Revision control

Copy as Markdown

Other Tools

#![cfg(test)]
use crate::prelude::*;
use rand::distributions::Uniform;
use rand::seq::SliceRandom;
use rand::{thread_rng, Rng};
use std::cmp::Ordering::{Equal, Greater, Less};
use std::sync::atomic::{AtomicUsize, Ordering::Relaxed};
macro_rules! sort {
($f:ident, $name:ident) => {
#[test]
fn $name() {
let rng = &mut thread_rng();
for len in (0..25).chain(500..501) {
for &modulus in &[5, 10, 100] {
let dist = Uniform::new(0, modulus);
for _ in 0..100 {
let v: Vec<i32> = rng.sample_iter(&dist).take(len).collect();
// Test sort using `<` operator.
let mut tmp = v.clone();
tmp.$f(|a, b| a.cmp(b));
assert!(tmp.windows(2).all(|w| w[0] <= w[1]));
// Test sort using `>` operator.
let mut tmp = v.clone();
tmp.$f(|a, b| b.cmp(a));
assert!(tmp.windows(2).all(|w| w[0] >= w[1]));
}
}
}
// Test sort with many duplicates.
for &len in &[1_000, 10_000, 100_000] {
for &modulus in &[5, 10, 100, 10_000] {
let dist = Uniform::new(0, modulus);
let mut v: Vec<i32> = rng.sample_iter(&dist).take(len).collect();
v.$f(|a, b| a.cmp(b));
assert!(v.windows(2).all(|w| w[0] <= w[1]));
}
}
// Test sort with many pre-sorted runs.
for &len in &[1_000, 10_000, 100_000] {
let len_dist = Uniform::new(0, len);
for &modulus in &[5, 10, 1000, 50_000] {
let dist = Uniform::new(0, modulus);
let mut v: Vec<i32> = rng.sample_iter(&dist).take(len).collect();
v.sort();
v.reverse();
for _ in 0..5 {
let a = rng.sample(&len_dist);
let b = rng.sample(&len_dist);
if a < b {
v[a..b].reverse();
} else {
v.swap(a, b);
}
}
v.$f(|a, b| a.cmp(b));
assert!(v.windows(2).all(|w| w[0] <= w[1]));
}
}
// Sort using a completely random comparison function.
// This will reorder the elements *somehow*, but won't panic.
let mut v: Vec<_> = (0..100).collect();
v.$f(|_, _| *[Less, Equal, Greater].choose(&mut thread_rng()).unwrap());
v.$f(|a, b| a.cmp(b));
for i in 0..v.len() {
assert_eq!(v[i], i);
}
// Should not panic.
[0i32; 0].$f(|a, b| a.cmp(b));
[(); 10].$f(|a, b| a.cmp(b));
[(); 100].$f(|a, b| a.cmp(b));
let mut v = [0xDEAD_BEEFu64];
v.$f(|a, b| a.cmp(b));
assert!(v == [0xDEAD_BEEF]);
}
};
}
sort!(par_sort_by, test_par_sort);
sort!(par_sort_unstable_by, test_par_sort_unstable);
#[test]
fn test_par_sort_stability() {
for len in (2..25).chain(500..510).chain(50_000..50_010) {
for _ in 0..10 {
let mut counts = [0; 10];
// Create a vector like [(6, 1), (5, 1), (6, 2), ...],
// where the first item of each tuple is random, but
// the second item represents which occurrence of that
// number this element is, i.e. the second elements
// will occur in sorted order.
let mut rng = thread_rng();
let mut v: Vec<_> = (0..len)
.map(|_| {
let n: usize = rng.gen_range(0..10);
counts[n] += 1;
(n, counts[n])
})
.collect();
// Only sort on the first element, so an unstable sort
// may mix up the counts.
v.par_sort_by(|&(a, _), &(b, _)| a.cmp(&b));
// This comparison includes the count (the second item
// of the tuple), so elements with equal first items
// will need to be ordered with increasing
// counts... i.e. exactly asserting that this sort is
// stable.
assert!(v.windows(2).all(|w| w[0] <= w[1]));
}
}
}
#[test]
fn test_par_chunks_exact_remainder() {
let v: &[i32] = &[0, 1, 2, 3, 4];
let c = v.par_chunks_exact(2);
assert_eq!(c.remainder(), &[4]);
assert_eq!(c.len(), 2);
}
#[test]
fn test_par_chunks_exact_mut_remainder() {
let v: &mut [i32] = &mut [0, 1, 2, 3, 4];
let mut c = v.par_chunks_exact_mut(2);
assert_eq!(c.remainder(), &[4]);
assert_eq!(c.len(), 2);
assert_eq!(c.into_remainder(), &[4]);
let mut c = v.par_chunks_exact_mut(2);
assert_eq!(c.take_remainder(), &[4]);
assert_eq!(c.take_remainder(), &[]);
assert_eq!(c.len(), 2);
}
#[test]
fn test_par_rchunks_exact_remainder() {
let v: &[i32] = &[0, 1, 2, 3, 4];
let c = v.par_rchunks_exact(2);
assert_eq!(c.remainder(), &[0]);
assert_eq!(c.len(), 2);
}
#[test]
fn test_par_rchunks_exact_mut_remainder() {
let v: &mut [i32] = &mut [0, 1, 2, 3, 4];
let mut c = v.par_rchunks_exact_mut(2);
assert_eq!(c.remainder(), &[0]);
assert_eq!(c.len(), 2);
assert_eq!(c.into_remainder(), &[0]);
let mut c = v.par_rchunks_exact_mut(2);
assert_eq!(c.take_remainder(), &[0]);
assert_eq!(c.take_remainder(), &[]);
assert_eq!(c.len(), 2);
}
#[test]
fn slice_chunk_by() {
let v: Vec<_> = (0..1000).collect();
assert_eq!(v[..0].par_chunk_by(|_, _| todo!()).count(), 0);
assert_eq!(v[..1].par_chunk_by(|_, _| todo!()).count(), 1);
assert_eq!(v[..2].par_chunk_by(|_, _| true).count(), 1);
assert_eq!(v[..2].par_chunk_by(|_, _| false).count(), 2);
let count = AtomicUsize::new(0);
let par: Vec<_> = v
.par_chunk_by(|x, y| {
count.fetch_add(1, Relaxed);
(x % 10 < 3) == (y % 10 < 3)
})
.collect();
assert_eq!(count.into_inner(), v.len() - 1);
let seq: Vec<_> = v.chunk_by(|x, y| (x % 10 < 3) == (y % 10 < 3)).collect();
assert_eq!(par, seq);
}
#[test]
fn slice_chunk_by_mut() {
let mut v: Vec<_> = (0..1000).collect();
assert_eq!(v[..0].par_chunk_by_mut(|_, _| todo!()).count(), 0);
assert_eq!(v[..1].par_chunk_by_mut(|_, _| todo!()).count(), 1);
assert_eq!(v[..2].par_chunk_by_mut(|_, _| true).count(), 1);
assert_eq!(v[..2].par_chunk_by_mut(|_, _| false).count(), 2);
let mut v2 = v.clone();
let count = AtomicUsize::new(0);
let par: Vec<_> = v
.par_chunk_by_mut(|x, y| {
count.fetch_add(1, Relaxed);
(x % 10 < 3) == (y % 10 < 3)
})
.collect();
assert_eq!(count.into_inner(), v2.len() - 1);
let seq: Vec<_> = v2
.chunk_by_mut(|x, y| (x % 10 < 3) == (y % 10 < 3))
.collect();
assert_eq!(par, seq);
}