iterator_issue_100() {
let mut slab: slab::Slab<()> = vec![(1, ())].into_iter().collect();
assert_eq!(slab.len(), 1);
assert_eq!(slab.insert(()), 0);
assert_eq!(slab.insert(()), 2);
assert_eq!(slab.insert(()), 3);
let mut slab: slab::Slab<()> = vec![(1, ()), (2, ())].into_iter().collect();
assert_eq!(slab.len(), 2);
assert_eq!(slab.insert(()), 0);
assert_eq!(slab.insert(()), 3);
assert_eq!(slab.insert(()), 4);
let mut slab: slab::Slab<()> = vec![(1, ()), (3, ())].into_iter().collect();
assert_eq!(slab.len(), 2);
assert_eq!(slab.insert(()), 2);
assert_eq!(slab.insert(()), 0);
assert_eq!(slab.insert(()), 4);
let mut slab: slab::Slab<()> = vec![(0, ()), (2, ()), (3, ()), (5, ())]
.into_iter()
.collect();
assert_eq!(slab.len(), 4);
assert_eq!(slab.insert(()), 4);
assert_eq!(slab.insert(()), 1);
assert_eq!(slab.insert(()), 6);
}
#[test]
fn clear() {
let mut slab = Slab::new();
for i in 0..4 {
slab.insert(i);
}
// clear full
slab.clear();
assert!(slab.is_empty());
assert_eq!(0, slab.len());
assert_eq!(4, slab.capacity());
for i in 0..2 {
slab.insert(i);
}
let vals: Vec<_> = slab.iter().map(|(_, r)| *r).collect();
assert_eq!(vals, vec![0, 1]);
// clear half-filled
slab.clear();
assert!(slab.is_empty());
}
#[test]
fn shrink_to_fit_empty() {
let mut slab = Slab::<bool>::with_capacity(20);
slab.shrink_to_fit();
assert_eq!(slab.capacity(), 0);
}
#[test]
fn shrink_to_fit_no_vacant() {
let mut slab = Slab::with_capacity(20);
slab.insert(String::new());
slab.shrink_to_fit();
assert!(slab.capacity() < 10);
}
#[test]
fn shrink_to_fit_doesnt_move() {
let mut slab = Slab::with_capacity(8);
slab.insert("foo");
let bar = slab.insert("bar");
slab.insert("baz");
let quux = slab.insert("quux");
slab.remove(quux);
slab.remove(bar);
slab.shrink_to_fit();
assert_eq!(slab.len(), 2);
assert!(slab.capacity() >= 3);
assert_eq!(slab.get(0), Some(&"foo"));
assert_eq!(slab.get(2), Some(&"baz"));
assert_eq!(slab.vacant_entry().key(), bar);
}
#[test]
fn shrink_to_fit_doesnt_recreate_list_when_nothing_can_be_done() {
let mut slab = Slab::with_capacity(16);
for i in 0..4 {
slab.insert(Box::new(i));
}
slab.remove(0);
slab.remove(2);
slab.remove(1);
assert_eq!(slab.vacant_entry().key(), 1);
slab.shrink_to_fit();
assert_eq!(slab.len(), 1);
assert!(slab.capacity() >= 4);
assert_eq!(slab.vacant_entry().key(), 1);
}
#[test]
fn compact_empty() {
let mut slab = Slab::new();
slab.compact(|_, _, _| panic!());
assert_eq!(slab.len(), 0);
assert_eq!(slab.capacity(), 0);
slab.reserve(20);
slab.compact(|_, _, _| panic!());
assert_eq!(slab.len(), 0);
assert_eq!(slab.capacity(), 0);
slab.insert(0);
slab.insert(1);
slab.insert(2);
slab.remove(1);
slab.remove(2);
slab.remove(0);
slab.compact(|_, _, _| panic!());
assert_eq!(slab.len(), 0);
assert_eq!(slab.capacity(), 0);
}
#[test]
fn compact_no_moves_needed() {
let mut slab = Slab::new();
for i in 0..10 {
slab.insert(i);
}
slab.remove(8);
slab.remove(9);
slab.remove(6);
slab.remove(7);
slab.compact(|_, _, _| panic!());
assert_eq!(slab.len(), 6);
for ((index, &value), want) in slab.iter().zip(0..6) {
assert!(index == value);
assert_eq!(index, want);
}
assert!(slab.capacity() >= 6 && slab.capacity() < 10);
