Revision control
Copy as Markdown
Other Tools
// SPDX-License-Identifier: MPL-2.0
//! Implementation of the generic Fully Linear Proof (FLP) system specified in
//! [[draft-irtf-cfrg-vdaf-08]]. This is the main building block of [`Prio3`](crate::vdaf::prio3).
//!
//! The FLP is derived for any implementation of the [`Type`] trait. Such an implementation
//! specifies a validity circuit that defines the set of valid measurements, as well as the finite
//! field in which the validity circuit is evaluated. It also determines how raw measurements are
//! encoded as inputs to the validity circuit, and how aggregates are decoded from sums of
//! measurements.
//!
//! # Overview
//!
//! The proof system is comprised of three algorithms. The first, `prove`, is run by the prover in
//! order to generate a proof of a statement's validity. The second and third, `query` and
//! `decide`, are run by the verifier in order to check the proof. The proof asserts that the input
//! is an element of a language recognized by the arithmetic circuit. If an input is _not_ valid,
//! then the verification step will fail with high probability:
//!
//! ```
//! use prio::flp::types::Count;
//! use prio::flp::Type;
//! use prio::field::{random_vector, FieldElement, Field64};
//!
//! // The prover chooses a measurement.
//! let count = Count::new();
//! let input: Vec<Field64> = count.encode_measurement(&false).unwrap();
//!
//! // The prover and verifier agree on "joint randomness" used to generate and
//! // check the proof. The application needs to ensure that the prover
//! // "commits" to the input before this point. In Prio3, the joint
//! // randomness is derived from additive shares of the input.
//! let joint_rand = random_vector(count.joint_rand_len()).unwrap();
//!
//! // The prover generates the proof.
//! let prove_rand = random_vector(count.prove_rand_len()).unwrap();
//! let proof = count.prove(&input, &prove_rand, &joint_rand).unwrap();
//!
//! // The verifier checks the proof. In the first step, the verifier "queries"
//! // the input and proof, getting the "verifier message" in response. It then
//! // inspects the verifier to decide if the input is valid.
//! let query_rand = random_vector(count.query_rand_len()).unwrap();
//! let verifier = count.query(&input, &proof, &query_rand, &joint_rand, 1).unwrap();
//! assert!(count.decide(&verifier).unwrap());
//! ```
//!
#[cfg(feature = "experimental")]
use crate::dp::DifferentialPrivacyStrategy;
use crate::fft::{discrete_fourier_transform, discrete_fourier_transform_inv_finish, FftError};
use crate::field::{FftFriendlyFieldElement, FieldElement, FieldElementWithInteger, FieldError};
use crate::fp::log2;
use crate::polynomial::poly_eval;
use std::any::Any;
use std::convert::TryFrom;
use std::fmt::Debug;
pub mod gadgets;
pub mod types;
/// Errors propagated by methods in this module.
#[derive(Debug, thiserror::Error)]
#[non_exhaustive]
pub enum FlpError {
/// Calling [`Type::prove`] returned an error.
#[error("prove error: {0}")]
Prove(String),
/// Calling [`Type::query`] returned an error.
#[error("query error: {0}")]
Query(String),
/// Calling [`Type::decide`] returned an error.
#[error("decide error: {0}")]
Decide(String),
/// Calling a gadget returned an error.
#[error("gadget error: {0}")]
Gadget(String),
/// Calling the validity circuit returned an error.
#[error("validity circuit error: {0}")]
Valid(String),
/// Calling [`Type::encode_measurement`] returned an error.
#[error("value error: {0}")]
Encode(String),
/// Calling [`Type::decode_result`] returned an error.
#[error("value error: {0}")]
Decode(String),
/// Calling [`Type::truncate`] returned an error.
#[error("truncate error: {0}")]
Truncate(String),
/// Generic invalid parameter. This may be returned when an FLP type cannot be constructed.
#[error("invalid paramter: {0}")]
InvalidParameter(String),
/// Returned if an FFT operation propagates an error.
#[error("FFT error: {0}")]
Fft(#[from] FftError),
/// Returned if a field operation encountered an error.
#[error("Field error: {0}")]
Field(#[from] FieldError),
#[cfg(feature = "experimental")]
/// An error happened during noising.
#[error("differential privacy error: {0}")]
DifferentialPrivacy(#[from] crate::dp::DpError),
}
/// A type. Implementations of this trait specify how a particular kind of measurement is encoded
/// as a vector of field elements and how validity of the encoded measurement is determined.
/// Validity is determined via an arithmetic circuit evaluated over the encoded measurement.
pub trait Type: Sized + Eq + Clone + Debug {
/// The type of raw measurement to be encoded.
type Measurement: Clone + Debug;
/// The type of aggregate result for this type.
type AggregateResult: Clone + Debug;
/// The finite field used for this type.
type Field: FftFriendlyFieldElement;
/// Encodes a measurement as a vector of [`Self::input_len`] field elements.
fn encode_measurement(
&self,
measurement: &Self::Measurement,
) -> Result<Vec<Self::Field>, FlpError>;
/// Decode an aggregate result.
fn decode_result(
&self,
data: &[Self::Field],
num_measurements: usize,
) -> Result<Self::AggregateResult, FlpError>;
/// Returns the sequence of gadgets associated with the validity circuit.
