Revision control

Copy as Markdown

Other Tools

// Copyright (c) 2020 Apple Inc.
// SPDX-License-Identifier: MPL-2.0
//! Primitives for the Prio2 client.
use crate::{
codec::CodecError,
field::FftFriendlyFieldElement,
polynomial::{poly_fft, PolyAuxMemory},
prng::{Prng, PrngError},
vdaf::{
xof::{Seed, SeedStreamAes128},
VdafError,
},
};
use std::convert::TryFrom;
/// Errors that might be emitted by the client.
#[derive(Debug, thiserror::Error)]
pub(crate) enum ClientError {
/// PRNG error
#[error("prng error: {0}")]
Prng(#[from] PrngError),
/// VDAF error
#[error("vdaf error: {0}")]
Vdaf(#[from] VdafError),
/// failure when calling getrandom().
#[error("getrandom: {0}")]
GetRandom(#[from] getrandom::Error),
}
/// Serialization errors
#[derive(Debug, thiserror::Error)]
pub enum SerializeError {
/// Emitted by `unpack_proof[_mut]` if the serialized share+proof has the wrong length
#[error("serialized input has wrong length")]
UnpackInputSizeMismatch,
/// Codec error.
#[error(transparent)]
Codec(#[from] CodecError),
}
#[derive(Debug)]
pub(crate) struct ClientMemory<F> {
prng: Prng<F, SeedStreamAes128>,
points_f: Vec<F>,
points_g: Vec<F>,
evals_f: Vec<F>,
evals_g: Vec<F>,
poly_mem: PolyAuxMemory<F>,
}
impl<F: FftFriendlyFieldElement> ClientMemory<F> {
pub(crate) fn new(dimension: usize) -> Result<Self, VdafError> {
let n = (dimension + 1).next_power_of_two();
if let Ok(size) = F::Integer::try_from(2 * n) {
if size > F::generator_order() {
return Err(VdafError::Uncategorized(
"input size exceeds field capacity".into(),
));
}
} else {
return Err(VdafError::Uncategorized(
"input size exceeds field capacity".into(),
));
}
Ok(Self {
prng: Prng::from_prio2_seed(Seed::<32>::generate()?.as_ref()),
points_f: vec![F::zero(); n],
points_g: vec![F::zero(); n],
evals_f: vec![F::zero(); 2 * n],
evals_g: vec![F::zero(); 2 * n],
poly_mem: PolyAuxMemory::new(n),
})
}
}
impl<F: FftFriendlyFieldElement> ClientMemory<F> {
pub(crate) fn prove_with<G>(&mut self, dimension: usize, init_function: G) -> Vec<F>
where
G: FnOnce(&mut [F]),
{
let mut proof = vec![F::zero(); proof_length(dimension)];
// unpack one long vector to different subparts
let unpacked = unpack_proof_mut(&mut proof, dimension).unwrap();
// initialize the data part
init_function(unpacked.data);
// fill in the rest
construct_proof(
unpacked.data,
dimension,
unpacked.f0,
unpacked.g0,
unpacked.h0,
unpacked.points_h_packed,
self,
);
proof
}
}
/// Returns the number of field elements in the proof for given dimension of
/// data elements
///
/// Proof is a vector, where the first `dimension` elements are the data
/// elements, the next 3 elements are the zero terms for polynomials f, g and h
/// and the remaining elements are non-zero points of h(x).
pub(crate) fn proof_length(dimension: usize) -> usize {
// number of data items + number of zero terms + N
dimension + 3 + (dimension + 1).next_power_of_two()
}
/// Unpacked proof with subcomponents
#[derive(Debug)]
pub(crate) struct UnpackedProof<'a, F: FftFriendlyFieldElement> {
/// Data
pub data: &'a [F],
/// Zeroth coefficient of polynomial f
pub f0: &'a F,
/// Zeroth coefficient of polynomial g
pub g0: &'a F,
/// Zeroth coefficient of polynomial h
pub h0: &'a F,
/// Non-zero points of polynomial h
pub points_h_packed: &'a [F],
}
/// Unpacked proof with mutable subcomponents
#[derive(Debug)]
pub(crate) struct UnpackedProofMut<'a, F: FftFriendlyFieldElement> {
/// Data
pub data: &'a mut [F],
/// Zeroth coefficient of polynomial f
pub f0: &'a mut F,
/// Zeroth coefficient of polynomial g
pub g0: &'a mut F,
/// Zeroth coefficient of polynomial h
pub h0: &'a mut F,
/// Non-zero points of polynomial h
pub points_h_packed: &'a mut [F],
}
/// Unpacks the proof vector into subcomponents
