Revision control

Copy as Markdown

Other Tools

use alloc::sync::Arc;
use core::{
mem::{self, MaybeUninit},
ptr::copy_nonoverlapping,
slice,
sync::atomic::Ordering,
};
#[cfg(feature = "std")]
use std::io::{self, Read, Write};
use crate::{consumer::Consumer, ring_buffer::*};
/// Producer part of ring buffer.
pub struct Producer<T> {
pub(crate) rb: Arc<RingBuffer<T>>,
}
impl<T: Sized> Producer<T> {
/// Returns capacity of the ring buffer.
///
/// The capacity of the buffer is constant.
pub fn capacity(&self) -> usize {
self.rb.capacity()
}
/// Checks if the ring buffer is empty.
///
/// The result is relevant until you push items to the producer.
pub fn is_empty(&self) -> bool {
self.rb.is_empty()
}
/// Checks if the ring buffer is full.
///
/// *The result may become irrelevant at any time because of concurring activity of the consumer.*
pub fn is_full(&self) -> bool {
self.rb.is_full()
}
/// The length of the data stored in the buffer.
///
/// Actual length may be equal to or less than the returned value.
pub fn len(&self) -> usize {
self.rb.len()
}
/// The remaining space in the buffer.
///
/// Actual remaining space may be equal to or greater than the returning value.
pub fn remaining(&self) -> usize {
self.rb.remaining()
}
/// Allows to write into ring buffer memory directly.
///
/// *This function is unsafe because it gives access to possibly uninitialized memory*
///
/// The method takes a function `f` as argument.
/// `f` takes two slices of ring buffer content (the second one or both of them may be empty).
/// First slice contains older elements.
///
/// `f` should return number of elements been written.
/// *There is no checks for returned number - it remains on the developer's conscience.*
///
/// The method **always** calls `f` even if ring buffer is full.
///
/// The method returns number returned from `f`.
///
/// # Safety
///
/// The method gives access to ring buffer underlying memory which may be uninitialized.
///
pub unsafe fn push_access<F>(&mut self, f: F) -> usize
where
F: FnOnce(&mut [MaybeUninit<T>], &mut [MaybeUninit<T>]) -> usize,
{
let head = self.rb.head.load(Ordering::Acquire);
let tail = self.rb.tail.load(Ordering::Acquire);
let len = self.rb.data.len();
let ranges = if tail >= head {
if head > 0 {
(tail..len, 0..(head - 1))
} else if tail < len - 1 {
(tail..(len - 1), 0..0)
} else {
(0..0, 0..0)
}
} else if tail < head - 1 {
(tail..(head - 1), 0..0)
} else {
(0..0, 0..0)
};
let ptr = self.rb.data.get_mut().as_mut_ptr();
let slices = (
slice::from_raw_parts_mut(ptr.add(ranges.0.start), ranges.0.len()),
slice::from_raw_parts_mut(ptr.add(ranges.1.start), ranges.1.len()),
);
let n = f(slices.0, slices.1);
if n > 0 {
let new_tail = (tail + n) % len;
self.rb.tail.store(new_tail, Ordering::Release);
}
n
}
/// Copies data from the slice to the ring buffer in byte-to-byte manner.
///
/// The `elems` slice should contain **initialized** data before the method call.
/// After the call the copied part of data in `elems` should be interpreted as **un-initialized**.
///
/// Returns the number of items been copied.
///
/// # Safety
///
/// The method copies raw data into the ring buffer.
///
/// *You should properly fill the slice and manage remaining elements after copy.*
///
pub unsafe fn push_copy(&mut self, elems: &[MaybeUninit<T>]) -> usize {
self.push_access(|left, right| -> usize {
if elems.len() < left.len() {
copy_nonoverlapping(elems.as_ptr(), left.as_mut_ptr(), elems.len());
elems.len()
} else {
copy_nonoverlapping(elems.as_ptr(), left.as_mut_ptr(), left.len());
if elems.len() < left.len() + right.len() {
copy_nonoverlapping(
elems.as_ptr().add(left.len()),
right.as_mut_ptr(),
elems.len() - left.len(),
);