///
/// # Notes
///
/// The construction of [[BBCG+19], Theorem 4.3] uses a single gadget rather than many. The
/// idea to generalize the proof system to allow multiple gadgets is discussed briefly in
/// [[BBCG+19], Remark 4.5], but no construction is given. The construction implemented here
/// requires security analysis.
///
fn gadget(&self) -> Vec<Box<dyn Gadget<Self::Field>>>;
/// Evaluates the validity circuit on an input and returns the output.
///
/// # Parameters
///
/// * `gadgets` is the sequence of gadgets, presumably output by [`Self::gadget`].
/// * `input` is the input to be validated.
/// * `joint_rand` is the joint randomness shared by the prover and verifier.
/// * `num_shares` is the number of input shares.
///
/// # Example usage
///
/// Applications typically do not call this method directly. It is used internally by
/// [`Self::prove`] and [`Self::query`] to generate and verify the proof respectively.
///
/// ```
/// use prio::flp::types::Count;
/// use prio::flp::Type;
/// use prio::field::{random_vector, FieldElement, Field64};
///
/// let count = Count::new();
/// let input: Vec<Field64> = count.encode_measurement(&true).unwrap();
/// let joint_rand = random_vector(count.joint_rand_len()).unwrap();
/// let v = count.valid(&mut count.gadget(), &input, &joint_rand, 1).unwrap();
/// assert_eq!(v, Field64::zero());
/// ```
fn valid(
&self,
gadgets: &mut Vec<Box<dyn Gadget<Self::Field>>>,
input: &[Self::Field],
joint_rand: &[Self::Field],
num_shares: usize,
) -> Result<Self::Field, FlpError>;
/// Constructs an aggregatable output from an encoded input. Calling this method is only safe
/// once `input` has been validated.
fn truncate(&self, input: Vec<Self::Field>) -> Result<Vec<Self::Field>, FlpError>;
/// The length in field elements of the encoded input returned by [`Self::encode_measurement`].
fn input_len(&self) -> usize;
/// The length in field elements of the proof generated for this type.
fn proof_len(&self) -> usize;
/// The length in field elements of the verifier message constructed by [`Self::query`].
fn verifier_len(&self) -> usize;
/// The length of the truncated output (i.e., the output of [`Type::truncate`]).
fn output_len(&self) -> usize;
/// The length of the joint random input.
fn joint_rand_len(&self) -> usize;
/// The length in field elements of the random input consumed by the prover to generate a
/// proof. This is the same as the sum of the arity of each gadget in the validity circuit.
fn prove_rand_len(&self) -> usize;
/// The length in field elements of the random input consumed by the verifier to make queries
/// against inputs and proofs. This is the same as the number of gadgets in the validity
/// circuit.
fn query_rand_len(&self) -> usize;
/// Generate a proof of an input's validity. The return value is a sequence of
/// [`Self::proof_len`] field elements.
///
/// # Parameters
///
/// * `input` is the input.
/// * `prove_rand` is the prover' randomness.
/// * `joint_rand` is the randomness shared by the prover and verifier.
fn prove(
&self,
input: &[Self::Field],
prove_rand: &[Self::Field],
joint_rand: &[Self::Field],
) -> Result<Vec<Self::Field>, FlpError> {
if input.len() != self.input_len() {
return Err(FlpError::Prove(format!(
"unexpected input length: got {}; want {}",
input.len(),
self.input_len()
)));
}
if prove_rand.len() != self.prove_rand_len() {
return Err(FlpError::Prove(format!(
"unexpected prove randomness length: got {}; want {}",
prove_rand.len(),
self.prove_rand_len()
)));
}
if joint_rand.len() != self.joint_rand_len() {
return Err(FlpError::Prove(format!(
"unexpected joint randomness length: got {}; want {}",
joint_rand.len(),
self.joint_rand_len()
)));
}
let mut prove_rand_len = 0;
let mut shims = self
.gadget()
.into_iter()
.map(|inner| {
let inner_arity = inner.arity();
if prove_rand_len + inner_arity > prove_rand.len() {
return Err(FlpError::Prove(format!(
"short prove randomness: got {}; want at least {}",
prove_rand.len(),
prove_rand_len + inner_arity
)));
}
let gadget = Box::new(ProveShimGadget::new(
inner,
&prove_rand[prove_rand_len..prove_rand_len + inner_arity],
)?) as Box<dyn Gadget<Self::Field>>;
prove_rand_len += inner_arity;
Ok(gadget)
})
.collect::<Result<Vec<_>, FlpError>>()?;
assert_eq!(prove_rand_len, self.prove_rand_len());
// Create a buffer for storing the proof. The buffer is longer than the proof itself; the extra
// length is to accommodate the computation of each gadget polynomial.
