Revision control
Copy as Markdown
Other Tools
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(
missing_debug_implementations,
missing_docs,
rust_2018_idioms,
unreachable_pub
)]
#![doc(test(
no_crate_inject,
attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
))]
//! Pre-allocated storage for a uniform data type.
//!
//! `Slab` provides pre-allocated storage for a single data type. If many values
//! of a single type are being allocated, it can be more efficient to
//! pre-allocate the necessary storage. Since the size of the type is uniform,
//! memory fragmentation can be avoided. Storing, clearing, and lookup
//! operations become very cheap.
//!
//! While `Slab` may look like other Rust collections, it is not intended to be
//! used as a general purpose collection. The primary difference between `Slab`
//! and `Vec` is that `Slab` returns the key when storing the value.
//!
//! It is important to note that keys may be reused. In other words, once a
//! value associated with a given key is removed from a slab, that key may be
//! returned from future calls to `insert`.
//!
//! # Examples
//!
//! Basic storing and retrieval.
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::new();
//!
//! let hello = slab.insert("hello");
//! let world = slab.insert("world");
//!
//! assert_eq!(slab[hello], "hello");
//! assert_eq!(slab[world], "world");
//!
//! slab[world] = "earth";
//! assert_eq!(slab[world], "earth");
//! ```
//!
//! Sometimes it is useful to be able to associate the key with the value being
//! inserted in the slab. This can be done with the `vacant_entry` API as such:
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::new();
//!
//! let hello = {
//! let entry = slab.vacant_entry();
//! let key = entry.key();
//!
//! entry.insert((key, "hello"));
//! key
//! };
//!
//! assert_eq!(hello, slab[hello].0);
//! assert_eq!("hello", slab[hello].1);
//! ```
//!
//! It is generally a good idea to specify the desired capacity of a slab at
//! creation time. Note that `Slab` will grow the internal capacity when
//! attempting to insert a new value once the existing capacity has been reached.
//! To avoid this, add a check.
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::with_capacity(1024);
//!
//! // ... use the slab
//!
//! if slab.len() == slab.capacity() {
//! panic!("slab full");
//! }
//!
//! slab.insert("the slab is not at capacity yet");
//! ```
//!
//! # Capacity and reallocation
//!
//! The capacity of a slab is the amount of space allocated for any future
//! values that will be inserted in the slab. This is not to be confused with
//! the *length* of the slab, which specifies the number of actual values
//! currently being inserted. If a slab's length is equal to its capacity, the
//! next value inserted into the slab will require growing the slab by
//! reallocating.
//!
//! For example, a slab with capacity 10 and length 0 would be an empty slab
//! with space for 10 more stored values. Storing 10 or fewer elements into the
//! slab will not change its capacity or cause reallocation to occur. However,
//! if the slab length is increased to 11 (due to another `insert`), it will
//! have to reallocate, which can be slow. For this reason, it is recommended to
//! use [`Slab::with_capacity`] whenever possible to specify how many values the
//! slab is expected to store.
//!
//! # Implementation
//!
//! `Slab` is backed by a `Vec` of slots. Each slot is either occupied or
//! vacant. `Slab` maintains a stack of vacant slots using a linked list. To
//! find a vacant slot, the stack is popped. When a slot is released, it is
//! pushed onto the stack.
//!
//! If there are no more available slots in the stack, then `Vec::reserve(1)` is
//! called and a new slot is created.
//!
//! [`Slab::with_capacity`]: struct.Slab.html#with_capacity
#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std as alloc;
#[cfg(feature = "serde")]
mod serde;
mod builder;
use alloc::vec::{self, Vec};
use core::iter::{self, FromIterator, FusedIterator};
use core::{fmt, mem, ops, slice};
/// Pre-allocated storage for a uniform data type
///
/// See the [module documentation] for more details.
///
/// [module documentation]: index.html
#[derive(Clone)]
pub struct Slab<T> {
// Chunk of memory
entries: Vec<Entry<T>>,
// Number of Filled elements currently in the slab
len: usize,
// Offset of the next available slot in the slab. Set to the slab's
// capacity when the slab is full.
next: usize,
}
impl<T> Default for Slab<T> {
fn default() -> Self {
Slab::new()
}
}
/// A handle to a vacant entry in a `Slab`.
