Revision control

Copy as Markdown

Other Tools

use euclid::{
default::{Rect, Transform3D},
rect, vec3, Angle,
};
use plane_split::PlaneCut;
use plane_split::{make_grid, BspSplitter, Polygon};
use std::f64::consts::FRAC_PI_4;
fn grid_impl(count: usize, splitter: &mut BspSplitter<usize>) {
let polys = make_grid(count);
let result = splitter.solve(&polys, vec3(0.0, 0.0, 1.0));
assert_eq!(result.len(), count + count * count + count * count * count);
}
#[test]
fn grid_bsp() {
grid_impl(2, &mut BspSplitter::new());
}
fn sort_rotation(splitter: &mut BspSplitter<usize>) {
let transform0: Transform3D<f64> =
Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(-FRAC_PI_4));
let transform1: Transform3D<f64> = Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(0.0));
let transform2: Transform3D<f64> =
Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(FRAC_PI_4));
let rect: Rect<f64> = rect(-10.0, -10.0, 20.0, 20.0);
let p1 = Polygon::from_transformed_rect(rect, transform0, 0);
let p2 = Polygon::from_transformed_rect(rect, transform1, 1);
let p3 = Polygon::from_transformed_rect(rect, transform2, 2);
assert!(
p1.is_some() && p2.is_some() && p3.is_some(),
"Cannot construct transformed polygons"
);
let polys = [p1.unwrap(), p2.unwrap(), p3.unwrap()];
let result = splitter.solve(&polys, vec3(0.0, 0.0, -1.0));
let ids: Vec<_> = result.iter().map(|poly| poly.anchor).collect();
assert_eq!(&ids, &[2, 1, 0, 1, 2]);
}
#[test]
fn rotation_bsp() {
sort_rotation(&mut BspSplitter::new());
}
fn sort_trivial(splitter: &mut BspSplitter<usize>) {
let anchors: Vec<_> = (0usize..10).collect();
let rect: Rect<f64> = rect(-10.0, -10.0, 20.0, 20.0);
let polys: Vec<_> = anchors
.iter()
.map(|&anchor| {
let transform: Transform3D<f64> = Transform3D::translation(0.0, 0.0, anchor as f64);
let poly = Polygon::from_transformed_rect(rect, transform, anchor);
assert!(poly.is_some(), "Cannot construct transformed polygons");
poly.unwrap()
})
.collect();
let result = splitter.solve(&polys, vec3(0.0, 0.0, -1.0));
let anchors1: Vec<_> = result.iter().map(|p| p.anchor).collect();
let mut anchors2 = anchors1.clone();
anchors2.sort_by_key(|&a| -(a as i32));
//make sure Z is sorted backwards
assert_eq!(anchors1, anchors2);
}
fn sort_external(splitter: &mut BspSplitter<usize>) {
let rect0: Rect<f64> = rect(-10.0, -10.0, 20.0, 20.0);
let poly0 = Polygon::from_rect(rect0, 0);
let poly1 = {
let transform0: Transform3D<f64> =
Transform3D::rotation(1.0, 0.0, 0.0, Angle::radians(2.0 * FRAC_PI_4));
let transform1: Transform3D<f64> = Transform3D::translation(0.0, 100.0, 0.0);
Polygon::from_transformed_rect(rect0, transform0.then(&transform1), 1).unwrap()
};
let result = splitter.solve(&[poly0, poly1], vec3(1.0, 1.0, 0.0).normalize());
let anchors: Vec<_> = result.iter().map(|p| p.anchor).collect();
// make sure the second polygon is split in half around the plane of the first one,
// even if geometrically their polygons don't intersect.
assert_eq!(anchors, vec![1, 0, 1]);
}
#[test]
fn trivial_bsp() {
sort_trivial(&mut BspSplitter::new());
}
#[test]
fn external_bsp() {
sort_external(&mut BspSplitter::new());
}
#[test]
fn test_cut() {
use smallvec::SmallVec;
let rect: Rect<f64> = rect(-10.0, -10.0, 20.0, 20.0);
let poly = Polygon::from_rect(rect, 0);
let mut poly2 = Polygon::from_rect(rect, 0);
// test robustness for positions
for p in &mut poly2.points {
p.z += 0.00000001;
}
let mut front: SmallVec<[Polygon<i32>; 2]> = SmallVec::new();
let mut back: SmallVec<[Polygon<i32>; 2]> = SmallVec::new();
assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Sibling);
assert!(front.is_empty());
assert!(back.is_empty());
// test robustness for normal
poly2.plane.normal.z += 0.00000001;
assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Sibling);
assert!(front.is_empty());
assert!(back.is_empty());
// test opposite normal handling
poly2.plane.normal *= -1.0;
assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Sibling);
assert!(front.is_empty());
assert!(back.is_empty());
// test grouping front
poly2.plane.offset += 0.1;
assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Cut);
assert_eq!(front.len(), 1);
assert!(back.is_empty());
front.clear();
// test grouping back
poly2.plane.normal *= -1.0;
assert_eq!(poly.cut(&poly2, &mut front, &mut back), PlaneCut::Cut);
assert_eq!(back.len(), 1);
assert!(front.is_empty());
}