let data_len = shims
.iter()
.map(|shim| {
let gadget_poly_len = gadget_poly_len(shim.degree(), wire_poly_len(shim.calls()));
// Computing the gadget polynomial using FFT requires an amount of memory that is a
// power of 2. Thus we choose the smallest power of 2 that is at least as large as
// the gadget polynomial. The wire seeds are encoded in the proof, too, so we
// include the arity of the gadget to ensure there is always enough room at the end
// of the buffer to compute the next gadget polynomial. It's likely that the
// memory footprint here can be reduced, with a bit of care.
shim.arity() + gadget_poly_len.next_power_of_two()
})
.sum();
let mut proof = vec![Self::Field::zero(); data_len];
// Run the validity circuit with a sequence of "shim" gadgets that record the value of each
// input wire of each gadget evaluation. These values are used to construct the wire
// polynomials for each gadget in the next step.
let _ = self.valid(&mut shims, input, joint_rand, 1)?;
// Construct the proof.
let mut proof_len = 0;
for shim in shims.iter_mut() {
let gadget = shim
.as_any()
.downcast_mut::<ProveShimGadget<Self::Field>>()
.unwrap();
// Interpolate the wire polynomials `f[0], ..., f[g_arity-1]` from the input wires of each
// evaluation of the gadget.
let m = wire_poly_len(gadget.calls());
let m_inv = Self::Field::from(
<Self::Field as FieldElementWithInteger>::Integer::try_from(m).unwrap(),
)
.inv();
let mut f = vec![vec![Self::Field::zero(); m]; gadget.arity()];
for ((coefficients, values), proof_val) in f[..gadget.arity()]
.iter_mut()
.zip(gadget.f_vals[..gadget.arity()].iter())
.zip(proof[proof_len..proof_len + gadget.arity()].iter_mut())
{
discrete_fourier_transform(coefficients, values, m)?;
discrete_fourier_transform_inv_finish(coefficients, m, m_inv);
// The first point on each wire polynomial is a random value chosen by the prover. This
// point is stored in the proof so that the verifier can reconstruct the wire
// polynomials.
*proof_val = values[0];
}
// Construct the gadget polynomial `G(f[0], ..., f[g_arity-1])` and append it to `proof`.
let gadget_poly_len = gadget_poly_len(gadget.degree(), m);
let start = proof_len + gadget.arity();
let end = start + gadget_poly_len.next_power_of_two();
gadget.call_poly(&mut proof[start..end], &f)?;
proof_len += gadget.arity() + gadget_poly_len;
}
// Truncate the buffer to the size of the proof.
assert_eq!(proof_len, self.proof_len());
proof.truncate(proof_len);
Ok(proof)
}
/// Query an input and proof and return the verifier message. The return value has length
/// [`Self::verifier_len`].
///
/// # Parameters
///
/// * `input` is the input or input share.
/// * `proof` is the proof or proof share.
/// * `query_rand` is the verifier's randomness.
/// * `joint_rand` is the randomness shared by the prover and verifier.
/// * `num_shares` is the total number of input shares.
fn query(
&self,
input: &[Self::Field],
proof: &[Self::Field],
query_rand: &[Self::Field],
joint_rand: &[Self::Field],
num_shares: usize,
) -> Result<Vec<Self::Field>, FlpError> {
if input.len() != self.input_len() {
return Err(FlpError::Query(format!(
"unexpected input length: got {}; want {}",
input.len(),
self.input_len()
)));
}
if proof.len() != self.proof_len() {
return Err(FlpError::Query(format!(
"unexpected proof length: got {}; want {}",
proof.len(),
self.proof_len()
)));
}
if query_rand.len() != self.query_rand_len() {
return Err(FlpError::Query(format!(
"unexpected query randomness length: got {}; want {}",
query_rand.len(),
self.query_rand_len()
)));
}
if joint_rand.len() != self.joint_rand_len() {
return Err(FlpError::Query(format!(
"unexpected joint randomness length: got {}; want {}",
joint_rand.len(),
self.joint_rand_len()
)));
}
let mut proof_len = 0;
let mut shims = self
.gadget()
.into_iter()
.enumerate()
.map(|(idx, gadget)| {
let gadget_degree = gadget.degree();
let gadget_arity = gadget.arity();
let m = (1 + gadget.calls()).next_power_of_two();
let r = query_rand[idx];
// Make sure the query randomness isn't a root of unity. Evaluating the gadget
// polynomial at any of these points would be a privacy violation, since these points
// were used by the prover to construct the wire polynomials.
if r.pow(<Self::Field as FieldElementWithInteger>::Integer::try_from(m).unwrap())
== Self::Field::one()
{
return Err(FlpError::Query(format!(
"invalid query randomness: encountered 2^{m}-th root of unity"
)));
}
// Compute the length of the sub-proof corresponding to the `idx`-th gadget.