///
/// `VacantEntry` allows constructing values with the key that they will be
/// assigned to.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
#[derive(Debug)]
pub struct VacantEntry<'a, T> {
slab: &'a mut Slab<T>,
key: usize,
}
/// A consuming iterator over the values stored in a `Slab`
pub struct IntoIter<T> {
entries: iter::Enumerate<vec::IntoIter<Entry<T>>>,
len: usize,
}
/// An iterator over the values stored in the `Slab`
pub struct Iter<'a, T> {
entries: iter::Enumerate<slice::Iter<'a, Entry<T>>>,
len: usize,
}
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Self {
Self {
entries: self.entries.clone(),
len: self.len,
}
}
}
/// A mutable iterator over the values stored in the `Slab`
pub struct IterMut<'a, T> {
entries: iter::Enumerate<slice::IterMut<'a, Entry<T>>>,
len: usize,
}
/// A draining iterator for `Slab`
pub struct Drain<'a, T> {
inner: vec::Drain<'a, Entry<T>>,
len: usize,
}
#[derive(Clone)]
enum Entry<T> {
Vacant(usize),
Occupied(T),
}
impl<T> Slab<T> {
/// Construct a new, empty `Slab`.
///
/// The function does not allocate and the returned slab will have no
/// capacity until `insert` is called or capacity is explicitly reserved.
///
/// This is `const fn` on Rust 1.39+.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let slab: Slab<i32> = Slab::new();
/// ```
#[cfg(not(slab_no_const_vec_new))]
pub const fn new() -> Self {
Self {
entries: Vec::new(),
next: 0,
len: 0,
}
}
/// Construct a new, empty `Slab`.
///
/// The function does not allocate and the returned slab will have no
/// capacity until `insert` is called or capacity is explicitly reserved.
///
/// This is `const fn` on Rust 1.39+.
#[cfg(slab_no_const_vec_new)]
pub fn new() -> Self {
Self {
entries: Vec::new(),
next: 0,
len: 0,
}
}
/// Construct a new, empty `Slab` with the specified capacity.
///
/// The returned slab will be able to store exactly `capacity` without
/// reallocating. If `capacity` is 0, the slab will not allocate.
///
/// It is important to note that this function does not specify the *length*
/// of the returned slab, but only the capacity. For an explanation of the
/// difference between length and capacity, see [Capacity and
/// reallocation](index.html#capacity-and-reallocation).
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::with_capacity(10);
///
/// // The slab contains no values, even though it has capacity for more
/// assert_eq!(slab.len(), 0);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// slab.insert(i);
/// }
///
/// // ...but this may make the slab reallocate
/// slab.insert(11);
/// ```
pub fn with_capacity(capacity: usize) -> Slab<T> {
Slab {
entries: Vec::with_capacity(capacity),
next: 0,
len: 0,
}
}
/// Return the number of values the slab can store without reallocating.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let slab: Slab<i32> = Slab::with_capacity(10);
/// assert_eq!(slab.capacity(), 10);
/// ```
pub fn capacity(&self) -> usize {
self.entries.capacity()
}
/// Reserve capacity for at least `additional` more values to be stored
/// without allocating.
///
/// `reserve` does nothing if the slab already has sufficient capacity for
/// `additional` more values. If more capacity is required, a new segment of
/// memory will be allocated and all existing values will be copied into it.
/// As such, if the slab is already very large, a call to `reserve` can end
/// up being expensive.
///
/// The slab may reserve more than `additional` extra space in order to
/// avoid frequent reallocations. Use `reserve_exact` instead to guarantee
/// that only the requested space is allocated.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// slab.insert("hello");
/// slab.reserve(10);
/// assert!(slab.capacity() >= 11);
/// ```
pub fn reserve(&mut self, additional: usize) {
if self.capacity() - self.len >= additional {
return;
}
let need_add = additional - (self.entries.len() - self.len);
self.entries.reserve(need_add);
}
/// Reserve the minimum capacity required to store exactly `additional`
/// more values.
///
/// `reserve_exact` does nothing if the slab already has sufficient capacity
/// for `additional` more values. If more capacity is required, a new segment
/// of memory will be allocated and all existing values will be copied into
/// it. As such, if the slab is already very large, a call to `reserve` can
/// end up being expensive.
///
/// Note that the allocator may give the slab more space than it requests.
/// Therefore capacity can not be relied upon to be precisely minimal.