elems.len()
} else {
copy_nonoverlapping(
elems.as_ptr().add(left.len()),
right.as_mut_ptr(),
right.len(),
);
left.len() + right.len()
}
}
})
}
/// Appends an element to the ring buffer.
/// On failure returns an error containing the element that hasn't been appended.
pub fn push(&mut self, elem: T) -> Result<(), T> {
let mut elem_mu = MaybeUninit::new(elem);
let n = unsafe {
self.push_access(|slice, _| {
if !slice.is_empty() {
mem::swap(slice.get_unchecked_mut(0), &mut elem_mu);
1
} else {
0
}
})
};
match n {
0 => Err(unsafe { elem_mu.assume_init() }),
1 => Ok(()),
_ => unreachable!(),
}
}
/// Repeatedly calls the closure `f` and pushes elements returned from it to the ring buffer.
///
/// The closure is called until it returns `None` or the ring buffer is full.
///
/// The method returns number of elements been put into the buffer.
pub fn push_each<F: FnMut() -> Option<T>>(&mut self, mut f: F) -> usize {
unsafe {
self.push_access(|left, right| {
for (i, dst) in left.iter_mut().enumerate() {
match f() {
Some(e) => dst.as_mut_ptr().write(e),
None => return i,
};
}
for (i, dst) in right.iter_mut().enumerate() {
match f() {
Some(e) => dst.as_mut_ptr().write(e),
None => return i + left.len(),
};
}
left.len() + right.len()
})
}
}
/// Appends elements from an iterator to the ring buffer.
/// Elements that haven't been added to the ring buffer remain in the iterator.
///
/// Returns count of elements been appended to the ring buffer.
pub fn push_iter<I: Iterator<Item = T>>(&mut self, elems: &mut I) -> usize {
self.push_each(|| elems.next())
}
/// Removes at most `count` elements from the consumer and appends them to the producer.
/// If `count` is `None` then as much as possible elements will be moved.
/// The producer and consumer parts may be of different buffers as well as of the same one.
///
/// On success returns number of elements been moved.
pub fn move_from(&mut self, other: &mut Consumer<T>, count: Option<usize>) -> usize {
move_items(other, self, count)
}
}
impl<T: Sized + Copy> Producer<T> {
/// Appends elements from slice to the ring buffer.
/// Elements should be [`Copy`](https://doc.rust-lang.org/std/marker/trait.Copy.html).
///
/// Returns count of elements been appended to the ring buffer.
pub fn push_slice(&mut self, elems: &[T]) -> usize {
unsafe { self.push_copy(&*(elems as *const [T] as *const [MaybeUninit<T>])) }
}
}
#[cfg(feature = "std")]
impl Producer<u8> {
/// Reads at most `count` bytes
/// and appends them to the ring buffer.
/// If `count` is `None` then as much as possible bytes will be read.
///
/// Returns `Ok(n)` if `read` succeeded. `n` is number of bytes been read.
/// `n == 0` means that either `read` returned zero or ring buffer is full.
///
/// If `read` is failed or returned an invalid number then error is returned.
pub fn read_from(&mut self, reader: &mut dyn Read, count: Option<usize>) -> io::Result<usize> {
let mut err = None;
let n = unsafe {
self.push_access(|left, _| -> usize {
let left = match count {
Some(c) => {
if c < left.len() {
&mut left[0..c]
} else {
left
}
}
None => left,
};
match reader
.read(&mut *(left as *mut [MaybeUninit<u8>] as *mut [u8]))
.and_then(|n| {
if n <= left.len() {
Ok(n)
} else {
Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Read operation returned an invalid number",
))
}
}) {
Ok(n) => n,
Err(e) => {
err = Some(e);
0
}
}
})
};
match err {
Some(e) => Err(e),
None => Ok(n),
}
}
}
#[cfg(feature = "std")]
impl Write for Producer<u8> {
fn write(&mut self, buffer: &[u8]) -> io::Result<usize> {
let n = self.push_slice(buffer);
if n == 0 && !buffer.is_empty() {
Err(io::ErrorKind::WouldBlock.into())
} else {
Ok(n)
}
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}