let next_len = gadget_arity + gadget_degree * (m - 1) + 1;
let proof_data = &proof[proof_len..proof_len + next_len];
proof_len += next_len;
Ok(Box::new(QueryShimGadget::new(gadget, r, proof_data)?)
as Box<dyn Gadget<Self::Field>>)
})
.collect::<Result<Vec<_>, _>>()?;
// Create a buffer for the verifier data. This includes the output of the validity circuit and,
// for each gadget `shim[idx].inner`, the wire polynomials evaluated at the query randomness
// `query_rand[idx]` and the gadget polynomial evaluated at `query_rand[idx]`.
let data_len = 1 + shims.iter().map(|shim| shim.arity() + 1).sum::<usize>();
let mut verifier = Vec::with_capacity(data_len);
// Run the validity circuit with a sequence of "shim" gadgets that record the inputs to each
// wire for each gadget call. Record the output of the circuit and append it to the verifier
// message.
//
// NOTE The proof of [BBC+19, Theorem 4.3] assumes that the output of the validity circuit is
// equal to the output of the last gadget evaluation. Here we relax this assumption. This
// should be OK, since it's possible to transform any circuit into one for which this is true.
// (Needs security analysis.)
let validity = self.valid(&mut shims, input, joint_rand, num_shares)?;
verifier.push(validity);
// Fill the buffer with the verifier message.
for (query_rand_val, shim) in query_rand[..shims.len()].iter().zip(shims.iter_mut()) {
let gadget = shim
.as_any()
.downcast_ref::<QueryShimGadget<Self::Field>>()
.unwrap();
// Reconstruct the wire polynomials `f[0], ..., f[g_arity-1]` and evaluate each wire
// polynomial at query randomness value.
let m = (1 + gadget.calls()).next_power_of_two();
let m_inv = Self::Field::from(
<Self::Field as FieldElementWithInteger>::Integer::try_from(m).unwrap(),
)
.inv();
let mut f = vec![Self::Field::zero(); m];
for wire in 0..gadget.arity() {
discrete_fourier_transform(&mut f, &gadget.f_vals[wire], m)?;
discrete_fourier_transform_inv_finish(&mut f, m, m_inv);
verifier.push(poly_eval(&f, *query_rand_val));
}
// Add the value of the gadget polynomial evaluated at the query randomness value.
verifier.push(gadget.p_at_r);
}
assert_eq!(verifier.len(), self.verifier_len());
Ok(verifier)
}
/// Returns true if the verifier message indicates that the input from which it was generated is valid.
fn decide(&self, verifier: &[Self::Field]) -> Result<bool, FlpError> {
if verifier.len() != self.verifier_len() {
return Err(FlpError::Decide(format!(
"unexpected verifier length: got {}; want {}",
verifier.len(),
self.verifier_len()
)));
}
// Check if the output of the circuit is 0.
if verifier[0] != Self::Field::zero() {
return Ok(false);
}
// Check that each of the proof polynomials are well-formed.
let mut gadgets = self.gadget();
let mut verifier_len = 1;
for gadget in gadgets.iter_mut() {
let next_len = 1 + gadget.arity();
let e = gadget.call(&verifier[verifier_len..verifier_len + next_len - 1])?;
if e != verifier[verifier_len + next_len - 1] {
return Ok(false);
}
verifier_len += next_len;
}
Ok(true)
}
/// Check whether `input` and `joint_rand` have the length expected by `self`,
/// return [`FlpError::Valid`] otherwise.
fn valid_call_check(
&self,
input: &[Self::Field],
joint_rand: &[Self::Field],
) -> Result<(), FlpError> {
if input.len() != self.input_len() {
return Err(FlpError::Valid(format!(
"unexpected input length: got {}; want {}",
input.len(),
self.input_len(),
)));
}
if joint_rand.len() != self.joint_rand_len() {
return Err(FlpError::Valid(format!(
"unexpected joint randomness length: got {}; want {}",
joint_rand.len(),
self.joint_rand_len()
)));
}
Ok(())
}
/// Check if the length of `input` matches `self`'s `input_len()`,
/// return [`FlpError::Truncate`] otherwise.
fn truncate_call_check(&self, input: &[Self::Field]) -> Result<(), FlpError> {
if input.len() != self.input_len() {
return Err(FlpError::Truncate(format!(
"Unexpected input length: got {}; want {}",
input.len(),
self.input_len()
)));
}
Ok(())
}
}
/// A type which supports adding noise to aggregate shares for Server Differential Privacy.
#[cfg(feature = "experimental")]
#[cfg_attr(docsrs, doc(cfg(feature = "experimental")))]
pub trait TypeWithNoise<S>: Type
where
S: DifferentialPrivacyStrategy,
{
/// Add noise to the aggregate share to obtain differential privacy.
fn add_noise_to_result(
&self,
dp_strategy: &S,
agg_result: &mut [Self::Field],
num_measurements: usize,
) -> Result<(), FlpError>;
}
/// A gadget, a non-affine arithmetic circuit that is called when evaluating a validity circuit.
pub trait Gadget<F: FftFriendlyFieldElement>: Debug {
/// Evaluates the gadget on input `inp` and returns the output.
fn call(&mut self, inp: &[F]) -> Result<F, FlpError>;
/// Evaluate the gadget on input of a sequence of polynomials. The output is written to `outp`.
