Revision control

Copy as Markdown

Other Tools

use super::plumbing::*;
use super::*;
/// `MultiZip` is an iterator that zips up a tuple of parallel iterators to
/// produce tuples of their items.
///
/// It is created by calling `into_par_iter()` on a tuple of types that
/// implement `IntoParallelIterator`, or `par_iter()`/`par_iter_mut()` with
/// types that are iterable by reference.
///
/// The implementation currently support tuples up to length 12.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// // This will iterate `r` by mutable reference, like `par_iter_mut()`, while
/// // ranges are all iterated by value like `into_par_iter()`.
/// // Note that the zipped iterator is only as long as the shortest input.
/// let mut r = vec![0; 3];
/// (&mut r, 1..10, 10..100, 100..1000).into_par_iter()
/// .for_each(|(r, x, y, z)| *r = x * y + z);
///
/// assert_eq!(&r, &[1 * 10 + 100, 2 * 11 + 101, 3 * 12 + 102]);
/// ```
///
/// For a group that should all be iterated by reference, you can use a tuple reference.
///
/// ```
/// use rayon::prelude::*;
///
/// let xs: Vec<_> = (1..10).collect();
/// let ys: Vec<_> = (10..100).collect();
/// let zs: Vec<_> = (100..1000).collect();
///
/// // Reference each input separately with `IntoParallelIterator`:
/// let r1: Vec<_> = (&xs, &ys, &zs).into_par_iter()
/// .map(|(x, y, z)| x * y + z)
/// .collect();
///
/// // Reference them all together with `IntoParallelRefIterator`:
/// let r2: Vec<_> = (xs, ys, zs).par_iter()
/// .map(|(x, y, z)| x * y + z)
/// .collect();
///
/// assert_eq!(r1, r2);
/// ```
///
/// Mutable references to a tuple will work similarly.
///
/// ```
/// use rayon::prelude::*;
///
/// let mut xs: Vec<_> = (1..4).collect();
/// let mut ys: Vec<_> = (-4..-1).collect();
/// let mut zs = vec![0; 3];
///
/// // Mutably reference each input separately with `IntoParallelIterator`:
/// (&mut xs, &mut ys, &mut zs).into_par_iter().for_each(|(x, y, z)| {
/// *z += *x + *y;
/// std::mem::swap(x, y);
/// });
///
/// assert_eq!(xs, (vec![-4, -3, -2]));
/// assert_eq!(ys, (vec![1, 2, 3]));
/// assert_eq!(zs, (vec![-3, -1, 1]));
///
/// // Mutably reference them all together with `IntoParallelRefMutIterator`:
/// let mut tuple = (xs, ys, zs);
/// tuple.par_iter_mut().for_each(|(x, y, z)| {
/// *z += *x + *y;
/// std::mem::swap(x, y);
/// });
///
/// assert_eq!(tuple, (vec![1, 2, 3], vec![-4, -3, -2], vec![-6, -2, 2]));
/// ```
#[derive(Debug, Clone)]
pub struct MultiZip<T> {
tuple: T,
}
// These macros greedily consume 4 or 2 items first to achieve log2 nesting depth.
// For example, 5 => 4,1 => (2,2),1.
//
// The tuples go up to 12, so we might want to greedily consume 8 too, but
// the depth works out the same if we let that expand on the right:
// 9 => 4,5 => (2,2),(4,1) => (2,2),((2,2),1)
// 12 => 4,8 => (2,2),(4,4) => (2,2),((2,2),(2,2))
//
// But if we ever increase to 13, we would want to split 8,5 rather than 4,9.
macro_rules! reduce {
($a:expr, $b:expr, $c:expr, $d:expr, $( $x:expr ),+ => $fn:path) => {
reduce!(reduce!($a, $b, $c, $d => $fn),
reduce!($( $x ),+ => $fn)
=> $fn)
};
($a:expr, $b:expr, $( $x:expr ),+ => $fn:path) => {
reduce!(reduce!($a, $b => $fn),
reduce!($( $x ),+ => $fn)
=> $fn)
};
($a:expr, $b:expr => $fn:path) => { $fn($a, $b) };
($a:expr => $fn:path) => { $a };
}
macro_rules! nest {