}
#[test]
fn compact_moves_successfully() {
let mut slab = Slab::with_capacity(20);
for i in 0..10 {
slab.insert(i);
}
for &i in &[0, 5, 9, 6, 3] {
slab.remove(i);
}
let mut moved = 0;
slab.compact(|&mut v, from, to| {
assert!(from > to);
assert!(from >= 5);
assert!(to < 5);
assert_eq!(from, v);
moved += 1;
true
});
assert_eq!(slab.len(), 5);
assert_eq!(moved, 2);
assert_eq!(slab.vacant_entry().key(), 5);
assert!(slab.capacity() >= 5 && slab.capacity() < 20);
let mut iter = slab.iter();
assert_eq!(iter.next(), Some((0, &8)));
assert_eq!(iter.next(), Some((1, &1)));
assert_eq!(iter.next(), Some((2, &2)));
assert_eq!(iter.next(), Some((3, &7)));
assert_eq!(iter.next(), Some((4, &4)));
assert_eq!(iter.next(), None);
}
#[test]
fn compact_doesnt_move_if_closure_errors() {
let mut slab = Slab::with_capacity(20);
for i in 0..10 {
slab.insert(i);
}
for &i in &[9, 3, 1, 4, 0] {
slab.remove(i);
}
slab.compact(|&mut v, from, to| {
assert!(from > to);
assert_eq!(from, v);
v != 6
});
assert_eq!(slab.len(), 5);
assert!(slab.capacity() >= 7 && slab.capacity() < 20);
assert_eq!(slab.vacant_entry().key(), 3);
let mut iter = slab.iter();
assert_eq!(iter.next(), Some((0, &8)));
assert_eq!(iter.next(), Some((1, &7)));
assert_eq!(iter.next(), Some((2, &2)));
assert_eq!(iter.next(), Some((5, &5)));
assert_eq!(iter.next(), Some((6, &6)));
assert_eq!(iter.next(), None);
}
#[test]
fn compact_handles_closure_panic() {
let mut slab = Slab::new();
for i in 0..10 {
slab.insert(i);
}
for i in 1..6 {
slab.remove(i);
}
let result = catch_unwind(AssertUnwindSafe(|| {
slab.compact(|&mut v, from, to| {
assert!(from > to);
assert_eq!(from, v);
if v == 7 {
panic!("test");
}
true
})
}));
match result {
Err(ref payload) if payload.downcast_ref() == Some(&"test") => {}
Err(bug) => resume_unwind(bug),
Ok(()) => unreachable!(),
}
assert_eq!(slab.len(), 5 - 1);
assert_eq!(slab.vacant_entry().key(), 3);
let mut iter = slab.iter();
assert_eq!(iter.next(), Some((0, &0)));
assert_eq!(iter.next(), Some((1, &9)));
assert_eq!(iter.next(), Some((2, &8)));
assert_eq!(iter.next(), Some((6, &6)));
assert_eq!(iter.next(), None);
}
#[test]
fn fully_consumed_drain() {
let mut slab = Slab::new();
for i in 0..3 {
slab.insert(i);
}
{
let mut drain = slab.drain();
assert_eq!(Some(0), drain.next());
assert_eq!(Some(1), drain.next());
assert_eq!(Some(2), drain.next());
assert_eq!(None, drain.next());
}
assert!(slab.is_empty());
}
#[test]
fn partially_consumed_drain() {
let mut slab = Slab::new();
for i in 0..3 {
slab.insert(i);
}
{
let mut drain = slab.drain();
assert_eq!(Some(0), drain.next());
}
assert!(slab.is_empty())
}
#[test]
fn drain_rev() {
let mut slab = Slab::new();
for i in 0..10 {
slab.insert(i);
}
slab.remove(9);
let vals: Vec<u64> = slab.drain().rev().collect();
assert_eq!(vals, (0..9).rev().collect::<Vec<u64>>());
}
#[test]
fn try_remove() {
let mut slab = Slab::new();
let key = slab.insert(1);
assert_eq!(slab.try_remove(key), Some(1));
assert_eq!(slab.try_remove(key), None);
assert_eq!(slab.get(key), None);
}
#[rustversion::since(1.39)]
#[test]
fn const_new() {
static _SLAB: Slab<()> = Slab::new();
}