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError>;
/// Returns the arity of the gadget. This is the length of `inp` passed to `call` or
/// `call_poly`.
fn arity(&self) -> usize;
/// Returns the circuit's arithmetic degree. This determines the minimum length the `outp`
/// buffer passed to `call_poly`.
fn degree(&self) -> usize;
/// Returns the number of times the gadget is expected to be called.
fn calls(&self) -> usize;
/// This call is used to downcast a `Box<dyn Gadget<F>>` to a concrete type.
fn as_any(&mut self) -> &mut dyn Any;
}
// A "shim" gadget used during proof generation to record the input wires each time a gadget is
// evaluated.
#[derive(Debug)]
struct ProveShimGadget<F: FftFriendlyFieldElement> {
inner: Box<dyn Gadget<F>>,
/// Points at which the wire polynomials are interpolated.
f_vals: Vec<Vec<F>>,
/// The number of times the gadget has been called so far.
ct: usize,
}
impl<F: FftFriendlyFieldElement> ProveShimGadget<F> {
fn new(inner: Box<dyn Gadget<F>>, prove_rand: &[F]) -> Result<Self, FlpError> {
let mut f_vals = vec![vec![F::zero(); 1 + inner.calls()]; inner.arity()];
for (prove_rand_val, wire_poly_vals) in
prove_rand[..f_vals.len()].iter().zip(f_vals.iter_mut())
{
// Choose a random field element as the first point on the wire polynomial.
wire_poly_vals[0] = *prove_rand_val;
}
Ok(Self {
inner,
f_vals,
ct: 1,
})
}
}
impl<F: FftFriendlyFieldElement> Gadget<F> for ProveShimGadget<F> {
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
for (wire_poly_vals, inp_val) in self.f_vals[..inp.len()].iter_mut().zip(inp.iter()) {
wire_poly_vals[self.ct] = *inp_val;
}
self.ct += 1;
self.inner.call(inp)
}
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
self.inner.call_poly(outp, inp)
}
fn arity(&self) -> usize {
self.inner.arity()
}
fn degree(&self) -> usize {
self.inner.degree()
}
fn calls(&self) -> usize {
self.inner.calls()
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
// A "shim" gadget used during proof verification to record the points at which the intermediate
// proof polynomials are evaluated.
#[derive(Debug)]
struct QueryShimGadget<F: FftFriendlyFieldElement> {
inner: Box<dyn Gadget<F>>,
/// Points at which intermediate proof polynomials are interpolated.
f_vals: Vec<Vec<F>>,
/// Points at which the gadget polynomial is interpolated.
p_vals: Vec<F>,
/// The gadget polynomial evaluated on a random input `r`.
p_at_r: F,
/// Used to compute an index into `p_val`.
step: usize,
/// The number of times the gadget has been called so far.
ct: usize,
}
impl<F: FftFriendlyFieldElement> QueryShimGadget<F> {
fn new(inner: Box<dyn Gadget<F>>, r: F, proof_data: &[F]) -> Result<Self, FlpError> {
let gadget_degree = inner.degree();
let gadget_arity = inner.arity();
let m = (1 + inner.calls()).next_power_of_two();
let p = m * gadget_degree;
// Each call to this gadget records the values at which intermediate proof polynomials were
// interpolated. The first point was a random value chosen by the prover and transmitted in
// the proof.
let mut f_vals = vec![vec![F::zero(); 1 + inner.calls()]; gadget_arity];
for wire in 0..gadget_arity {
f_vals[wire][0] = proof_data[wire];
}
// Evaluate the gadget polynomial at roots of unity.
let size = p.next_power_of_two();
let mut p_vals = vec![F::zero(); size];
discrete_fourier_transform(&mut p_vals, &proof_data[gadget_arity..], size)?;
// The step is used to compute the element of `p_val` that will be returned by a call to
// the gadget.
let step = (1 << (log2(p as u128) - log2(m as u128))) as usize;
// Evaluate the gadget polynomial `p` at query randomness `r`.
let p_at_r = poly_eval(&proof_data[gadget_arity..], r);
Ok(Self {
inner,
f_vals,
p_vals,
p_at_r,
step,
ct: 1,
})
}
}
impl<F: FftFriendlyFieldElement> Gadget<F> for QueryShimGadget<F> {
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
for (wire_poly_vals, inp_val) in self.f_vals[..inp.len()].iter_mut().zip(inp.iter()) {
wire_poly_vals[self.ct] = *inp_val;
}
let outp = self.p_vals[self.ct * self.step];
self.ct += 1;
Ok(outp)
}
fn call_poly(&mut self, _outp: &mut [F], _inp: &[Vec<F>]) -> Result<(), FlpError> {
panic!("no-op");
}
fn arity(&self) -> usize {
self.inner.arity()
}
fn degree(&self) -> usize {
self.inner.degree()
}
fn calls(&self) -> usize {
self.inner.calls()
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
/// Compute the length of the wire polynomial constructed from the given number of gadget calls.