/// Prefer `reserve` if future insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// slab.insert("hello");
/// slab.reserve_exact(10);
/// assert!(slab.capacity() >= 11);
/// ```
pub fn reserve_exact(&mut self, additional: usize) {
if self.capacity() - self.len >= additional {
return;
}
let need_add = additional - (self.entries.len() - self.len);
self.entries.reserve_exact(need_add);
}
/// Shrink the capacity of the slab as much as possible without invalidating keys.
///
/// Because values cannot be moved to a different index, the slab cannot
/// shrink past any stored values.
/// It will drop down as close as possible to the length but the allocator may
/// still inform the underlying vector that there is space for a few more elements.
///
/// This function can take O(n) time even when the capacity cannot be reduced
/// or the allocation is shrunk in place. Repeated calls run in O(1) though.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::with_capacity(10);
///
/// for i in 0..3 {
/// slab.insert(i);
/// }
///
/// slab.shrink_to_fit();
/// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
/// ```
///
/// The slab cannot shrink past the last present value even if previous
/// values are removed:
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::with_capacity(10);
///
/// for i in 0..4 {
/// slab.insert(i);
/// }
///
/// slab.remove(0);
/// slab.remove(3);
///
/// slab.shrink_to_fit();
/// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
/// ```
pub fn shrink_to_fit(&mut self) {
// Remove all vacant entries after the last occupied one, so that
// the capacity can be reduced to what is actually needed.
// If the slab is empty the vector can simply be cleared, but that
// optimization would not affect time complexity when T: Drop.
let len_before = self.entries.len();
while let Some(&Entry::Vacant(_)) = self.entries.last() {
self.entries.pop();
}
// Removing entries breaks the list of vacant entries,
// so it must be repaired
if self.entries.len() != len_before {
// Some vacant entries were removed, so the list now likely¹
// either contains references to the removed entries, or has an
// invalid end marker. Fix this by recreating the list.
self.recreate_vacant_list();
// ¹: If the removed entries formed the tail of the list, with the
// most recently popped entry being the head of them, (so that its
// index is now the end marker) the list is still valid.
// Checking for that unlikely scenario of this infrequently called
// is not worth the code complexity.
}
self.entries.shrink_to_fit();
}
/// Iterate through all entries to recreate and repair the vacant list.
/// self.len must be correct and is not modified.
fn recreate_vacant_list(&mut self) {
self.next = self.entries.len();
// We can stop once we've found all vacant entries
let mut remaining_vacant = self.entries.len() - self.len;
if remaining_vacant == 0 {
return;
}
// Iterate in reverse order so that lower keys are at the start of
// the vacant list. This way future shrinks are more likely to be
// able to remove vacant entries.
for (i, entry) in self.entries.iter_mut().enumerate().rev() {
if let Entry::Vacant(ref mut next) = *entry {
*next = self.next;
self.next = i;
remaining_vacant -= 1;
if remaining_vacant == 0 {
break;
}
}
}
}
/// Reduce the capacity as much as possible, changing the key for elements when necessary.
///
/// To allow updating references to the elements which must be moved to a new key,
/// this function takes a closure which is called before moving each element.
/// The second and third parameters to the closure are the current key and
/// new key respectively.
/// In case changing the key for one element turns out not to be possible,
/// the move can be cancelled by returning `false` from the closure.
/// In that case no further attempts at relocating elements is made.
/// If the closure unwinds, the slab will be left in a consistent state,
/// but the value that the closure panicked on might be removed.
///
/// # Examples
///
/// ```
/// # use slab::*;
///
/// let mut slab = Slab::with_capacity(10);
/// let a = slab.insert('a');
/// slab.insert('b');
/// slab.insert('c');
/// slab.remove(a);
/// slab.compact(|&mut value, from, to| {
/// assert_eq!((value, from, to), ('c', 2, 0));
/// true
/// });
/// assert!(slab.capacity() >= 2 && slab.capacity() < 10);
/// ```
///
/// The value is not moved when the closure returns `Err`:
///
/// ```
/// # use slab::*;
///
/// let mut slab = Slab::with_capacity(100);
/// let a = slab.insert('a');
/// let b = slab.insert('b');
/// slab.remove(a);
/// slab.compact(|&mut value, from, to| false);
/// assert_eq!(slab.iter().next(), Some((b, &'b')));
/// ```
pub fn compact<F>(&mut self, mut rekey: F)
where
F: FnMut(&mut T, usize, usize) -> bool,
{
// If the closure unwinds, we need to restore a valid list of vacant entries
struct CleanupGuard<'a, T> {
slab: &'a mut Slab<T>,
decrement: bool,
}
impl<T> Drop for CleanupGuard<'_, T> {
fn drop(&mut self) {
if self.decrement {
// Value was popped and not pushed back on
self.slab.len -= 1;
}
self.slab.recreate_vacant_list();
}
}
let mut guard = CleanupGuard {
slab: self,
decrement: true,
};
let mut occupied_until = 0;
// While there are vacant entries
while guard.slab.entries.len() > guard.slab.len {
// Find a value that needs to be moved,
// by popping entries until we find an occupied one.
