Revision control

Copy as Markdown

Other Tools

// SPDX-License-Identifier: MPL-2.0
#![doc(hidden)]
//! This module provides wrappers around internal components of this crate that we want to
//! benchmark, but which we don't want to expose in the public API.
use crate::fft::discrete_fourier_transform;
use crate::field::FftFriendlyFieldElement;
use crate::flp::gadgets::Mul;
use crate::flp::FlpError;
use crate::polynomial::{poly_fft, PolyAuxMemory};
/// Sets `outp` to the Discrete Fourier Transform (DFT) using an iterative FFT algorithm.
pub fn benchmarked_iterative_fft<F: FftFriendlyFieldElement>(outp: &mut [F], inp: &[F]) {
discrete_fourier_transform(outp, inp, inp.len()).unwrap();
}
/// Sets `outp` to the Discrete Fourier Transform (DFT) using a recursive FFT algorithm.
pub fn benchmarked_recursive_fft<F: FftFriendlyFieldElement>(outp: &mut [F], inp: &[F]) {
let mut mem = PolyAuxMemory::new(inp.len() / 2);
poly_fft(
outp,
inp,
&mem.roots_2n,
inp.len(),
false,
&mut mem.fft_memory,
)
}
/// Sets `outp` to `inp[0] * inp[1]`, where `inp[0]` and `inp[1]` are polynomials. This function
/// uses FFT for multiplication.
pub fn benchmarked_gadget_mul_call_poly_fft<F: FftFriendlyFieldElement>(
g: &mut Mul<F>,
outp: &mut [F],
inp: &[Vec<F>],
) -> Result<(), FlpError> {
g.call_poly_fft(outp, inp)
}
/// Sets `outp` to `inp[0] * inp[1]`, where `inp[0]` and `inp[1]` are polynomials. This function
/// does the multiplication directly.
pub fn benchmarked_gadget_mul_call_poly_direct<F: FftFriendlyFieldElement>(
g: &mut Mul<F>,
outp: &mut [F],
inp: &[Vec<F>],
) -> Result<(), FlpError> {
g.call_poly_direct(outp, inp)
}