#[inline]
pub(crate) fn wire_poly_len(num_calls: usize) -> usize {
(1 + num_calls).next_power_of_two()
}
/// Compute the length of the gadget polynomial for a gadget with the given degree and from wire
/// polynomials of the given length.
#[inline]
pub(crate) fn gadget_poly_len(gadget_degree: usize, wire_poly_len: usize) -> usize {
gadget_degree * (wire_poly_len - 1) + 1
}
/// Utilities for testing FLPs.
#[cfg(feature = "test-util")]
#[cfg_attr(docsrs, doc(cfg(feature = "test-util")))]
pub mod test_utils {
use super::*;
use crate::field::{random_vector, FieldElement, FieldElementWithInteger};
/// Various tests for an FLP.
#[cfg_attr(docsrs, doc(cfg(feature = "test-util")))]
pub struct FlpTest<'a, T: Type> {
/// The FLP.
pub flp: &'a T,
/// Optional test name.
pub name: Option<&'a str>,
/// The input to use for the tests.
pub input: &'a [T::Field],
/// If set, the expected result of truncating the input.
pub expected_output: Option<&'a [T::Field]>,
/// Whether the input is expected to be valid.
pub expect_valid: bool,
}
impl<T: Type> FlpTest<'_, T> {
/// Construct a test and run it. Expect the input to be valid and compare the truncated
/// output to the provided value.
pub fn expect_valid<const SHARES: usize>(
flp: &T,
input: &[T::Field],
expected_output: &[T::Field],
) {
FlpTest {
flp,
name: None,
input,
expected_output: Some(expected_output),
expect_valid: true,
}
.run::<SHARES>()
}
/// Construct a test and run it. Expect the input to be invalid.
pub fn expect_invalid<const SHARES: usize>(flp: &T, input: &[T::Field]) {
FlpTest {
flp,
name: None,
input,
expect_valid: false,
expected_output: None,
}
.run::<SHARES>()
}
/// Construct a test and run it. Expect the input to be valid.
pub fn expect_valid_no_output<const SHARES: usize>(flp: &T, input: &[T::Field]) {
FlpTest {
flp,
name: None,
input,
expect_valid: true,
expected_output: None,
}
.run::<SHARES>()
}
/// Run the tests.
pub fn run<const SHARES: usize>(&self) {
let name = self.name.unwrap_or("unnamed test");
assert_eq!(
self.input.len(),
self.flp.input_len(),
"{name}: unexpected input length"
);
let mut gadgets = self.flp.gadget();
let joint_rand = random_vector(self.flp.joint_rand_len()).unwrap();
let prove_rand = random_vector(self.flp.prove_rand_len()).unwrap();
let query_rand = random_vector(self.flp.query_rand_len()).unwrap();
assert_eq!(
self.flp.query_rand_len(),
gadgets.len(),
"{name}: unexpected number of gadgets"
);
assert_eq!(
self.flp.joint_rand_len(),
joint_rand.len(),
"{name}: unexpected joint rand length"
);
assert_eq!(
self.flp.prove_rand_len(),
prove_rand.len(),
"{name}: unexpected prove rand length",
);
assert_eq!(
self.flp.query_rand_len(),
query_rand.len(),
"{name}: unexpected query rand length",
);
// Run the validity circuit.
let v = self
.flp
.valid(&mut gadgets, self.input, &joint_rand, 1)
.unwrap();
assert_eq!(
v == T::Field::zero(),
self.expect_valid,
"{name}: unexpected output of valid() returned {v}",
);
// Generate the proof.
let proof = self
.flp
.prove(self.input, &prove_rand, &joint_rand)
.unwrap();
assert_eq!(
proof.len(),
self.flp.proof_len(),
"{name}: unexpected proof length"
);
// Query the proof.
let verifier = self
.flp
.query(self.input, &proof, &query_rand, &joint_rand, 1)
.unwrap();
assert_eq!(
verifier.len(),
self.flp.verifier_len(),
"{name}: unexpected verifier length"
);
// Decide if the input is valid.
let res = self.flp.decide(&verifier).unwrap();
assert_eq!(res, self.expect_valid, "{name}: unexpected decision");
// Run distributed FLP.
let input_shares = split_vector::<_, SHARES>(self.input);
let proof_shares = split_vector::<_, SHARES>(&proof);
let verifier: Vec<T::Field> = (0..SHARES)
.map(|i| {
self.flp
.query(
&input_shares[i],
&proof_shares[i],
&query_rand,
&joint_rand,
SHARES,
)
.unwrap()
})
.reduce(|mut left, right| {
for (x, y) in left.iter_mut().zip(right.iter()) {
*x += *y;
}
left
})
.unwrap();
let res = self.flp.decide(&verifier).unwrap();
assert_eq!(
res, self.expect_valid,
"{name}: unexpected distributed decision"
);
// Try verifying various proof mutants.