// (entries cannot be empty because 0 is not greater than anything)
if let Some(Entry::Occupied(mut value)) = guard.slab.entries.pop() {
// Found one, now find a vacant entry to move it to
while let Some(&Entry::Occupied(_)) = guard.slab.entries.get(occupied_until) {
occupied_until += 1;
}
// Let the caller try to update references to the key
if !rekey(&mut value, guard.slab.entries.len(), occupied_until) {
// Changing the key failed, so push the entry back on at its old index.
guard.slab.entries.push(Entry::Occupied(value));
guard.decrement = false;
guard.slab.entries.shrink_to_fit();
return;
// Guard drop handles cleanup
}
// Put the value in its new spot
guard.slab.entries[occupied_until] = Entry::Occupied(value);
// ... and mark it as occupied (this is optional)
occupied_until += 1;
}
}
guard.slab.next = guard.slab.len;
guard.slab.entries.shrink_to_fit();
// Normal cleanup is not necessary
mem::forget(guard);
}
/// Clear the slab of all values.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// for i in 0..3 {
/// slab.insert(i);
/// }
///
/// slab.clear();
/// assert!(slab.is_empty());
/// ```
pub fn clear(&mut self) {
self.entries.clear();
self.len = 0;
self.next = 0;
}
/// Return the number of stored values.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// for i in 0..3 {
/// slab.insert(i);
/// }
///
/// assert_eq!(3, slab.len());
/// ```
pub fn len(&self) -> usize {
self.len
}
/// Return `true` if there are no values stored in the slab.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// assert!(slab.is_empty());
///
/// slab.insert(1);
/// assert!(!slab.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Return an iterator over the slab.
///
/// This function should generally be **avoided** as it is not efficient.
/// Iterators must iterate over every slot in the slab even if it is
/// vacant. As such, a slab with a capacity of 1 million but only one
/// stored value must still iterate the million slots.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// for i in 0..3 {
/// slab.insert(i);
/// }
///
/// let mut iterator = slab.iter();
///
/// assert_eq!(iterator.next(), Some((0, &0)));
/// assert_eq!(iterator.next(), Some((1, &1)));
/// assert_eq!(iterator.next(), Some((2, &2)));
/// assert_eq!(iterator.next(), None);
/// ```
pub fn iter(&self) -> Iter<'_, T> {
Iter {
entries: self.entries.iter().enumerate(),
len: self.len,
}
}
/// Return an iterator that allows modifying each value.
///
/// This function should generally be **avoided** as it is not efficient.
/// Iterators must iterate over every slot in the slab even if it is
/// vacant. As such, a slab with a capacity of 1 million but only one
/// stored value must still iterate the million slots.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let key1 = slab.insert(0);
/// let key2 = slab.insert(1);
///
/// for (key, val) in slab.iter_mut() {
/// if key == key1 {
/// *val += 2;
/// }
/// }
///
/// assert_eq!(slab[key1], 2);
/// assert_eq!(slab[key2], 1);
/// ```
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
IterMut {
entries: self.entries.iter_mut().enumerate(),
len: self.len,
}
}
/// Return a reference to the value associated with the given key.
///
/// If the given key is not associated with a value, then `None` is
/// returned.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert("hello");
///
/// assert_eq!(slab.get(key), Some(&"hello"));
/// assert_eq!(slab.get(123), None);
/// ```
pub fn get(&self, key: usize) -> Option<&T> {
match self.entries.get(key) {
Some(Entry::Occupied(val)) => Some(val),
_ => None,
}
}
/// Return a mutable reference to the value associated with the given key.