pub(crate) fn unpack_proof<F: FftFriendlyFieldElement>(
proof: &[F],
dimension: usize,
) -> Result<UnpackedProof<F>, SerializeError> {
// check the proof length
if proof.len() != proof_length(dimension) {
return Err(SerializeError::UnpackInputSizeMismatch);
}
// split share into components
let (data, rest) = proof.split_at(dimension);
if let ([f0, g0, h0], points_h_packed) = rest.split_at(3) {
Ok(UnpackedProof {
data,
f0,
g0,
h0,
points_h_packed,
})
} else {
Err(SerializeError::UnpackInputSizeMismatch)
}
}
/// Unpacks a mutable proof vector into mutable subcomponents
pub(crate) fn unpack_proof_mut<F: FftFriendlyFieldElement>(
proof: &mut [F],
dimension: usize,
) -> Result<UnpackedProofMut<F>, SerializeError> {
// check the share length
if proof.len() != proof_length(dimension) {
return Err(SerializeError::UnpackInputSizeMismatch);
}
// split share into components
let (data, rest) = proof.split_at_mut(dimension);
if let ([f0, g0, h0], points_h_packed) = rest.split_at_mut(3) {
Ok(UnpackedProofMut {
data,
f0,
g0,
h0,
points_h_packed,
})
} else {
Err(SerializeError::UnpackInputSizeMismatch)
}
}
fn interpolate_and_evaluate_at_2n<F: FftFriendlyFieldElement>(
n: usize,
points_in: &[F],
evals_out: &mut [F],
mem: &mut PolyAuxMemory<F>,
) {
// interpolate through roots of unity
poly_fft(
&mut mem.coeffs,
points_in,
&mem.roots_n_inverted,
n,
true,
&mut mem.fft_memory,
);
// evaluate at 2N roots of unity
poly_fft(
evals_out,
&mem.coeffs,
&mem.roots_2n,
2 * n,
false,
&mut mem.fft_memory,
);
}
/// Proof construction
///
/// Based on Theorem 2.3.3 from Henry Corrigan-Gibbs' dissertation
/// This constructs the output \pi by doing the necessesary calculations
fn construct_proof<F: FftFriendlyFieldElement>(
data: &[F],
dimension: usize,
f0: &mut F,
g0: &mut F,
h0: &mut F,
points_h_packed: &mut [F],
mem: &mut ClientMemory<F>,
) {
let n = (dimension + 1).next_power_of_two();
// set zero terms to random
*f0 = mem.prng.get();
*g0 = mem.prng.get();
mem.points_f[0] = *f0;
mem.points_g[0] = *g0;
// set zero term for the proof polynomial
*h0 = *f0 * *g0;
// set f_i = data_(i - 1)
// set g_i = f_i - 1
for ((f_coeff, g_coeff), data_val) in mem.points_f[1..1 + dimension]
.iter_mut()
.zip(mem.points_g[1..1 + dimension].iter_mut())
.zip(data[..dimension].iter())
{
*f_coeff = *data_val;
*g_coeff = *data_val - F::one();
}
// interpolate and evaluate at roots of unity
interpolate_and_evaluate_at_2n(n, &mem.points_f, &mut mem.evals_f, &mut mem.poly_mem);
interpolate_and_evaluate_at_2n(n, &mem.points_g, &mut mem.evals_g, &mut mem.poly_mem);
// calculate the proof polynomial as evals_f(r) * evals_g(r)
// only add non-zero points
let mut j: usize = 0;
let mut i: usize = 1;
while i < 2 * n {
points_h_packed[j] = mem.evals_f[i] * mem.evals_g[i];
j += 1;
i += 2;
}
}
#[cfg(test)]
mod tests {
use assert_matches::assert_matches;
use crate::{
field::{Field64, FieldPrio2},
vdaf::prio2::client::{proof_length, unpack_proof, unpack_proof_mut, SerializeError},
};
#[test]
fn test_unpack_share_mut() {
let dim = 15;
let len = proof_length(dim);
let mut share = vec![FieldPrio2::from(0); len];
let unpacked = unpack_proof_mut(&mut share, dim).unwrap();
*unpacked.f0 = FieldPrio2::from(12);
assert_eq!(share[dim], 12);
let mut short_share = vec![FieldPrio2::from(0); len - 1];
assert_matches!(
unpack_proof_mut(&mut short_share, dim),
Err(SerializeError::UnpackInputSizeMismatch)
);
}
#[test]
fn test_unpack_share() {
let dim = 15;
let len = proof_length(dim);
let share = vec![Field64::from(0); len];
unpack_proof(&share, dim).unwrap();
let short_share = vec![Field64::from(0); len - 1];
assert_matches!(
unpack_proof(&short_share, dim),
Err(SerializeError::UnpackInputSizeMismatch)
);
}
}