for i in 0..std::cmp::min(proof.len(), 10) {
let mut mutated_proof = proof.clone();
mutated_proof[i] *= T::Field::from(
<T::Field as FieldElementWithInteger>::Integer::try_from(23).unwrap(),
);
let verifier = self
.flp
.query(self.input, &mutated_proof, &query_rand, &joint_rand, 1)
.unwrap();
assert!(
!self.flp.decide(&verifier).unwrap(),
"{name}: proof mutant {} deemed valid",
i
);
}
// Try truncating the input.
if let Some(ref expected_output) = self.expected_output {
let output = self.flp.truncate(self.input.to_vec()).unwrap();
assert_eq!(
output.len(),
self.flp.output_len(),
"{name}: unexpected output length of truncate()"
);
assert_eq!(
&output, expected_output,
"{name}: unexpected output of truncate()"
);
}
}
}
fn split_vector<F: FieldElement, const SHARES: usize>(inp: &[F]) -> [Vec<F>; SHARES] {
let mut outp = Vec::with_capacity(SHARES);
outp.push(inp.to_vec());
for _ in 1..SHARES {
let share: Vec<F> =
random_vector(inp.len()).expect("failed to generate a random vector");
for (x, y) in outp[0].iter_mut().zip(&share) {
*x -= *y;
}
outp.push(share);
}
outp.try_into().unwrap()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::field::{random_vector, split_vector, Field128};
use crate::flp::gadgets::{Mul, PolyEval};
use crate::polynomial::poly_range_check;
use std::marker::PhantomData;
// Simple integration test for the core FLP logic. You'll find more extensive unit tests for
// each implemented data type in src/types.rs.
#[test]
fn test_flp() {
const NUM_SHARES: usize = 2;
let typ: TestType<Field128> = TestType::new();
let input = typ.encode_measurement(&3).unwrap();
assert_eq!(input.len(), typ.input_len());
let input_shares: Vec<Vec<Field128>> = split_vector(input.as_slice(), NUM_SHARES)
.unwrap()
.into_iter()
.collect();
let joint_rand = random_vector(typ.joint_rand_len()).unwrap();
let prove_rand = random_vector(typ.prove_rand_len()).unwrap();
let query_rand = random_vector(typ.query_rand_len()).unwrap();
let proof = typ.prove(&input, &prove_rand, &joint_rand).unwrap();
assert_eq!(proof.len(), typ.proof_len());
let proof_shares: Vec<Vec<Field128>> = split_vector(&proof, NUM_SHARES)
.unwrap()
.into_iter()
.collect();
let verifier: Vec<Field128> = (0..NUM_SHARES)
.map(|i| {
typ.query(
&input_shares[i],
&proof_shares[i],
&query_rand,
&joint_rand,
NUM_SHARES,
)
.unwrap()
})
.reduce(|mut left, right| {
for (x, y) in left.iter_mut().zip(right.iter()) {
*x += *y;
}
left
})
.unwrap();
assert_eq!(verifier.len(), typ.verifier_len());
assert!(typ.decide(&verifier).unwrap());
}
/// A toy type used for testing multiple gadgets. Valid inputs of this type consist of a pair
/// of field elements `(x, y)` where `2 <= x < 5` and `x^3 == y`.
#[derive(Clone, Debug, PartialEq, Eq)]
struct TestType<F>(PhantomData<F>);
impl<F> TestType<F> {
fn new() -> Self {
Self(PhantomData)
}
}
impl<F: FftFriendlyFieldElement> Type for TestType<F> {
type Measurement = F::Integer;
type AggregateResult = F::Integer;
type Field = F;
fn valid(
&self,
g: &mut Vec<Box<dyn Gadget<F>>>,
input: &[F],
joint_rand: &[F],
_num_shares: usize,
) -> Result<F, FlpError> {
let r = joint_rand[0];
let mut res = F::zero();
// Check that `data[0]^3 == data[1]`.
let mut inp = [input[0], input[0]];
inp[0] = g[0].call(&inp)?;
inp[0] = g[0].call(&inp)?;
let x3_diff = inp[0] - input[1];
res += r * x3_diff;
// Check that `data[0]` is in the correct range.