///
/// If the given key is not associated with a value, then `None` is
/// returned.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert("hello");
///
/// *slab.get_mut(key).unwrap() = "world";
///
/// assert_eq!(slab[key], "world");
/// assert_eq!(slab.get_mut(123), None);
/// ```
pub fn get_mut(&mut self, key: usize) -> Option<&mut T> {
match self.entries.get_mut(key) {
Some(&mut Entry::Occupied(ref mut val)) => Some(val),
_ => None,
}
}
/// Return two mutable references to the values associated with the two
/// given keys simultaneously.
///
/// If any one of the given keys is not associated with a value, then `None`
/// is returned.
///
/// This function can be used to get two mutable references out of one slab,
/// so that you can manipulate both of them at the same time, eg. swap them.
///
/// # Panics
///
/// This function will panic if `key1` and `key2` are the same.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// use std::mem;
///
/// let mut slab = Slab::new();
/// let key1 = slab.insert(1);
/// let key2 = slab.insert(2);
/// let (value1, value2) = slab.get2_mut(key1, key2).unwrap();
/// mem::swap(value1, value2);
/// assert_eq!(slab[key1], 2);
/// assert_eq!(slab[key2], 1);
/// ```
pub fn get2_mut(&mut self, key1: usize, key2: usize) -> Option<(&mut T, &mut T)> {
assert!(key1 != key2);
let (entry1, entry2);
if key1 > key2 {
let (slice1, slice2) = self.entries.split_at_mut(key1);
entry1 = slice2.get_mut(0);
entry2 = slice1.get_mut(key2);
} else {
let (slice1, slice2) = self.entries.split_at_mut(key2);
entry1 = slice1.get_mut(key1);
entry2 = slice2.get_mut(0);
}
match (entry1, entry2) {
(
Some(&mut Entry::Occupied(ref mut val1)),
Some(&mut Entry::Occupied(ref mut val2)),
) => Some((val1, val2)),
_ => None,
}
}
/// Return a reference to the value associated with the given key without
/// performing bounds checking.
///
/// For a safe alternative see [`get`](Slab::get).
///
/// This function should be used with care.
///
/// # Safety
///
/// The key must be within bounds.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert(2);
///
/// unsafe {
/// assert_eq!(slab.get_unchecked(key), &2);
/// }
/// ```
pub unsafe fn get_unchecked(&self, key: usize) -> &T {
match *self.entries.get_unchecked(key) {
Entry::Occupied(ref val) => val,
_ => unreachable!(),
}
}
/// Return a mutable reference to the value associated with the given key
/// without performing bounds checking.
///
/// For a safe alternative see [`get_mut`](Slab::get_mut).
///
/// This function should be used with care.
///
/// # Safety
///
/// The key must be within bounds.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert(2);
///
/// unsafe {
/// let val = slab.get_unchecked_mut(key);
/// *val = 13;
/// }
///
/// assert_eq!(slab[key], 13);
/// ```
pub unsafe fn get_unchecked_mut(&mut self, key: usize) -> &mut T {
match *self.entries.get_unchecked_mut(key) {
Entry::Occupied(ref mut val) => val,
_ => unreachable!(),
}
}
/// Return two mutable references to the values associated with the two
/// given keys simultaneously without performing bounds checking and safety
/// condition checking.
///
/// For a safe alternative see [`get2_mut`](Slab::get2_mut).
///
/// This function should be used with care.
///
/// # Safety
///
/// - Both keys must be within bounds.
/// - The condition `key1 != key2` must hold.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// use std::mem;
///
/// let mut slab = Slab::new();
/// let key1 = slab.insert(1);
/// let key2 = slab.insert(2);
/// let (value1, value2) = unsafe { slab.get2_unchecked_mut(key1, key2) };
/// mem::swap(value1, value2);
/// assert_eq!(slab[key1], 2);
/// assert_eq!(slab[key2], 1);
/// ```
pub unsafe fn get2_unchecked_mut(&mut self, key1: usize, key2: usize) -> (&mut T, &mut T) {
debug_assert_ne!(key1, key2);
let ptr = self.entries.as_mut_ptr();
let ptr1 = ptr.add(key1);
let ptr2 = ptr.add(key2);
match (&mut *ptr1, &mut *ptr2) {
(&mut Entry::Occupied(ref mut val1), &mut Entry::Occupied(ref mut val2)) => {
(val1, val2)
}
_ => unreachable!(),
}
}
/// Get the key for an element in the slab.
///
/// The reference must point to an element owned by the slab.