($A:tt, $B:tt, $C:tt, $D:tt, $( $X:tt ),+) => {
(nest!($A, $B, $C, $D), nest!($( $X ),+))
};
($A:tt, $B:tt, $( $X:tt ),+) => {
(($A, $B), nest!($( $X ),+))
};
($A:tt, $B:tt) => { ($A, $B) };
($A:tt) => { $A };
}
macro_rules! flatten {
($( $T:ident ),+) => {{
#[allow(non_snake_case)]
fn flatten<$( $T ),+>(nest!($( $T ),+) : nest!($( $T ),+)) -> ($( $T, )+) {
($( $T, )+)
}
flatten
}};
}
macro_rules! multizip_impls {
($(
$Tuple:ident {
$(($idx:tt) -> $T:ident)+
}
)+) => {
$(
impl<$( $T, )+> IntoParallelIterator for ($( $T, )+)
where
$(
$T: IntoParallelIterator,
$T::Iter: IndexedParallelIterator,
)+
{
type Item = ($( $T::Item, )+);
type Iter = MultiZip<($( $T::Iter, )+)>;
fn into_par_iter(self) -> Self::Iter {
MultiZip {
tuple: ( $( self.$idx.into_par_iter(), )+ ),
}
}
}
impl<'a, $( $T, )+> IntoParallelIterator for &'a ($( $T, )+)
where
$(
$T: IntoParallelRefIterator<'a>,
$T::Iter: IndexedParallelIterator,
)+
{
type Item = ($( $T::Item, )+);
type Iter = MultiZip<($( $T::Iter, )+)>;
fn into_par_iter(self) -> Self::Iter {
MultiZip {
tuple: ( $( self.$idx.par_iter(), )+ ),
}
}
}
impl<'a, $( $T, )+> IntoParallelIterator for &'a mut ($( $T, )+)
where
$(
$T: IntoParallelRefMutIterator<'a>,
$T::Iter: IndexedParallelIterator,
)+
{
type Item = ($( $T::Item, )+);
type Iter = MultiZip<($( $T::Iter, )+)>;
fn into_par_iter(self) -> Self::Iter {
MultiZip {
tuple: ( $( self.$idx.par_iter_mut(), )+ ),
}
}
}
impl<$( $T, )+> ParallelIterator for MultiZip<($( $T, )+)>
where
$( $T: IndexedParallelIterator, )+
{
type Item = ($( $T::Item, )+);
fn drive_unindexed<CONSUMER>(self, consumer: CONSUMER) -> CONSUMER::Result
where
CONSUMER: UnindexedConsumer<Self::Item>,
{
self.drive(consumer)
}
fn opt_len(&self) -> Option<usize> {
Some(self.len())
}
}
impl<$( $T, )+> IndexedParallelIterator for MultiZip<($( $T, )+)>
where
$( $T: IndexedParallelIterator, )+
{
fn drive<CONSUMER>(self, consumer: CONSUMER) -> CONSUMER::Result
where
CONSUMER: Consumer<Self::Item>,
{
reduce!($( self.tuple.$idx ),+ => IndexedParallelIterator::zip)
.map(flatten!($( $T ),+))
.drive(consumer)
}
fn len(&self) -> usize {
reduce!($( self.tuple.$idx.len() ),+ => Ord::min)
}
fn with_producer<CB>(self, callback: CB) -> CB::Output
where
CB: ProducerCallback<Self::Item>,
{
reduce!($( self.tuple.$idx ),+ => IndexedParallelIterator::zip)
.map(flatten!($( $T ),+))
.with_producer(callback)
}
}
)+
}
}
multizip_impls! {
Tuple1 {
(0) -> A
}
Tuple2 {
(0) -> A
(1) -> B
}
Tuple3 {
(0) -> A
(1) -> B
(2) -> C
}
Tuple4 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
}
Tuple5 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
(4) -> E
}
Tuple6 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
(4) -> E
(5) -> F
}
Tuple7 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
(4) -> E
(5) -> F
(6) -> G
}
Tuple8 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
(4) -> E
(5) -> F
(6) -> G
(7) -> H
}
Tuple9 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
(4) -> E
(5) -> F
(6) -> G
(7) -> H
(8) -> I
}
Tuple10 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
(4) -> E
(5) -> F
(6) -> G
(7) -> H
(8) -> I
(9) -> J
}
Tuple11 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
(4) -> E
(5) -> F
(6) -> G
(7) -> H
(8) -> I
(9) -> J
(10) -> K
}
Tuple12 {
(0) -> A
(1) -> B
(2) -> C
(3) -> D
(4) -> E
(5) -> F
(6) -> G
(7) -> H
(8) -> I
(9) -> J
(10) -> K
(11) -> L
}
}