Revision control

Copy as Markdown

Other Tools

// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Poisson distribution.
use num_traits::{Float, FloatConst};
use crate::{Cauchy, Distribution, Standard};
use rand::Rng;
use core::fmt;
/// The Poisson distribution `Poisson(lambda)`.
///
/// This distribution has a density function:
/// `f(k) = lambda^k * exp(-lambda) / k!` for `k >= 0`.
///
/// # Example
///
/// ```
/// use rand_distr::{Poisson, Distribution};
///
/// let poi = Poisson::new(2.0).unwrap();
/// let v = poi.sample(&mut rand::thread_rng());
/// println!("{} is from a Poisson(2) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Poisson<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
lambda: F,
// precalculated values
exp_lambda: F,
log_lambda: F,
sqrt_2lambda: F,
magic_val: F,
}
/// Error type returned from `Poisson::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `lambda <= 0` or `nan`.
ShapeTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ShapeTooSmall => "lambda is not positive in Poisson distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}
impl<F> Poisson<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
/// Construct a new `Poisson` with the given shape parameter
/// `lambda`.
pub fn new(lambda: F) -> Result<Poisson<F>, Error> {
if !(lambda > F::zero()) {
return Err(Error::ShapeTooSmall);
}
let log_lambda = lambda.ln();
Ok(Poisson {
lambda,
exp_lambda: (-lambda).exp(),
log_lambda,
sqrt_2lambda: (F::from(2.0).unwrap() * lambda).sqrt(),
magic_val: lambda * log_lambda - crate::utils::log_gamma(F::one() + lambda),
})
}
}
impl<F> Distribution<F> for Poisson<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
// using the algorithm from Numerical Recipes in C
// for low expected values use the Knuth method
if self.lambda < F::from(12.0).unwrap() {
let mut result = F::zero();
let mut p = F::one();
while p > self.exp_lambda {
p = p*rng.gen::<F>();
result = result + F::one();
}
result - F::one()
}
// high expected values - rejection method
else {
// we use the Cauchy distribution as the comparison distribution
// f(x) ~ 1/(1+x^2)
let cauchy = Cauchy::new(F::zero(), F::one()).unwrap();
let mut result;
loop {
let mut comp_dev;
loop {
// draw from the Cauchy distribution
comp_dev = rng.sample(cauchy);
// shift the peak of the comparison distribution
result = self.sqrt_2lambda * comp_dev + self.lambda;
// repeat the drawing until we are in the range of possible values
if result >= F::zero() {
break;
}
}
// now the result is a random variable greater than 0 with Cauchy distribution
// the result should be an integer value
result = result.floor();
// this is the ratio of the Poisson distribution to the comparison distribution
// the magic value scales the distribution function to a range of approximately 0-1
// since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1
// this doesn't change the resulting distribution, only increases the rate of failed drawings
let check = F::from(0.9).unwrap()
* (F::one() + comp_dev * comp_dev)
* (result * self.log_lambda
- crate::utils::log_gamma(F::one() + result)
- self.magic_val)
.exp();
// check with uniform random value - if below the threshold, we are within the target distribution
if rng.gen::<F>() <= check {
break;
}
}
result
}
}
}
#[cfg(test)]
mod test {
use super::*;
fn test_poisson_avg_gen<F: Float + FloatConst>(lambda: F, tol: F)
where Standard: Distribution<F>
{
let poisson = Poisson::new(lambda).unwrap();
let mut rng = crate::test::rng(123);
let mut sum = F::zero();
for _ in 0..1000 {
sum = sum + poisson.sample(&mut rng);
}
let avg = sum / F::from(1000.0).unwrap();
assert!((avg - lambda).abs() < tol);
}
#[test]
fn test_poisson_avg() {
test_poisson_avg_gen::<f64>(10.0, 0.5);
test_poisson_avg_gen::<f64>(15.0, 0.5);
test_poisson_avg_gen::<f32>(10.0, 0.5);
test_poisson_avg_gen::<f32>(15.0, 0.5);
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_zero() {
Poisson::new(0.0).unwrap();
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_neg() {
Poisson::new(-10.0).unwrap();
}
}