/// Otherwise this function will panic.
/// This is a constant-time operation because the key can be calculated
/// from the reference with pointer arithmetic.
///
/// # Panics
///
/// This function will panic if the reference does not point to an element
/// of the slab.
///
/// # Examples
///
/// ```
/// # use slab::*;
///
/// let mut slab = Slab::new();
/// let key = slab.insert(String::from("foo"));
/// let value = &slab[key];
/// assert_eq!(slab.key_of(value), key);
/// ```
///
/// Values are not compared, so passing a reference to a different location
/// will result in a panic:
///
/// ```should_panic
/// # use slab::*;
///
/// let mut slab = Slab::new();
/// let key = slab.insert(0);
/// let bad = &0;
/// slab.key_of(bad); // this will panic
/// unreachable!();
/// ```
#[cfg_attr(not(slab_no_track_caller), track_caller)]
pub fn key_of(&self, present_element: &T) -> usize {
let element_ptr = present_element as *const T as usize;
let base_ptr = self.entries.as_ptr() as usize;
// Use wrapping subtraction in case the reference is bad
let byte_offset = element_ptr.wrapping_sub(base_ptr);
// The division rounds away any offset of T inside Entry
// The size of Entry<T> is never zero even if T is due to Vacant(usize)
let key = byte_offset / mem::size_of::<Entry<T>>();
// Prevent returning unspecified (but out of bounds) values
if key >= self.entries.len() {
panic!("The reference points to a value outside this slab");
}
// The reference cannot point to a vacant entry, because then it would not be valid
key
}
/// Insert a value in the slab, returning key assigned to the value.
///
/// The returned key can later be used to retrieve or remove the value using indexed
/// lookup and `remove`. Additional capacity is allocated if needed. See
/// [Capacity and reallocation](index.html#capacity-and-reallocation).
///
/// # Panics
///
/// Panics if the new storage in the vector exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert("hello");
/// assert_eq!(slab[key], "hello");
/// ```
pub fn insert(&mut self, val: T) -> usize {
let key = self.next;
self.insert_at(key, val);
key
}
/// Returns the key of the next vacant entry.
///
/// This function returns the key of the vacant entry which will be used
/// for the next insertion. This is equivalent to
/// `slab.vacant_entry().key()`, but it doesn't require mutable access.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// assert_eq!(slab.vacant_key(), 0);
///
/// slab.insert(0);
/// assert_eq!(slab.vacant_key(), 1);
///
/// slab.insert(1);
/// slab.remove(0);
/// assert_eq!(slab.vacant_key(), 0);
/// ```
pub fn vacant_key(&self) -> usize {
self.next
}
/// Return a handle to a vacant entry allowing for further manipulation.
///
/// This function is useful when creating values that must contain their
/// slab key. The returned `VacantEntry` reserves a slot in the slab and is
/// able to query the associated key.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
pub fn vacant_entry(&mut self) -> VacantEntry<'_, T> {
VacantEntry {
key: self.next,
slab: self,
}
}
fn insert_at(&mut self, key: usize, val: T) {
self.len += 1;
if key == self.entries.len() {
self.entries.push(Entry::Occupied(val));
self.next = key + 1;
} else {
self.next = match self.entries.get(key) {
Some(&Entry::Vacant(next)) => next,
_ => unreachable!(),
};
self.entries[key] = Entry::Occupied(val);
}
}
/// Tries to remove the value associated with the given key,
/// returning the value if the key existed.
///
/// The key is then released and may be associated with future stored
/// values.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = slab.insert("hello");
///
/// assert_eq!(slab.try_remove(hello), Some("hello"));
/// assert!(!slab.contains(hello));
/// ```
pub fn try_remove(&mut self, key: usize) -> Option<T> {
if let Some(entry) = self.entries.get_mut(key) {
// Swap the entry at the provided value
let prev = mem::replace(entry, Entry::Vacant(self.next));
match prev {
Entry::Occupied(val) => {
self.len -= 1;
self.next = key;
return val.into();
}
_ => {
// Woops, the entry is actually vacant, restore the state
*entry = prev;
}
}
}
None
}
/// Remove and return the value associated with the given key.
///
/// The key is then released and may be associated with future stored
/// values.