let x_checked = g[1].call(&[input[0]])?;
res += (r * r) * x_checked;
Ok(res)
}
fn input_len(&self) -> usize {
2
}
fn proof_len(&self) -> usize {
// First chunk
let mul = 2 /* gadget arity */ + 2 /* gadget degree */ * (
(1 + 2_usize /* gadget calls */).next_power_of_two() - 1) + 1;
// Second chunk
let poly = 1 /* gadget arity */ + 3 /* gadget degree */ * (
(1 + 1_usize /* gadget calls */).next_power_of_two() - 1) + 1;
mul + poly
}
fn verifier_len(&self) -> usize {
// First chunk
let mul = 1 + 2 /* gadget arity */;
// Second chunk
let poly = 1 + 1 /* gadget arity */;
1 + mul + poly
}
fn output_len(&self) -> usize {
self.input_len()
}
fn joint_rand_len(&self) -> usize {
1
}
fn prove_rand_len(&self) -> usize {
3
}
fn query_rand_len(&self) -> usize {
2
}
fn gadget(&self) -> Vec<Box<dyn Gadget<F>>> {
vec![
Box::new(Mul::new(2)),
Box::new(PolyEval::new(poly_range_check(2, 5), 1)),
]
}
fn encode_measurement(&self, measurement: &F::Integer) -> Result<Vec<F>, FlpError> {
Ok(vec![
F::from(*measurement),
F::from(*measurement).pow(F::Integer::try_from(3).unwrap()),
])
}
fn truncate(&self, input: Vec<F>) -> Result<Vec<F>, FlpError> {
Ok(input)
}
fn decode_result(
&self,
_data: &[F],
_num_measurements: usize,
) -> Result<F::Integer, FlpError> {
panic!("not implemented");
}
}
// gets triggered when the size of the buffer passed to `gadget.call_poly()` is larger than
// needed for computing the gadget polynomial.
#[test]
fn issue254() {
let typ: Issue254Type<Field128> = Issue254Type::new();
let input = typ.encode_measurement(&0).unwrap();
assert_eq!(input.len(), typ.input_len());
let joint_rand = random_vector(typ.joint_rand_len()).unwrap();
let prove_rand = random_vector(typ.prove_rand_len()).unwrap();
let query_rand = random_vector(typ.query_rand_len()).unwrap();
let proof = typ.prove(&input, &prove_rand, &joint_rand).unwrap();
let verifier = typ
.query(&input, &proof, &query_rand, &joint_rand, 1)
.unwrap();
assert_eq!(verifier.len(), typ.verifier_len());
assert!(typ.decide(&verifier).unwrap());
}
#[derive(Clone, Debug, PartialEq, Eq)]
struct Issue254Type<F> {
num_gadget_calls: [usize; 2],
phantom: PhantomData<F>,
}
impl<F> Issue254Type<F> {
fn new() -> Self {
Self {
// The bug is triggered when there are two gadgets, but it doesn't matter how many
// times the second gadget is called.
num_gadget_calls: [100, 0],
phantom: PhantomData,
}
}
}
impl<F: FftFriendlyFieldElement> Type for Issue254Type<F> {
type Measurement = F::Integer;
type AggregateResult = F::Integer;
type Field = F;
fn valid(
&self,
g: &mut Vec<Box<dyn Gadget<F>>>,
input: &[F],
_joint_rand: &[F],
_num_shares: usize,
) -> Result<F, FlpError> {
// This is a useless circuit, as it only accepts "0". Its purpose is to exercise the
// use of multiple gadgets, each of which is called an arbitrary number of times.
let mut res = F::zero();
for _ in 0..self.num_gadget_calls[0] {
res += g[0].call(&[input[0]])?;
}
for _ in 0..self.num_gadget_calls[1] {
res += g[1].call(&[input[0]])?;
}
Ok(res)
}
fn input_len(&self) -> usize {
1
}
fn proof_len(&self) -> usize {
// First chunk
let first = 1 /* gadget arity */ + 2 /* gadget degree */ * (
(1 + self.num_gadget_calls[0]).next_power_of_two() - 1) + 1;
// Second chunk
let second = 1 /* gadget arity */ + 2 /* gadget degree */ * (
(1 + self.num_gadget_calls[1]).next_power_of_two() - 1) + 1;
first + second
}
fn verifier_len(&self) -> usize {
// First chunk
let first = 1 + 1 /* gadget arity */;
// Second chunk
let second = 1 + 1 /* gadget arity */;
1 + first + second
}
fn output_len(&self) -> usize {
self.input_len()
}
fn joint_rand_len(&self) -> usize {
0
}
fn prove_rand_len(&self) -> usize {
// First chunk
let first = 1; // gadget arity
// Second chunk
let second = 1; // gadget arity
first + second
}
fn query_rand_len(&self) -> usize {
2 // number of gadgets
}
fn gadget(&self) -> Vec<Box<dyn Gadget<F>>> {
let poly = poly_range_check(0, 2); // A polynomial with degree 2
vec![
Box::new(PolyEval::new(poly.clone(), self.num_gadget_calls[0])),
Box::new(PolyEval::new(poly, self.num_gadget_calls[1])),
]
}
fn encode_measurement(&self, measurement: &F::Integer) -> Result<Vec<F>, FlpError> {
Ok(vec![F::from(*measurement)])
}
fn truncate(&self, input: Vec<F>) -> Result<Vec<F>, FlpError> {
Ok(input)
}
fn decode_result(
&self,
_data: &[F],
_num_measurements: usize,
) -> Result<F::Integer, FlpError> {
panic!("not implemented");
}
}
}