///
/// # Panics
///
/// Panics if `key` is not associated with a value.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = slab.insert("hello");
///
/// assert_eq!(slab.remove(hello), "hello");
/// assert!(!slab.contains(hello));
/// ```
#[cfg_attr(not(slab_no_track_caller), track_caller)]
pub fn remove(&mut self, key: usize) -> T {
self.try_remove(key).expect("invalid key")
}
/// Return `true` if a value is associated with the given key.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = slab.insert("hello");
/// assert!(slab.contains(hello));
///
/// slab.remove(hello);
///
/// assert!(!slab.contains(hello));
/// ```
pub fn contains(&self, key: usize) -> bool {
match self.entries.get(key) {
Some(&Entry::Occupied(_)) => true,
_ => false,
}
}
/// Retain only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(usize, &mut e)`
/// returns false. This method operates in place and preserves the key
/// associated with the retained values.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let k1 = slab.insert(0);
/// let k2 = slab.insert(1);
/// let k3 = slab.insert(2);
///
/// slab.retain(|key, val| key == k1 || *val == 1);
///
/// assert!(slab.contains(k1));
/// assert!(slab.contains(k2));
/// assert!(!slab.contains(k3));
///
/// assert_eq!(2, slab.len());
/// ```
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(usize, &mut T) -> bool,
{
for i in 0..self.entries.len() {
let keep = match self.entries[i] {
Entry::Occupied(ref mut v) => f(i, v),
_ => true,
};
if !keep {
self.remove(i);
}
}
}
/// Return a draining iterator that removes all elements from the slab and
/// yields the removed items.
///
/// Note: Elements are removed even if the iterator is only partially
/// consumed or not consumed at all.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let _ = slab.insert(0);
/// let _ = slab.insert(1);
/// let _ = slab.insert(2);
///
/// {
/// let mut drain = slab.drain();
///
/// assert_eq!(Some(0), drain.next());
/// assert_eq!(Some(1), drain.next());
/// assert_eq!(Some(2), drain.next());
/// assert_eq!(None, drain.next());
/// }
///
/// assert!(slab.is_empty());
/// ```
pub fn drain(&mut self) -> Drain<'_, T> {
let old_len = self.len;
self.len = 0;
self.next = 0;
Drain {
inner: self.entries.drain(..),
len: old_len,
}
}
}
impl<T> ops::Index<usize> for Slab<T> {
type Output = T;
#[cfg_attr(not(slab_no_track_caller), track_caller)]
fn index(&self, key: usize) -> &T {
match self.entries.get(key) {
Some(Entry::Occupied(v)) => v,
_ => panic!("invalid key"),
}
}
}
impl<T> ops::IndexMut<usize> for Slab<T> {
#[cfg_attr(not(slab_no_track_caller), track_caller)]
fn index_mut(&mut self, key: usize) -> &mut T {
match self.entries.get_mut(key) {
Some(&mut Entry::Occupied(ref mut v)) => v,
_ => panic!("invalid key"),
}
}
}
impl<T> IntoIterator for Slab<T> {
type Item = (usize, T);
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
IntoIter {
entries: self.entries.into_iter().enumerate(),
len: self.len,
}
}
}
impl<'a, T> IntoIterator for &'a Slab<T> {
type Item = (usize, &'a T);
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
impl<'a, T> IntoIterator for &'a mut Slab<T> {
type Item = (usize, &'a mut T);
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> IterMut<'a, T> {
self.iter_mut()
}
}
/// Create a slab from an iterator of key-value pairs.
///
/// If the iterator produces duplicate keys, the previous value is replaced with the later one.
/// The keys does not need to be sorted beforehand, and this function always
/// takes O(n) time.
/// Note that the returned slab will use space proportional to the largest key,
/// so don't use `Slab` with untrusted keys.
///
/// # Examples
///
/// ```
/// # use slab::*;
///
/// let vec = vec![(2,'a'), (6,'b'), (7,'c')];
/// let slab = vec.into_iter().collect::<Slab<char>>();
/// assert_eq!(slab.len(), 3);
/// assert!(slab.capacity() >= 8);
/// assert_eq!(slab[2], 'a');
/// ```
///
/// With duplicate and unsorted keys:
///
/// ```
/// # use slab::*;
///
/// let vec = vec![(20,'a'), (10,'b'), (11,'c'), (10,'d')];
/// let slab = vec.into_iter().collect::<Slab<char>>();
/// assert_eq!(slab.len(), 3);
/// assert_eq!(slab[10], 'd');
/// ```
impl<T> FromIterator<(usize, T)> for Slab<T> {
fn from_iter<I>(iterable: I) -> Self
where
I: IntoIterator<Item = (usize, T)>,
{
let iterator = iterable.into_iter();
let mut builder = builder::Builder::with_capacity(iterator.size_hint().0);
for (key, value) in iterator {
builder.pair(key, value)
}
builder.build()
}
}
impl<T> fmt::Debug for Slab<T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
if fmt.alternate() {
fmt.debug_map().entries(self.iter()).finish()
} else {
fmt.debug_struct("Slab")
.field("len", &self.len)
.field("cap", &self.capacity())
.finish()
}
}
}
impl<T> fmt::Debug for IntoIter<T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("IntoIter")
.field("remaining", &self.len)
.finish()
}
}
impl<T> fmt::Debug for Iter<'_, T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Iter")
.field("remaining", &self.len)
.finish()
}
}
impl<T> fmt::Debug for IterMut<'_, T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("IterMut")
.field("remaining", &self.len)
.finish()
}
}
impl<T> fmt::Debug for Drain<'_, T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Drain").finish()
}
}
// ===== VacantEntry =====
impl<'a, T> VacantEntry<'a, T> {
/// Insert a value in the entry, returning a mutable reference to the value.
///
/// To get the key associated with the value, use `key` prior to calling
/// `insert`.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
pub fn insert(self, val: T) -> &'a mut T {
self.slab.insert_at(self.key, val);
match self.slab.entries.get_mut(self.key) {
Some(&mut Entry::Occupied(ref mut v)) => v,
_ => unreachable!(),
}
}
/// Return the key associated with this entry.
///
/// A value stored in this entry will be associated with this key.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
pub fn key(&self) -> usize {
self.key
}
}
// ===== IntoIter =====
impl<T> Iterator for IntoIter<T> {
type Item = (usize, T);
fn next(&mut self) -> Option<Self::Item> {
for (key, entry) in &mut self.entries {
if let Entry::Occupied(v) = entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<Self::Item> {
while let Some((key, entry)) = self.entries.next_back() {
if let Entry::Occupied(v) = entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
}
impl<T> ExactSizeIterator for IntoIter<T> {
fn len(&self) -> usize {
self.len
}
}
impl<T> FusedIterator for IntoIter<T> {}
// ===== Iter =====
impl<'a, T> Iterator for Iter<'a, T> {
type Item = (usize, &'a T);
fn next(&mut self) -> Option<Self::Item> {
for (key, entry) in &mut self.entries {
if let Entry::Occupied(ref v) = *entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> DoubleEndedIterator for Iter<'_, T> {
fn next_back(&mut self) -> Option<Self::Item> {
while let Some((key, entry)) = self.entries.next_back() {
if let Entry::Occupied(ref v) = *entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
}
impl<T> ExactSizeIterator for Iter<'_, T> {
fn len(&self) -> usize {
self.len
}
}
impl<T> FusedIterator for Iter<'_, T> {}
// ===== IterMut =====
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = (usize, &'a mut T);
fn next(&mut self) -> Option<Self::Item> {
for (key, entry) in &mut self.entries {
if let Entry::Occupied(ref mut v) = *entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> DoubleEndedIterator for IterMut<'_, T> {
fn next_back(&mut self) -> Option<Self::Item> {
while let Some((key, entry)) = self.entries.next_back() {
if let Entry::Occupied(ref mut v) = *entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
}
impl<T> ExactSizeIterator for IterMut<'_, T> {
fn len(&self) -> usize {
self.len
}
}
impl<T> FusedIterator for IterMut<'_, T> {}
// ===== Drain =====
impl<T> Iterator for Drain<'_, T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
for entry in &mut self.inner {
if let Entry::Occupied(v) = entry {
self.len -= 1;
return Some(v);
}
}
debug_assert_eq!(self.len, 0);
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> DoubleEndedIterator for Drain<'_, T> {
fn next_back(&mut self) -> Option<Self::Item> {
while let Some(entry) = self.inner.next_back() {
if let Entry::Occupied(v) = entry {
self.len -= 1;
return Some(v);
}
}
debug_assert_eq!(self.len, 0);
None
}
}
impl<T> ExactSizeIterator for Drain<'_, T> {
fn len(&self) -> usize {
self.len
}
}
impl<T> FusedIterator for Drain<'_, T> {}